Necessity of Oversampling Theorem for Affine Frames

Qiquan Fang¹, Xianliang Shi², Weicai Li³

¹Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, China
²College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, China
³Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, China

Email: fendui@yahoo.com, li5021@21cn.com

Received November 7, 2013; revised December 7, 2013; accepted December 15, 2013

ABSTRACT
Let \(a, n \geq 2 \) be two natural numbers. C. K. Chui and X. L. Shi proved that for any affine frame
\[
\psi_{b,j,k}(x) = a^{i/2}\psi(a^{j}x - kb), \quad j, k \in \mathbb{Z},
\]
of \(L^2(\mathbb{R}) \), and the family \(\{n^{-1/2}\psi_{b,a,j,k}, j, k \in \mathbb{Z}\} \) is also a frame with the same bounds if \(n \) is relatively prime to \(a \). In this paper we prove that \(n \) is relatively prime to \(a \) which is also necessary.

KEYWORDS
Affine Frame; Oversampling

1. Introduction
Let \(L^2 = L^2(\mathbb{R}) \) denote, as usual, the space of all complex-valued square integrable functions on the real line with inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \| \). For any \(\psi \in L^2 = L^2(\mathbb{R}) \), we will use the notation
\[
\psi_{b,j,k}(x) = a^{i/2}\psi(a^{j}x - kb), \quad j, k \in \mathbb{Z},
\]
where \(a > 1 \) and \(b > 0 \). A function \(\psi \in L^2 \) is said to generate an affine frame
\[
\{\psi_{b,j,k} : j, k \in \mathbb{Z}\}
\]
of \(L^2 \), with frame bounds \(A \) and \(B \), where \(0 < A \leq B < \infty \), if it satisfies
\[
A\|f\|^2 \leq \sum_{j,k \in \mathbb{Z}} \left| \langle f, \psi_{b,j,k} \rangle \right|^2 \leq B\|f\|^2, \quad \forall f \in L^2.
\]
The frame (2) of \(L^2 \) is called a tight frame, if (3) holds with \(A = B \), see [1] and [2]. In 1993, C. K. Chui and X. L. Shi [3] proved the following oversampling theorem:

Theorem A. Let \(a \geq 2 \) be any positive integer and \(b > 0 \). Also, let \(\psi \in L^2 \) generate a frame
\[
\{\psi_{b,j,k} : j, k \in \mathbb{Z}\}
\]
with frame bounds \(A \) and \(B \) as given by (3). Then for any positive integer \(n \) which is relatively prime to \(a \), the family
\[
\{n^{-1/2}\psi_{b,a,j,k} : j, k \in \mathbb{Z}\}
\]
remains a frame of \(L^2 \) with the same bounds. If \((n,a) \neq 1 \), this result does not hold. But they only gave a countexample for the case where \(a = 2, b = 1, n = 2 \) as in [4]. For other positive integer \(n \) and \(a \) which satisfy \((n,a) \neq 1 \), they did not prove. The aim of this paper is to establish the inverse proposition of Theorem A, and then we following:
Theorem 1.1. Let $a \geq 2$ be any positive integer and $b > 0$. Also, let $\{\psi_{b,j,k} : j, k \in \mathbb{Z}\}$ be any affine frame of L^2 with frame bounds A and B. The family (4) remains a frame of L^2 with the same bounds: that is,

$$nA\|f\|^2 \leq \sum_{j,k \in \mathbb{Z}} \left| \left\langle f, \psi_{b,j,k} \right\rangle \right|^2 \leq nB\|f\|^2, f \in L^2,$$

if and only if n and a are relatively prime.

2. Proofs

The sufficiency has been included in the theorem 4 of [3]. In the following we will prove the necessary part of the theorem.

Suppose for any affine frame (2) of L^2 with frame bounds A and B, the family (4) is also a frame of L^2 with the same bounds. Then when (1) forms an orthonormal basis, the family (4) forms a tight frame with frame bound 1. So we just need to prove that there exists a function ψ such that the family (1) forms the orthonormal basis, but for any two positive integers n and a which satisfy $(n,a) \geq 2$, there exist two functions f_1 and f_2 such that

$$S(f_1) = \sum_{j,k \in \mathbb{Z}} \left| \left\langle f_1, \psi_{b,j,k} \right\rangle \right|^2$$

doesn’t equal

$$S(f_2) = \sum_{j,k \in \mathbb{Z}} \left| \left\langle f_2, \psi_{b,j,k} \right\rangle \right|^2.$$

Let $\psi(x) = \psi_{H} (x) = \chi_{(0,1/2)} (x) \text{sgn} \left(\frac{1}{2} - x \right)$, then $\{\psi_{j,k} : j,k \in \mathbb{Z}\}$ forms an orthonormal basis, which is called Haar basis. Set

$$f_1(x) = \psi_{H} \left(x + \frac{1}{2} \right) \quad \text{and} \quad f_2(x) = \chi_{(1/2,1/2)} (x).$$

We prove that if $(n,a) = m \geq 2, m \in \mathbb{N}$, then

$$S(f_1) - S(f_2) \neq 0.$$

$$S(f_1) = \sum_{j,k \in \mathbb{Z}} \left| \left\langle f_1, \psi_{H,j,k} \right\rangle \right|^2$$

$$= \sum_{k=0}^{n/2} \left(\frac{1}{2a^n} \right)^2 + \sum_{k=1}^{n/2} \left(\frac{3k}{n} + \frac{5}{2} \right)^2 + \sum_{k=1}^{n/2} \left(\frac{3k}{n} + \frac{5}{2} \right)^2 + \sum_{k=1}^{n/2} \left(\frac{3k}{n} + \frac{5}{2} \right)^2$$

$$+ \sum_{k=0}^{n/2} \left(\frac{1}{2a^n} \right)^2 + \sum_{k=1}^{n/2} \left(\frac{3k}{n} + \frac{5}{2} \right)^2 + \sum_{k=1}^{n/2} \left(\frac{3k}{n} + \frac{5}{2} \right)^2 + \sum_{k=1}^{n/2} \left(\frac{3k}{n} + \frac{5}{2} \right)^2$$

$$+ \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2 + \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2 + \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2 + \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2$$

$$+ \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2 + \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2 + \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2 + \sum_{j=1}^{n/2} \frac{1}{2a^n} \left(\frac{1}{2a^n} \right)^2$$

and

OPEN ACCESS

JAMP
\[S(f_2) = \sum_{j,k=2} \left[(f_2, \psi_{j,k}^n)\right]^2 = \sum_{k=0}^{n/2-1} \left(\frac{1}{2} - k \right)^2 n + \sum_{j=0}^{n/2-1} \left(\frac{1}{2} + k \right)^2 n \]

\[+ \sum_{j=0}^{n/2-1} \left(\frac{3}{2} + k \right)^2 n + \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} - \frac{k}{a^j} \right)^2 n + \sum_{j=0}^{n/2-1} \left(\frac{3}{2} + \frac{k}{a^j} \right)^2 n \]

\[+ \sum_{j=0}^{n/2-1} \sum_{k=0}^{n/2-1} \left(\frac{1}{2} - \frac{k}{a^j} \right)^2 n + \sum_{j=0}^{n/2-1} a^j \left(\frac{1}{2} + \frac{k}{a^j} \right)^2 n \]

\[+ \sum_{j=0}^{n/2-1} a^j \left(\frac{1}{2} + \frac{k}{a^j} \right)^2 n + \sum_{j=0}^{n/2-1} a^j \left(\frac{1}{2} + \frac{k}{a^j} \right)^2 n \]

Denote \(\Delta = S(f_1) - S(f_2) \). We have

\[\Delta = A_1 + A_2 + A_3 + A_4 + A_5 + A_6, \]

where

\[A_1 = \sum_{j=0}^{n/2-1} \left(\frac{3k}{n} + \frac{3}{2} \right)^2 n + \sum_{j=0}^{n/2-1} \left(\frac{3k}{n} + \frac{5}{2} \right)^2 n - \sum_{k=0}^{n/2-1} \left(\frac{3k}{n} + \frac{1}{2} \right)^2 n, \]

\[A_2 = \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} + \frac{k}{a^j} \right)^2 n + \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} - \frac{k}{a^j} \right)^2 n, \]

\[A_3 = \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} + \frac{k}{a^j} \right)^2 n + \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} - \frac{k}{a^j} \right)^2 n \]

\[A_4 = \sum_{k=0}^{n/2-1} a^j \left(1 - \frac{1}{a^j} - \frac{2k}{a^j} \right)^2 n + \sum_{k=0}^{n/2-1} a^j \left(1 + \frac{1}{a^j} + \frac{2k}{a^j} \right)^2 n \]

\[- \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{a^j} + \frac{2k}{a^j} \right)^2 n - \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{a^j} + \frac{2k}{a^j} \right)^2 n, \]

\[A_5 = - \sum_{k=0}^{n/2-1} a^j + \sum_{k=0}^{n/2-1} a^j, \]

and

\[A_6 = \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} - \frac{1}{a^j} - \frac{k}{a^j} \right)^2 n + \sum_{k=0}^{n/2-1} a^j \left(\frac{1}{2} + \frac{1}{a^j} + \frac{k}{a^j} \right)^2 n. \]

In order to prove the theorem, we have three cases.
Case 1. When $a = n$.

We have $\left\lfloor a'n/2 \right\rfloor = 0$ if $j \leq -1$. Thus, if n is an even integer, we can get

$$A_1 = \frac{n}{6} + \frac{4}{3n}; A_2 = \frac{n}{3(a - 1)} - \frac{2}{3a(a - 1)}; A_3 = 0; A_4 = \sum_{j=1}^{n} a'^j; A_5 = \sum_{j=1}^{n-1} (2-n)a'^j; A_6 = 0$$

So, we have

$$\Delta = \frac{n^2 - 5n + 18}{6(n - 1)} + \frac{4}{3n} + \frac{2}{3n(n - 1)} > 0.$$

If n is an odd integer, we have

$$A_1 = \frac{n}{6} - \frac{1}{6n}; A_2 = \frac{n}{3(a - 1)} - \frac{1}{3a(a - 1)}; A_3 = 0; A_4 = \frac{1}{n}; A_5 = \sum_{j=2}^{n} (1-n)a'^j + \frac{2}{n} = \frac{1}{n}; A_6 = 0.$$

So, we have

$$\Delta = \frac{n^2 - 6n + 9}{6n} + \frac{n^2 - 5n + 4}{3n(n - 1)} \neq 0.$$

Case 2. When $a \geq n + 1$.

If n is an even integer, we have

$$A_1 = \frac{n}{6} + \frac{4}{3n}; A_2 = \frac{n}{3(a - 1)} + \frac{2}{5n(a - 1)}; A_3 = 0; A_4 = \sum_{j=1}^{n} a'^j; A_5 = \sum_{j=1}^{n} (2-n)a'^j; A_6 = 0.$$

Thus

$$\Delta = \frac{an^2 - 5n^2 + 18n + 8a - 4}{6n(a - 1)} > \frac{n^2 - 5n + 7 + 19n - 4}{6n(a - 1)} > 0.$$

If n is an odd integer, we can get $n \geq 3$ because of $(n,a) \geq 3$. As in the case 1, we also have

$$A_1 = \frac{n}{6} - \frac{1}{6n}; A_2 = \frac{n}{3(a - 1)} - \frac{1}{3a(a - 1)}; A_3 = 0; A_4 = 0; A_5 = \frac{1-n}{a-1}; A_6 = 0.$$

So, we get

$$\Delta = \frac{an^2 - 5n^2 + 6n - a - 1}{6n(a - 1)} \geq \frac{n(n - 2)^2 + n - 2}{6n(a - 1)} > 0.$$

Case 3. When $a < n$.

If n is an even integer. Let

$$\Lambda_1 = \{ j \leq -1; j \in Z \text{ and } a'n/2 \text{ is a positive integer} \}$$

and

$$\Lambda_2 = \{ j \leq -1; j \in Z \text{ and } a'^j/2 \text{ is a not positive integer} \}$$

When $\Lambda_1 \neq \emptyset$, there exists an integer J satisfying $J \in \Lambda_1, J-1 \in \Lambda_2$. Therefore we have

$$A_1 + A_4 + A_5 + A_6 = \sum_{j=J-1}^{3} (3a^2/2 - a'^j) + \sum_{j=J}^{n} f_j(x_j) + \sum_{j=J}^{n-1} (3-n)a'^j,$$

where $x_j = \left\lfloor a'^j/2 \right\rfloor, f_j(x_j) = -\frac{6}{n}x_j^2 - \left(\frac{a'n-1}{a'n}\right)x_j$. When $\frac{1}{2}a'n < 1$, we have $\frac{1}{2}a'n > a'n - 1$ and $f_j\left(\frac{1}{2}a'n\right) < 0$. Thus we have
\[
\sum_{j \leq -1} f_j(x_j) = \sum_{j \leq -1} f_j(x_j) \geq \sum_{j \leq -1} f_j \left(\frac{1}{2} a^j a^j \right) > \sum_{j \leq -1} f_j \left(\frac{1}{2} a^j a^j \right) = \sum_{j \leq -1} -3a^j + \frac{3}{2} \ n \ a^j.
\]

Therefore
\[
\Delta \geq \frac{n^2 (a - 2)^2 + (a + 2)^2 + 7a^2 - 8}{6n (a^2 - 1)} > 0.
\]

When \(\Lambda_1 = \emptyset \), similar to the case \(\Lambda_1 \neq \emptyset \), we also have
\[
\sum_{j \leq -1} f_j(x_j) = \sum_{j \leq -1} f_j(x_j) \geq \sum_{j \leq -1} f_j \left(\frac{1}{2} a^j a^j \right) > \sum_{j \leq -1} f_j \left(\frac{1}{2} a^j a^j \right) = \sum_{j \leq -1} -3a^j + \frac{3}{2} \ n \ a^j.
\]

So we have
\[
\Delta \geq \frac{n (a - 2)^2}{6(a^2 - 1)} + \frac{4}{3n} + \frac{2}{3n (a - 1)} > 0.
\]

If \(n \) is an odd integer. We have
\[
A_1 + A_4 + A_2 + A_6 = \sum_{j \leq -1} g_j(x_j) + h_j(y_j) + a^j - na^j
\]

where
\[
\begin{align*}
x_j &= \left[a^j n/2 \right], g_j(x_j) = -\frac{2}{n} \left[x^j_j - (a^j n - 1) x^j_j \right], \\
h_j &= \left[a^j n/2 + 1/2 \right], h_j(y_j) = -\frac{4}{n} \left(y^j_j - a^j n \ y^j_j \right).
\end{align*}
\]

A familiar calculation shows
\[
\Delta > -\frac{1}{n} \log n + \frac{n}{48} - \frac{7}{n} > 0.
\]

Since \((a, n) \geq 3 \) and \(a < n \), we have \(n \geq 9, a \geq 3 \). Also when \(n = 9 \) and \(a = 3 \), we have
\[
\Delta = \frac{14}{27} > 0.
\]

When \(n = 9 \) and \(a = 6 \), obviously we have
\[
\Delta \geq \frac{10}{27} > 0.
\]

When \(n \geq 15 \), \(-\frac{1}{n} \log n + \frac{n}{48} - \frac{7}{6n} > \frac{5}{144} \). So we have \(\Delta > 0 \) in this case. This completes the proof of the theorem.

Acknowledgements

The authors would like to thank anonymous reviewers for their comments and suggestions. The authors are partially supported by project 11226108, 11071065, 11171306 funded by NSF of China, and project Y201225301. Project 2009430610004 funded by RFDP of high education of China.

REFERENCES

OPEN ACCESS

JAMP