Hermite Solution of Bagley-Torvik Equation of Fractional Order

Tamour Zubair¹,²*, Marriam Sajjad³, Rehmatullah Madni², Amna Shabir²

¹Department of Applied Mathematics and Statics, Institute of Space and Technology, Islamabad, Pakistan
²Department of Mathematics, University of Sargodah, Lyallpur Campus, Faisalabad, Pakistan
³Department of Mathematics, University of Lahore, Lahore, Pakistan

Email: *Tamourzubair@hotmail.com

Abstract

In this paper, a new methodology of fractional derivatives based upon Hermite polynomial is projected. The fractional derivatives are demonstrated according to Caputo sense. Hermite collocation technique is introduced to express the definite results of Bagley-Torvik Equations. The appropriateness and straightforwardness of numerical plan is presented by graphs and error tables.

Keywords

MAPLE 13, Bagley-Torvik Equations, Hermite Polynomials, Fractional Calculus

1. Introduction

Numerical analysis is the study of set of rules that use numerical estimation for the problems of mathematical analysis as distinguished from discrete mathematics. Fractional differential equations are operational and most effective tool to describe different physical phenomena such as rheology, diffusion processes, damping laws, and so on. Many techniques have been delegated to solve differential equation of fractional order. Different structures are used to resolve the issues of nonlinear physical models of fractional orders like Finite element method [1], Finite difference method [2], differential transformation method [3] [4], Adomian’s decomposition method [5] [6] [7], variational iteration method [8] [9] [10], Homotopy perturbation technique [11], Zubair decomposition method (ZDM) [12], (G'/G)-expansion method [13], (U'/U)-expansion method [14], U-expansion method [15], Fractional sub numerical announcement method [16] [17], Legendre wavelets technique [18], Chebyshev wavelets framework [19] [20] [21], Haar wavelets schema [22], Legendre Method [23], Chebyshev strategy [24], Jacobi polynomial scheme [25] and collocation scheme [26] [27] [28] [29]. All
the mentioned approaches have certain limitations like excessive computational
work, less efficiency to tackle nonlinearity and divergent solution due to which
many issues arise. All these disputes can be fixed with the help of orthogonal
polynomials, which is a vital thought in close estimation and structures. These
orthogonal polynomials are the reason of powerful strategies of spectral methods
[30] [31] [32]. Starting late, Khader [33] displayed a capable numerical proce-
dure for enlightening the fractional order physical problems using the Cheby-
shev polynomials. In the [34] two Chebyshev spectral frameworks for measuring
multi-term fractional problems are displayed. The author (Tamour Zubair) de-
vote a new wavelets algorithm to construct the numerical solution of nonlinear
Bagley-Torvik equation of fractional order which will have less computational
works, straight forward and better accuracy as compare to the existing technique.
It is to be emphasized that proposed algorithm is tremendously simple but hig-
ly effective Moreover, this new pattern is proficient for reducing the computa-
tional work to a tangible level while still retaining a very high level of accuracy.

2. Basic Definitions

Fractional Calculus [35]-[40]

We give some basic definitions and properties of the fractional calculus theory
which are used further in this paper.

Definition 1. A real function \(f(t), t > 0 \) is said to be in the space \(\mathcal{C}_\mu, \mu \in \mathbb{R} \)
if there exists a real number \(p(>\mu) \), such that \(f(t) = t^p f_1(t) \), where
\(f_1(t) \in \mathcal{C}[0, \infty] \), and it is said to be in the space \(\mathcal{C}_\mu^m \) iff \(f^m \in \mathcal{C}_\mu, m \in \mathbb{N} \).

Definition 2. The Riemann-Liouville fractional integral operator of order
\(\alpha \geq 0 \), of a function \(f \in \mathcal{C}_\mu, \mu \in [0, \infty) \)
is defined as
\[
J^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau, \quad \alpha > 0, t > 0,
\]

\[
J^0 f(t) = f(t).
\]

Properties of the operator \(J^\alpha \) can be found in literature, we mention only
the following: For \(f \in \mathcal{C}_\mu, \mu \in [0, \infty) \)
\(\alpha \geq -1 \), \(\beta \geq 0 \) and \(\gamma > -1 \):
1) \(J^\alpha J^\beta f(t) = J^{\alpha+\beta} f(t) \).
2) \(J^\alpha J^\beta f(t) = J^\beta J^\alpha f(t) \).
3) \(J^\alpha t^\gamma = \frac{\Gamma(\gamma+1)}{\Gamma(\alpha+\gamma+1)} t^{\alpha+\gamma} \).

The Riemann-Liouville derivative has certain drawbacks when trying to model
real-world processes with fractional differential equations. Therefore, we shall
introduce a improved fractional differential operator \(D^\alpha \) proposed by \(M \).

Definition 3. The fractional derivative of \(f(t) \) in the Caputo sense is defined as
\[
D^\alpha f(t) = D^{m-\alpha} D^m f(t) = \frac{1}{\Gamma(m-\alpha)} \int_0^t (t-\tau)^{m-\alpha-1} f^m(\tau) d\tau,
\]
for \(m-1 < \alpha \leq 1, m \in \mathbb{N}, t > 0, f \in \mathcal{C}^m_\gamma \). For the Caputo’s derivative we have
\[D^\alpha C = 0, \quad C \text{ is a constant}, \]

\[
D^\alpha x^k = \begin{cases}
0, & \text{for } n \in \mathbb{N}_0 \text{ and } n < \lfloor \alpha \rfloor; \\
\Gamma(k + 1) x^{k-\alpha}, & \text{for } n \in \mathbb{N}_0 \text{ and } n \geq \lfloor \alpha \rfloor.
\end{cases}
\]

We use the ceiling function \(\lfloor \alpha \rfloor \) to denote the smallest integer greater than or equal to \(\alpha \), and \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \). Recall that for \(\alpha \in \mathbb{N} \), the Caputo differential operator coincides with the usual differential operator of integer order.

3. Bagley-Torvik Equations

Bagley-Torvik equation assumes an extremely vital part to study the performance of different material by application of fractional calculus [40] [41]. It has increased its significance in many fields of industrial and applied sciences. Precisely, the equation with 1/2 order derivative or 3/2 order derivative can be model the frequency dependent damping materials. The summed up form of Bagley-Torvik equation is given

\[
sigma \frac{d^n u(t)}{dt^n} + \omega \frac{d^\rho u(t)}{dt^\rho} + \mu (y(t))^{n} = f(t), \quad 0 < t \leq T.
\]

(1)

with initial condition

\[
\frac{d^p}{dt^p} u(0) = l_p, \quad p = 0, 1.
\]

with boundary condition at \(t = t_0 \), for \(0 < t_0 \leq T \), is given by

\[
\frac{d^p}{dt^p} u(t_0) = m_p, \quad p = 0, 1.
\]

where \(n \) is the nonlinear operator of the equation, \(u(t) \) is unknown function. \(\sigma, \omega \) and \(\mu \) are the constant coefficients, \(T \) is the constant representing the span of input in close interval \([0,T]\), and \(l_p, m_p \) are contents. When we have

\[
n = 1, \quad \sigma = M, \quad \omega = k, \quad \mu = 2S \sqrt{\epsilon \rho}
\]

where \(M \) is mass of the rigid plate, \(k \) is stiffness of the spring, \(S \) is the area of plate immersed in Newtonian fluid, \(\epsilon \) is the velocity, and \(\rho \) is the fluid density then equation (1) represents the motion of large thin plate in a Newtonian fluid [39]. Similarly, linearly damped fractional oscillator with the damping term has the fraction derivative \(\beta = \frac{3}{2} \).

Further, we will discuss mathematical modeling of BT equation with feed-forward artificial neural network. The solution \(u \) of the fractional differential equation along with its \(v \) arbitrary order derivative \(\frac{d^v u}{dt^v} \) can be approximated by the following continuous mapping as a neural network methodology [41] [42] [43] [44]:

\[
\tilde{u}(t) = \sum_{i=1}^{k} \gamma_i \theta(S_i t + \chi_i),
\]

\[
\frac{d^v \tilde{u}}{dt^v} = \sum_{i=1}^{k} \gamma_i \frac{d^v \theta}{dt^v} (S_i t + \chi_i),
\]
where γ_i, N_i, and χ_i are bounded real valued adaptive parameters, h is the number of neurons and f is the active function taken as exponential function. Fractional differential equation neural networks (FDN-NNs) can be approximate as

\[
\tilde{u}(t) = \sum_{i=1}^{h} \gamma_i e^{(N_i + \chi_i)},
\]

\[
\frac{d^\nu \tilde{u}}{dt^\nu} = \sum_{i=1}^{h} \gamma_i N_i e^{(N_i + \chi_i)},
\]

for $\nu = 2$, we get

\[
\frac{d^2 \tilde{u}}{dt^2} = \sum_{i=1}^{h} \gamma_i N_i^2 e^{(N_i + \chi_i)},
\]

Using Definition 4, for $\nu = \frac{3}{2}$, we get

\[
\frac{d^{3/2} \tilde{u}}{dt^{3/2}} = \sum_{i=1}^{h} \gamma_i (N_i)^{3/2} E_{1, \frac{3}{2}} (N_i, t).
\]

Figure 1. FDE-NN architecture of Bagley-Torvik equation.
The mathematical model can be the linear combinations of the networks represented above. The FDE-NN architecture formulated for Bagley-Torvik equation can be seen in Figure 1. It is clear that the solution u can be approximated with \tilde{u} subject to finding appropriate unknown weights.

4. Hermite Polynomials [45]

It is classical orthogonal polynomials play very important role in probability. It has wide applications in numerical analysis as finite element methods as shape functions for beams. They are also applicable in physical quantum theory. Hermite polynomials are categorized into two kinds.

The Probabilists Hermite polynomials are the solutions of

$$(e^y')^2 + \lambda(e^y) = 0, \varnothing < 0, \lambda > 0.$$

where $\varnothing = \frac{x^2}{2}$ and λ is a constant, with the boundary conditions that y should be polynomially bounded at infinity. The above equation can be written in the form of eigen value problem

$$L[y] = y'' + xy' = -\lambda y,$$

solutions are the Eigen functions of the differential operator L. This equation is called Hermite equation, although the term is also used for the closely related equation

$$y'' - 2xy' = 2\lambda y.$$

whose solutions are the Physicists Hermite polynomials, which is the second kind of Hermite polynomials.

The Hermite polynomials is given by

$$H_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{\frac{x^2}{2}}, \varnothing_1 > 0, \varnothing_2 < 0.$$

where $\varnothing_1 = \frac{x^2}{2}$, for Probabilists Hermite polynomials,

and $\varnothing_1 = -\varnothing_2$.

<table>
<thead>
<tr>
<th>Probabilists Hermite Polynomials</th>
<th>Physicists Hermite Polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0 = 1$,</td>
<td>$H_0 = 1$,</td>
</tr>
<tr>
<td>$H_1 = x$,</td>
<td>$H_1 = 2x$,</td>
</tr>
<tr>
<td>$H_2 = x^2 - 1$,</td>
<td>$H_2 = 4x^2 - 2$,</td>
</tr>
<tr>
<td>$H_3 = x^3 - 3x$,</td>
<td>$H_3 = 8x^3 - 12x$,</td>
</tr>
<tr>
<td>$H_4 = x^4 - 6x^2 + 3$,</td>
<td>$H_4 = x^4 - 6x^2 + 3$,</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
\(H_n(x) \) and \(He_n(x) \) the two branches of Hermite polynomial of degree \(n \), which are orthogonal with respect to weigh function.

\[
w(x) = \begin{cases} e^x, & \text{for Physicists Hermite Polynomials,} \\ e^{-2x}, & \text{for Probabilists Hermite Polynomials.} \end{cases}
\]

Here we have \(\varnothing_\delta < 0 \).

Further we have orthogonality \(R(x) \) is given by

\[
R(x) = \begin{cases} \int_{-\infty}^{\infty} He_m(x) He_n(x) w(x) dx = \sqrt{2\pi n!}\delta_{nm}, & \text{for Probabilists,} \\ \int_{-\infty}^{\infty} H_m(x) H_n(x) w(x) dx = \sqrt{\pi} 2^n n!\delta_{nm}, & \text{for Physicists.} \end{cases}
\]

A function \(u(x) \in L^2_{n(x)}(\infty,-\infty) \) can be express in term of Hermite polynomials

\[
u(x) = \sum_{j=0}^{\infty} a_j H_j(x).
\]

where \(a_j \) coefficients is given by

\[
a_j = \frac{1}{\varnothing_\delta} \int_{-\infty}^{\infty} u(x) H_j(x) w(x) dx.
\]

where \(\varnothing_\delta = \sqrt{\pi} 2^n n! \).

5. Fractional Form of Hermite Polynomials [35]-[40]

The explicit formula of Hermite polynomials is

\[
\begin{align*}
\sum_{m=0}^{\infty} \frac{(-1)^m}{m!(n-m)!} X^{n-m}, & \quad \text{for Physicists Hermite Polynomials,} \\
\sum_{m=0}^{\infty} \frac{(-1)^m}{m!(n-m)!} X^{2n-m}, & \quad \text{for Probabilists Hermite Polynomials.}
\end{align*}
\]

Further we have

\[
P_n(x) = n! \sum_{m=0}^{\infty} \left\{ \delta_m X^n \right\}.
\]

where \(\delta_m \) is given by

\[
\delta_m = \frac{(-1)^m}{m!(n-m)!}.
\]

A function \(u(x) \in L^2_{n(x)}(\infty,-\infty) \) can be express in term of Hermite polynomials

\[
u(x) = \sum_{m=0}^{M} a_m u_m(x).
\]

where \(u_m(x) \) are Hermite polynomials. Using \(1^* \)-(3) and definition of fractional derivative, we get the following

\[
D^\alpha \tilde{u}(x) \equiv \sum_{m=0}^{M} \left(n! \sum_{k=0}^{\nu} \delta_m \delta_m X^m \left(X^n\right)^{-\alpha} \right).
\]
where \(N' \), \(\chi_{nm}^\alpha \) and \(\xi \) is given by \(N' = 2^\alpha \), \(\chi_{nm}^\alpha = \frac{\Gamma(n-2m+1)}{\Gamma(n-2m-\alpha+1)} \) and \(\xi = \frac{n-\alpha}{2} \).

Note that only for \(\xi \), we have following

\[
N' = \begin{cases}
\alpha > 0, & \text{for Physicists Hermites Polynomials,} \\
\alpha < 0, & \text{for Probabilists Hermites Polynomials.}
\end{cases}
\]

a) Methodology

Consider the multi order fractional differential equation (1) as

\[
D^\alpha u(x) = \varphi(x; u(x), D^\beta_1 u(x), D^\beta_2 u(x), \cdots, D^\beta_p u(x)),
\]

\[
u^{(n)}(0) = u_n, \quad n = 0, 1, 2, \cdots, m - 1,
\]

where \(u(x) \) is the unknown function, to be determined. The proposed technique for solving Equation (5) proceeds in the following three steps:

Step 1: According to the proposed algorithm we assume the following trial solution

\[
\tilde{u}(x) = \sum_{k=0}^{M} a_k P_k(x) = U^T P(x),
\]

where \(U = [a_0, a_1, a_2, \cdots]^T \) and \(P(x) = [P_0(x), P_1(x), P_2(x), \cdots]^T \).

where \(P_k(x) \) are Hermite polynomials of degree \(k \) defined in Equation (6) and \(a_k \) are unknown parameters, to be determined.

Step 2: Substituting Equation (6) into Equation (5), we get

\[
U^T D^\alpha P(x) = \varphi\left(x; U^T P(x), U^T D^\beta_1 P(x), U^T D^\beta_2 P(x), \cdots, U^T D^\beta_p P(x) \right), \beta_i
\]

\[
U^T P(x)(0) = u_n.
\]

Using (4) we have

\[
\sum_{n=0}^{k} \left(n! \sum_{m=0}^{\xi} a_n \chi_{nm}^\alpha N'(X')^{-\alpha} \right)
\]

\[
= \varphi\left(x; \sum_{k=0}^{M} a_k P_k(x), \sum_{n=0}^{\xi} \left(n! \sum_{m=0}^{\xi} a_n \chi_{nm}^\alpha N'(X')^{-\alpha} \right), \right.
\]

\[
\sum_{n=[\beta_1]}^{M} \left(n! \sum_{m=0}^{\xi} a_n \chi_{nm}^\alpha N'(X')^{-\beta_1} \right),
\]

\[
\sum_{n=[\beta_1]}^{M} \left(n! \sum_{m=0}^{\xi} a_n \chi_{nm}^\alpha N'(X')^{-\beta_2} \right), \cdots,
\]

\[
U^T P(x)(0) = u_n.
\]

Step 3: Further we Assume suitable collocation point for Equation (7). Therefore, we obtained system has \(M+1 \) equations and \(M+1 \) unknowns. Solving this system gives the unknown coefficients using Conjugate Gradient Method. Putting these constant into trial solution, we can obtained the approximate/exact solutions of linear/nonlinear fractional differential Equation (5).

b) Approximation by Hermite Polynomials [45]

Let us define \(\Omega = \{ x, -\infty < x < \infty \} \) and \(\gamma_N = \text{span}\{ P_0(x), P_1(x), \cdots, P_N(x) \} \).

The \(L^2_{(\chi)}(\Omega) \)-orthogonal projection \(\pi_N : L^2_{(\chi)}(\Omega) \to \gamma_N \) be the mapping and we
have

\[\langle \pi_N (z) - z \rangle = 0, \ \forall \theta \in \gamma_N. \]

Due to the orthogonality property, we can write it as

\[\pi_N (z) = \sum_{i=0}^{N-1} a_i P_i (x), \]

where \(a_i \ (i = 0, 1, \cdots, N-1) \) are the constants in the following form

\[a_i = \frac{1}{\theta_i} \langle u (x), P_i \rangle L_{\theta_i}^2. \]

6. Numerical Simulation

In this section, we apply new algorithm to construct approximate/exact solutions fractional differential equation. Numerical results are very encouraging.

Case 1 In Equation (1), we take \(\alpha = 2, \ \beta = \frac{3}{2}, \ \sigma = \omega = \mu = n = 1, \)

\[f (t) = 2 + 4 \sqrt{\frac{t}{\pi}} + t^2, \ \ l_p = 0, \ \ t_0 = 1, \ \ m_p = 1, \ 2. \ The \ close \ form \ solution \ is \ t^2. \]

Consider the trial solutions for \(M = 2 \) as

\[\bar{u} (t) = \sum_{i=0}^{M} a_i P_i (t). \]

Using the trail solution into Equation (1) and proceed it according to Step 1 and Step 2, then we collocate it further to generate the system of equations. Solve the system of equations along with initial conditions, we get the values of constants

<table>
<thead>
<tr>
<th>Hermite’s</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicists</td>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>Probabilists</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Finally, we get the approximate solution

\[u (t) = t^2. \]

which is exact solution.

Case 2 In Equation (1), we take \(\alpha = 2, \ \beta = \frac{3}{2}, \ \sigma = \omega = \mu = n = 1, \)

\[f (t) = 2 + 4 \sqrt{\frac{t}{\pi}} + t^2, \ \ l_p = 0, \ \ t_0 = 5, \ \ m_p = 25. \ The \ close \ form \ solution \ is \ t^2. \]

Consider the trial solutions for \(M = 2 \) as

\[\bar{u} (t) = \sum_{i=0}^{M} a_i P_i (t). \]

Using the trail solution into Equation (1) and proceed it according to Step 1 and Step 2, then we collocate it further to generate the system of equations. Solve the system of equations along with initial conditions, we get the values of constants
Finally, we get the approximate solution
\[u(t) = t^2. \]
which is exact solution.

Case 3 In Equation (1), we take \(\alpha = 2, \quad \beta = \frac{3}{2}, \quad \sigma = \omega = \mu = n = 1, \)
\(f(t) = t + 1, \quad l_p = 1. \) The close form solution is \(1 + t. \)

This equation can be simplify by using
\[U(t) = u(t) - 1 - t. \]

Consider the trial solutions for \(M = 2 \) as
\[\tilde{u}(t) = \sum_{a=0}^{M} a_n P_n(t). \]

Using the trial solution into Equation (1) and proceed it according to Step 1 and Step 2, then we collocate it further to generate the system of equations. Solve the system of equations along with initial conditions, we get the values of constants

<table>
<thead>
<tr>
<th>Hermite's (a_i)</th>
<th>1</th>
<th>0</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicists</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Probabilists</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Finally, we get the approximate solution
\[u(t) = 1 + t. \]
which is exact solution.

Case 4 In Equation (1), we take \(\alpha = 2, \quad \sigma = n = \mu = 1, \quad \omega = \frac{1}{2}, \)
\(f(t) = 3 + t^2 \left(\frac{t^\beta}{\Gamma(3-\beta)} + 1 \right), \quad p = 0, \quad l_p = 1, \quad t_0 = 1, \quad m_0 = 2. \) The close form solution is \(1 + t^2. \)

Using the trial solution into Equation (1) and proceed it according to Step 1 and Step 2, then we collocate it further to generate the system of equations. Solve the system of equations along with initial conditions, we get the values of constants

<table>
<thead>
<tr>
<th>Hermite's (a_i)</th>
<th>3</th>
<th>0</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicists</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Probabilists</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Finally, we get the approximate solution
\[u(t) = 1 + t^2. \]
which is exact solution.

Case 5. In Equation (1), we take \(\alpha = 2, \quad \sigma = n = \mu = 1, \quad \omega = \frac{1}{2}, \quad \beta = 0.3, \quad p = 0, \quad l_0 = 0, \quad m_0 = 0 \).
The close form solution is \(t^4(t-1) \).

The numerical solution is represented in Table 1 in case of \(M = 2.5 \) and \(\beta = 0.3 \), while the error for various values of \(\beta = 0 \) and \(\beta = 0.5 \) are represented in Table 2. There is a graphical comparison between exact and approximate solution represented in Figure 2.

Table 1. Numerical comparison between exact and approximate solution for different values of \(M \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(M = 2)</th>
<th>(M = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>0.1</td>
<td>9.00000E−05</td>
<td>6.42250E−45</td>
</tr>
<tr>
<td>0.2</td>
<td>1.28000E−03</td>
<td>9.13422E−44</td>
</tr>
<tr>
<td>0.3</td>
<td>5.67000E−03</td>
<td>4.04617E−43</td>
</tr>
<tr>
<td>0.4</td>
<td>1.53600E−02</td>
<td>1.09611E−42</td>
</tr>
<tr>
<td>0.5</td>
<td>3.12500E−02</td>
<td>2.23003E−42</td>
</tr>
<tr>
<td>0.6</td>
<td>5.18400E−02</td>
<td>3.6936E−42</td>
</tr>
<tr>
<td>0.7</td>
<td>7.20300E−02</td>
<td>5.14014E−42</td>
</tr>
<tr>
<td>0.8</td>
<td>8.19200E−02</td>
<td>5.48590E−42</td>
</tr>
<tr>
<td>0.9</td>
<td>6.56100E−02</td>
<td>4.68200E−42</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>

Error = \[|\text{Exact Solution} - \text{Approximate solution}|\].

Table 2. Numerical comparison between exact approximate solutions for different values of \(\beta \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\beta = 0)</th>
<th>(\beta = 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00000E+00</td>
<td>4.00000E−100</td>
</tr>
<tr>
<td>0.1</td>
<td>9.08224E−32</td>
<td>7.57685E−45</td>
</tr>
<tr>
<td>0.2</td>
<td>1.80074E−31</td>
<td>1.07760E−43</td>
</tr>
<tr>
<td>0.3</td>
<td>2.65365E−31</td>
<td>4.77341E−43</td>
</tr>
<tr>
<td>0.4</td>
<td>3.42665E−31</td>
<td>1.29312E−42</td>
</tr>
<tr>
<td>0.5</td>
<td>4.05488E−31</td>
<td>2.63085E−42</td>
</tr>
<tr>
<td>0.6</td>
<td>4.44066E−31</td>
<td>4.36426E−42</td>
</tr>
<tr>
<td>0.7</td>
<td>4.44538E−31</td>
<td>6.06400E−42</td>
</tr>
<tr>
<td>0.8</td>
<td>3.88121E−31</td>
<td>6.89662E−42</td>
</tr>
<tr>
<td>0.9</td>
<td>2.50300E−31</td>
<td>5.52352E−42</td>
</tr>
<tr>
<td>1.0</td>
<td>8.00000E−100</td>
<td>2.00000E−99</td>
</tr>
</tbody>
</table>

Error = \[|\text{Exact Solution} - \text{Approximate solution}|\].
7. Conclusions

All the facts and findings of the paper are summarized as follow:

- This paper provides a novel study of Bagley-Torvik equations of fractional order in different situations by using newly suggested Hermite Polynomial scheme.
- Implementation of this methodology is moderately relaxed and with the help of this suggested algorithm, complicated problems can be tackled.
- It is to be highlighted that the suggested comparison gives attentive respond regarding some particular issues for values of M, which demonstrates viability of the proposed framework. Likewise, the reliability of the application provided this technique a more comprehensive suitability.

References

https://doi.org/10.1137/080714130

https://doi.org/10.1016/j.physleta.2007.05.083

https://www.cambridge.org/core/journals/anziam-journal/article/div-classtitleshcheby
shev-pseudo-spectral-method-for-solving-fractional-order-integro-differential-equati
ons/D54540C52DE837C74F79EDB24A32FE71
https://doi.org/10.1017/S14461811110000830

http://bims.iranjournals.ir/article_947_b3ed3a5b2e22cf9386624a6699f3ff0d.pdf

http://dergi.cumhuriyet.edu.tr/cumuscij/article/view/5000118841

https://doi.org/10.1016/j.ajmsc.2011.09.001

http://www.sciencemag.org/content/1/1/1.pdf

https://doi.org/10.1146/annurev.fl.19.010187.002011

https://doi.org/10.1016/j.apm.2011.05.011

https://pdfs.semanticscholar.org/b9f3/ceb62c66c7bc06eab009aa1d60d70a19312.pdf

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

- Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
- A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
- Providing 24-hour high-quality service
- User-friendly online submission system
- Fair and swift peer-review system
- Efficient typesetting and proofreading procedure
- Display of the result of downloads and visits, as well as the number of cited articles
- Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ijmmta@scirp.org