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ABSTRACT

We present an incremental network programming mechanism which reprograms wireless sensors quickly by
transmitting the incremental changes using the Rsync algorithm; we generate the difference of the two pro-
gram images allowing us to distribute only the key changes. Unlike previous approaches, our design does not
assume any prior knowledge of the program code structure and can be applied to any hardware platform. To
meet the resource constraints of wireless sensors, we tuned the Rsync algorithm which was originally made
for updating binary files among powerful host machines. The sensor node processes the delivery and the de-
coding of the difference script separately making it easy to extend for multi-hop network programming. We
are able to get a speed-up of 9.1 for changing a constant and 2.1 to 2.5 for changing a few lines in the source

code.

Keywords: Network Programming, Incremental, Wireless Sensor Networks, Difference Generation,

Rsync Algorithm

1. Introduction

Typically, wireless sensors are designed for low power
consumption and small size and don’t have enough
computing power and storage to support a rich pro-
gramming development environment. Thus, the program
code is developed on a more powerful host machine and
is loaded onto a sensor node afterwards. The program
code is usually loaded onto a sensor node through the
parallel or serial port of the host machine; this is called
in-system programming. In-system programming (ISP) is
the most common way of programming sensor nodes
because most microcontrollers support program loading
through the parallel or serial port. However, ISP can only
load the program code to one sensor node at a time. The
programming time increases proportional to the number
of wireless sensors to be deployed. During the develop-
ment cycle of wireless sensor software, the source code
can be modified for bug fixes or to add additional func-
tionalities. With ISP, the cost of a software update is
high; it involves all the efforts of collecting the sensor
nodes placed at different locations and possibly disas-
sembling and reassembling the enclosures. Network pro-
gramming reduces these efforts by delivering the pro-
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gram code to each of the sensor nodes through the wire-
less links.

Network programming has been used since the intro-
duction of TinyOS 1.1 release [1,2]. This implementation,
XNP (Crossbow Network Programming), provides the
basic capability of network programming; it delivers the
program code to the sensor nodes remotely. However, it
has some limitations: First, XNP does not scale to a large
sensor network. XNP disseminates the program code
only to the nodes that can be reached directly by the host
machine. Therefore, the nodes outside the single hop
boundary cannot be programmed. Second, XNP has a
lower bandwidth compared than ISP. An experiment in
[1] shows the programming time of XNP and ISP. In the
experiment, we used a simple test application ‘Xnp-
Count’ which has basic functionalities: network progr-
amming, counting numbers using LEDs and transmitting
the number in radio packets. The version of ‘XnpCount’
we used was 37,000 bytes in size and required 841 XNP
packets to transfer the entire program. The programming
time of XNP was more than 4 times longer than that of
ISP (Figure 1). When XNP updates the program code
with another version, it sends the entire program code
rather than the difference. This incurs the same program-
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Figure 1. Programming time of crossbow network progra-
mming (XNP) and in-system programming (ISP).

ming time even when the difference is small. If the sen-
sor nodes could build the program code image incre-
mentally using the previous code image, the overall pro-
gramming time can be reduced.

We present an incremental network programming
mechanism which sends the new version of the program

by transmitting the difference of the two program images.

Unlike previous approaches, we generate the program
code difference by comparing the program code in block
level without any prior knowledge of the program code
structure. This gives a general solution that can be ap-
plied to any hardware platform. We used the Rsync algo-
rithm [3] to generate the difference. The Rsync algorithm
finds the shared code blocks between the two program
images and allows us to distribute only the key changes
of the program. Originally, the Rsync algorithm was
made for computationally powerful machines exchang-
ing the update of binary files over a low-bandwidth
communication link. We tuned the Rsync algorithm for
wireless sensor network programming. First, we made
the host program process expensive operations like
building the hash table in favor of the sensor node. In
order to rebuild the program image the sensor node sim-
ply reads or writes code blocks to flash memory.

Second, we structured the difference to avoid unnec-
essary flash memory accesses. In rebuilding the program
image, the sensor node processes the script dissemination
and the decoding in separate steps. This makes it easy to
use dissemination protocols and to extend for multi-hop
network programming. We are able to get a speed-up of
9.1 for changing a constant and 2.1 to 2.5 for changing a
few lines in the source code over the non-incremental
delivery.

The rest of the paper is organized as follows. Section 2
describes the in-system programming and the network
programming as a background. Section 3 discusses the
related work on wireless sensor network programming.
Section 4 outlines incremental network programming
and explains our first implementation. In Section 5, we
use the Rsync algorithm to generate the program and
show how this implementation improves performance. In
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Section 6, we discuss the extension to the script delivery
which makes program delivery more reliable and faster.
Finally, we conclude this thesis with Section 7.

2. Background

2.1. In-System Programming

The program development for wireless sensors starts
with writing the source code. For the Berkeley sensor
platform, the source code is written in the nesC pro-
gramming language. Once the source code is success-
fully compiled, the binary code is generated (main.exe).
The binary code is further converted to the Motorola
SREC format (main.srec) and is then available for load-
ing. The Motorola SREC format is an ASCII representa-
tion of binary code and each line of an SREC file con-
tains the data bytes of the binary code with additional
house keeping information (Figure 2).

With ISP, the binary code (SREC format) is loaded
onto a sensor node through the direct connection (e.g.
parallel port) from the host machine. The host program-
ming tool (uisp) sends a special sequence of bytes that
places the microcontroller of the sensor node in pro-
gramming mode. While the microcontroller is in pro-
gramming mode, the data bytes sent by the host pro-
gramming tool are written directly to the program mem-
ory of the microcontroller (Figure 3(a)).
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Figure 2. Format of SREC file and its records with an ex-
ample.
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Figure 3. Steps for in-system programming and network
programming.

2.2. Network Programming

Network programming takes a different approach to
loading the program code. Rather than writing the pro-
gram code directly to program memory, network pro-
gramming loads the program code in two steps. First, it
delivers the program code to the sensor nodes. Second, it
makes the sensor nodes move the downloaded code to
program memory (Figure 3(b)).

In the first step, the network programming module
stores the program code in external storage. Since the
network programming module runs in user level as a part
of the main application code, it does not have the privi-
lege to write the program code into program memory. In
the case of XNP, the network programming module
writes the program code to the external flash memory
outside program memory. The external flash memory of
a MICA2/MICA2DOT mote is 512KB in size and is big
enough for any application code (the maximum size of
128KB). During program delivery, part of the code may
be missing due to the packet loss. The network pro-
gramming module requests for any missing records of
the program code to make sure that there are no missing
records.

In the second step, the boot loader copies the program
code from external flash memory to program memory.
The boot loader is a program that resides in the high
memory area (which we call the boot loader section) of
an ATmegal28 microcontroller and has the privileges to
write data bytes to the user application section of pro-
gram memory [4]. The boot loader starts execution when
it is called by the network programming module. After it
copies the program code from the external flash memory
to program memory, it restarts the system.

In the paragraphs above, we assumed that the sensor
nodes can update the current program image through
network programming. However, a sensor node cannot
be network programmed until it has the network pro-
gramming module and the boot loader. Thus, we need to
load the initial program code and the boot loader with
ISP.
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3. Related Work

3.1. Wireless Sensor Network Programming

XNP [1,2] is the network programming implementation
for TinyOS that was introduced with 1.1 releases version.
XNP supports basic network programming broadcasting
the program code to multiple nodes in a single hop.
However, it doesn’t consider a large sensor network and
incremental update.

MOAP [5] is a multihop network programming
mechanism and their main contributions are its code dis-
semination and buffer management. For code dissemina-
tion, they used the Ripple dissemination protocol which
disseminates the program code packets to a selective
number of nodes without flooding the network with
packets. For buffer management, they used a sliding
window scheme which maintains a window of program
code and allows lost packets within the window to be
retransmitted. The sliding window uses a small footprint
so that packets can be processed efficiently in on-chip
RAM. MOAP was tested on the EmStar simulator and
MICAZ2 motes.

Deluge [6] is a multihop network programming pro-
tocol that disseminates program code in an epidemic
fashion to propagate program code while regulating the
excess traffic. In order to increase the transmission rate,
Deluge used optimization techniques like adjusting the
packet transmit rate and spatial multiplexing. Unlike
MOAP, Deluge uses a fixed sized page as a unit of
buffer management and retransmission. Deluge was
tested with the TOSSIM simulator [7] and MICA2
motes.

Reijers, et al. [8] developed an algorithm that updates
binary images incrementally. With the algorithm, the
host program generates an edit script to describe the dif-
ference between the two program code images. The sen-
sor nodes build the program image after interpreting the
edit script. The edit script consists of not only simple
operations like copy and insert but also more complex
operations (address repair and address patch) that modify
the program code at the instruction level. This helps
minimizing the edit script size. As an evaluation, this
paper considers only the reduced script size on the host
side. Since operations like address repair and address
patch incur memory intensive EEPROM scanning, the
experiments should have demonstrated the overall pro-
gramming time in a sensor simulator or in a real sensor
node.

Kapur, et al. [9,10] implemented a version of incre-
mental network programming based on the algorithm of
Reijers, et al [8]. Their implementation is composed of
two parts: the diff encoder on the host side and the diff
decoder on the sensor node side. The diff encoder gener-
ates the difference for the two versions of code at the
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instruction level using copy, insert and repair operations.
The difference script is delivered to the sensor node us-
ing MOAP [5] which was developed for reliable code
dissemination. Then, the sensor node rebuilds the pro-
gram code after decoding the downloaded script.

These two works on incremental network program-
ming minimized the script transmission at the cost of
program modification at the instruction level. In contrast,
the implementation in this paper put less computational
complexity on the sensor nodes. The difference genera-
tion, which is costly, is handled by the host program. The
sensor nodes simply write the data blocks based on the
script commands and this can be applied to less powerful
sensor nodes.

While the examples above disseminated the program
code in native binary code, Maté [11] distributes the
program code in virtual machine instructions which are
packed in radio packets. While XNP transmits the binary
code that contains both the network programming mod-
ule and the application, Maté only transmits the applica-
tion code. This allows Maté to distribute the code
quickly. One drawback of Maté is that it runs the pro-
gram code only in virtual machine instructions and a
regular sensor application needs to be converted to vir-
tual machine instructions before execution.

Trickle [12] is an improvement over Maté. In Maté,
each sensor node floods the network with packets to dis-
tribute the code and this can lead to network congestion
but the algorithm can be used for a large sensor network.
Trickle addresses this problem by using a “polite gossip”
policy. Each sensor node periodically broadcasts a code
summary to its local neighbors and stays quiet if it has
recently heard a summary identical to its own summary.
The sensor node broadcasts an update only when it hears
from an older summary than its own.

3.2. Remote Code Update outside Wireless
Sensor Community

Outside the sensor network community, there have been
efforts to update program code incrementally. Emmerich
et al. [13] demonstrated updating XML code in an in-
cremental fashion. Specifying the update in XML is eas-
ier than a binary image because XML is a structured
markup language and it allows specifying the update
without changing the structure of the rest of the code. In
contrast, inserting or replacing code blocks in binary
code affects the rest of the code.

The cases of synchronizing general form of unstruc-
tured files can be found with Rsync and LBFS. Rsync [3]
is a mechanism to efficiently synchronize two files con-
nected over a low-bandwidth, bidirectional link. To find
matching blocks between the two files, we can divide the
first file into fixed sized blocks of B bytes and calculate
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the hash for each block. Then, we scan the second file
and form a B byte window at each byte. After that we
compare the hash for the window with hash values of all
the blocks in the first file. This does not work that well.
If the hash is expensive to calculate, finding the match-
ing blocks will take long time. If the hash can be com-
puted cheaply but with possible false matches, we may
not find the correct block. The key idea of Rsync is to
use two levels of hashes, rolling checksum (fast hash)
and hash (strong hash) to make the computation over-
head manageable while finding the matching blocks with
high probability. Rsync calculates the rolling checksum
of the B byte window of the second file at each byte and
computes the hash only when the rolling checksums of
the two blocks match. Since the hash is computed only
for the possible matches, the cost of calculating the hash
is manageable and we can filter out the false match.

LBFS [14], another mechanism to synchronize two
files in a low-bandwidth, bidirectional link, takes a
slightly different approach. Rather than divides a file into
fixed blocks, LBFS divides each file into a number of
variable sized blocks and computes the hash over each
block. To find matching blocks between the two files,
LBFS just compares these hashes (SHA-1 hash). The key
idea of LBFS is in dividing a file into variable sized
blocks. LBFS scans a file and forms a 48-byte window at
each byte and calculates a 13-bit fingerprint. If the fin-
gerprint matches a specific pattern, that position becomes
the breakpoint of the block. This scheme has a property
that modifying a block in a file does not change the hash
values of the other blocks. When we are going to send a
new version, we can just compare the hash values of
each variable block and send only the non-matching
blocks.

The mechanism patented by Metricom Inc. [15] dis-
seminates the program code over multihop networks in
an efficient way using an epidemic protocol. When a
node V has a new version of code, it tells its neighbors
that a new version of code is available. On hearing the
advertisement from V, one of V’s neighbor, P, checks
whether it has the newly advertised version. If it doesn’t
have the version, P requests V transmit the version of
code. After that, V starts sending program code and fin-
ishes when it doesn’t hear any requests. With this
scheme, a sensor node can distribute the program code
without causing much network traffic.

4. Design and Implementation

To design an incremental network programming mecha-
nism, we need to consider some factors that affect per-
formance. Compared to other sensor applications, net-
work programming keeps a large amount of data in the
sensor nodes contributing to long programming time.
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Since programming time is proportional to data size,
reducing the amount of transmission data will improve
programming time. External flash memory which is used
for program storage also limits performance. The
downloaded code is stored in the external flash memory
because there is not enough space in on-chip memory.
However, this external flash memory is much slower
than the on-chip SRAM. For better performance, access
to external memory should be made only when it is ne-
cessary. Caching frequently accessed data can help re-
ducing flash memory accesses.

Another consideration is how much functionality is to
be processed in the sensor nodes. More sophisticated
algorithms could reduce overall programming time by
reducing network traffic, but at the cost of higher com-
plexity computation and memory accesses.

Finally, the design should be simple so that it can be
understood and diagnosed without difficulty.
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Figure 4. Steps for incremental network programming.
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4.1. Design: Fixed Block Comparison

As a starting point, we can design a version of incre-
mental network programming by extending XNP. This
consists of two main parts: 1) difference generation and
code delivery, 2) storage organization and image rebuild.

4.1.1. Difference Generation

To generate the program difference, the host program
compares each fixed sized block of the new program
image with the corresponding block of the previous im-
age. We set the block size as the page size of the external
flash memory (256 bytes). The host program sends the
difference as messages while it compares the two pro-
gram versions. If the two corresponding blocks match,
the host program sends a CMD_COPY_BLOCK me-
ssage. The message makes the network programming
module in the sensor node copy the block of the previous
image to the current image. When the two blocks don’t
match, the host program falls back to the normal
download; it sends a number of CMD_DOWNLOAD-
ING messages for the SREC records of the block (Figure
4(a)).

The idea is that we can reduce the number of message
transmissions by sending a CMD_COPY_BLOCK me-
ssage instead of multiple CMD_DOWNLOADING me-
ssages when most of the blocks are the same between the
two program images.

4.1.2. Operations

Table 1 shows the message types used for incremental
network programming. Based on XNP messages, we
made the following extensions for incremental network
programming as in Figure 5.

o Start Download: CMD_START_DOWNLOAD _IN
CR message notifies the beginning of network program-
ming in incremental mode. This message specifies not
just the program ID of the current program but also the
program ID of the previous program to ensure that the
sensor node has the same program image as the host
program.

e Download: Two operations CMD_DOWNLOADING
and CMD_COPY_BLOCK are used to transmit the pro-
gram image difference.

e Query and Reboot: The formats of query, reply and
reboot messages are the same as XNP messages.

e Debugging Messages: CMD_GET_CURRENT _LINE
and CMD_GET_PREV_LINE messages request the
SREC record at the specified line. In response, the sensor
node sends CMD_REPLY_LINE message.
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Table 1. Message types for incremental network programming.

Message ID

Description

CMD_START_DOWNLOAD
CMD_DOWNLOADING
CMD_QUERY_COMPLETE
CMD_DOWNLOAD_STATUS
CMD_DOWNLOAD_COMPLETE
CMD_ISP_EXEC
CMD_GET_PIDSTATUS
CMD_GET_CIDMISSING
CMD_REQ_CIDMISSING
CMD_START_DOWNLOAD_INCR
CMD_COPY_BLOCK
CMD_GET_CURRENT_LINE
CMD_GET_PREV_LINE
CMD_REPLY_LINE

Get Program 1D

Start network programming in normal mode
Deposit an SREC record

Signals that it received all the capsules
Request/response with download status

End of SREC record download

Execute the boot loader

Retransmission message from the host
Request retransmission for a missing cap
Start network programming incrementally
Copy SREC records from previous to current
Read the current SREC record

Read the previous SREC record

Reply to SREC record request

4.1.3. Storage Organization

XNP stores the program image in a contiguous memory
chunk in the external flash memory. Fixed Block Com-
parison scheme extends this by allocating two memory
chunks, one for the previous program image and the
other for the scratch space where the current image will
be built (Figure 4(b)).

The two memory chunks have the same structure and
they are swapped once the newly built program is loaded
onto program memory. The current program image is
now considered the previous image and the space for the
previous image is available for the next version of pro-
gram image. For the two memory chunks, two base ad-
dress variables are maintained in the flash memory. By
changing the address values in these variables, the two
memory chunks can be swapped.

This memory organization has an advantage that it
provides the same view of the memory as XNP and
minimizes the effort of rewriting the boot loader code.
The boot loader code of XNP reads the program code
assuming that it is located at a fixed location in external
flash memory. We modified the boot loader so that it
reads the program code from the base address passed by
an inter-process call argument. Thus, the boot loader can
read the program code from any memory chunk depend-
ing on the base address value passed by the network pro-
gram module.

However, this scheme does not use the external flash
memory space economically. It allocates 256 KB of
space regardless of the program code size (128 KB of
space both for the current and the previous image). This
accounts for 50% of the flash memory space of a MICA2
mote and leaves less space for data logging.
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4.1.4. Image Rebuild
The program image is built in a straightforward way. The
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Figure 5. Message format for incremental network
prgramming.
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network programming module of the sensor node builds
the program image by writing the SREC records based
on a list of download and copy messages (Figure 4(c)).

The download message makes the sensor node deposit
the data bytes from the message into the program image.
The format of a download message is the same as an
XNP download message. The capsule ID field specifies
the location (line number) in the current program image
and the data represents the data bytes to be written.

The copy message is for incremental network pro-
gramming making the sensor node copy the SREC lines
of a block in the previous program image to the current
program image. The capsule ID field specifies the loca-
tion of the first SREC record to be copied and the block
size field specifies the number of SREC records to be
copied.

4.2. Implementation

4.2.1. Difference Generation and Code Delivery
The host program, which is in charge of program image
loading, difference generation and code delivery, is com-
posed of the following classes:

o xnp: GUI, main module

o xnpUtil: loads the program image, generates the dif-
ference and provides utility functions

o XnpQry: processes queries and retransmissions

o xnpXmitCode: processes code delivery

o XxnpMsg: defines the message structure

o MoteMsglF: abstracts the interface to the serial for-
warder

If the user selects the download command after load-
ing the current and the previous program images, the xnp
class spawns the xnpXmitCode class. xnpXmitCode co-
mpares each pair of blocks in the current and previous
images by calling xnpUtil.CompareBlocks. Depending
on the result, it either sends a copy message (CMD_
COPY_BLOCK) or sends a download message (CMD_
DOWNLOADING) for each line of the current block.
Figure 6 illustrates this process.

4.2.2. Handling the Message

The network programming module for a sensor node is
composed of the following components: XnpM.nc (im-
plementation), XnpC.nc (configuration), Xnp.nc (inter-
face), Xnp.h, XnpConst.h (constant definition). The im-
plementation module has an event driven structure (Fig-
ure 7). When a XNP message arrives, ReceiveMsg. re-
ceive() sets the next state variable (cNextState) as the
appropriate value and posts the NPX_STATEMACH-
INE() task. This message loop structure readily processes

xnpUtil

xnp

User Input

’ Load Previous File Command “

I readPrevSrecCode( ) ‘

> ’ Load Current File Command }

»f readSrecCode() |

’ Download Command

‘ —>| CompareBlocks( ) |

xnpXmitCode

Run_incremental( )
For each block
if (true)

else

xnpUtil.CompareBlocks( )Ti
send CMD_COPY_BLOCK message

send CMD_DOWNLOADING
for each line of the current block.

Figure 6. Host program for incremental network programming.

ReceiveMsg.receive()

Arriving

XNP message | SetcNextState based on

post NPX_STATEMACHINE() | execute functions.

NPX_STATEMACHINE()

Based on cNextState

message command.

3

Set cNextState to
the next value.

Figure 7. Network programming module message handling.

Copyright © 2009 SciRes.

Int. J. Communications, Network and System Sciences



440 J.JEONG ET AL.

an incoming message without interrupting the message
currently being processed.

One of the difficult parts was handling split phase op-
erations like external flash reads and writes. To read an
SREC record from external flash, EEPROMRead.read()
is called. But this function returns before actually reading
the record. The event handler EEPROMRead.readDone()
is called when the record is actually read. And we spec-
ify the next state in the event handler. This makes us use
multiple intermediate states to process an incoming
message. Table 11 and 12 in the Appendix show which
states were used to handle each message type.

To estimate the cost of message handling, we counted
the source code lines for the two most important mes-
sages, CMD_DOWNLOADING, and CMD_COPY_BL-
OCK. The number of lines are 136 and 153 respectively.
Table 13 shows the cost at each step of the message loop.

4.2.3. Calling the Boot Loader

XnpM builds the new program image based on the pre-
vious version and the difference. In order to transfer the
new image to program memory, we modified the XnpM
module and the boot loader. The part of the XnpM code
that executes the boot loader is shown in Figure 8.
WEEProgStart is passed as the starting address of the
new program image in the external flash memory. Here,
0x1F800 is the starting address of the boot loader in the
Atmegal28 microcontroller memory map. The boot
loader uses the address passed as a parameter to access
the new image.

4.3. Experiment Setup

To evaluate the performance of this design choice, we
will count the number of block or packet transmissions
of the test set. We considered the following five cases as
a test scenario:

task void NPX_ISPQ) {

wPID = “wProgramlD; //inverted prog id
_asm__ _ volatile__

("'movw r20,%0" *"\n\t"::"r" (wPID):"r20","r21");
wPID = wEEProgStart;
_asm__ _ volatile__
'movw r22,%0" *\n\t"::"r" (WwPID):"r22","r23");

wPID = wProgramlD; //the prog id

__asm__ _ volatile__

('movw r24,%0" "\n\t"::"r" (wPID):"r24","r25");
//call bootloader - it may never return...
__asm__ _ volatile__

(""call OX1F800" ""\n\t"::);//bootloader at OxFCO0

}

4.3.1. Case 1 (Changing Constants)

This is the case with the minimum amount of change.
We modified the constant in XnpBlink that represents
the blinking rate of the LED. XnpBlink is an application
written for demonstrating network programming. It ac-
cepts network programming and blinks the red LED. The
following code segment shows the modification to this
program.

4.3.2. Case 2 (Modifying Implementation File)

This is a more general case of program modification. We
added a few lines of code to the XnpCount program.
XnpCount is a simple network programmable application.
It counts a number, displays the number in its LEDs and
broadcasts the number in radio packets. The following
code segment shows the modification to this program.

4.3.3. Case 3 (Major Change)

In this case, we used two programs, XnpCount and
XnpBlink as input to generate the difference. The differ-
ence is larger than the first two cases, but these two ap-
plications still share a large portion of the source level
code (Table 2).

Table 2. Code size of test applications.

XnpBlink  XnpCount
# of source cod_e lines for net- 2049 2049
work programming modules
# of source code lines for ap- 157 198
plication specific modules
# SREC lines 1139 1166

command result_t StdControl.start() {

// Start a repeating timer that fires every
1000ms.

// This period can be changed with different
value.

return call Timer.start(TIMER_REPEAT, 1000);
3

(a) Case 1: Changing constants.

event result_t Xnp.NPX_DOWNLOAD_DONE(
uintl6é_t wProgramliD,
uint8_t bRet,uintl6_t wEENofP){
if (bRet == TRUE)

call CntControl.start();
else // can be deleted

call CntControl.stop(); // can be deleted
return SUCCESS;

}

Figure 8. Passing the starting address of the new program
image to the boot loader.
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(b) Case 2: Modifying implementation file.
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configuration XnpCount {

implementation {
components Main, Counter, /* IntToLeds,*/
IntToRfm, TimerC, XnpCountM, XnpC;

}}-Main.StdControl -> IntTolLeds.StdControl;
// IntToLeds <- Counter.IntOutput;

3

(c) Case 4: Modifying configuration file (commenting out
IntToLeds).

configuration XnpCount {

}

implementation {
components Main, Counter, IntTolLeds,
/* IntToRfm,*/ TimerC, XnpCountM, XnpC;

}}-Main.StdControl -> IntToRfm.StdControl;
// Counter.IntOutput -> IntToRfm;

)

(d) Case 5: Modifying configuration file (commenting out
IntToRfm).

Figure 9. Test scenarios.

4.3.4. Case 4 (Modifying Configuration Filecom-
menting out IntToLeds)

We commented out a few lines in the XnpCount program

so that we do not use the IntToLeds module. IntToLeds

is a simple module that takes an integer input and dis-

plays it on the LEDs of the sensor node. The following

code segment shows the modification to this program.

4.35. Case 5 (Modifying Configuration Filecom-

menting out IntToRfm)
We commented out a few lines in XnpCount program so
that we do not use the IntToRfm module. IntToRfm
takes an integer input and transmits it over radio. Since
commenting out IntToRfm forces the radio stack com-
ponents not to be used, we expect a larger change in the
program image than commenting out the IntToLeds mo-
dule.

4.4, Results

To evaluate the performance of Fixed Block Comparison,
we estimated the transmission time for each scenario.
The host program calculates the estimated transmission
time by counting how many download and copy mes-
sages it has sent. If it takes tgw, to send a download
message and teop, to send a copy message, then the trans-
mission time for Fixed Block Comparison, T, can be
calculated as follows:

t

T= Ldown 'tdown + Ncopy " tcopy
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where Lgown iS the number of SREC lines sent by
download messages and Ny, is the number of copy
messages. As a baseline for comparison, we can also
calculate the transmission time for non-incremental de-
livery as follows:

T +L

xnp — Laown *tdown copy “Ldown

where Loy is the number of SREC lines to be copied by
a copy message. We found values for tyoun and tp, after
a number of trials. We set them as 120 ms and 300 ms
respectively. Table 3 shows the parameters used for es-
timating the performance.

Next, we measured the transmission time by reading
the system clock values. Table 4 shows the estimation
and measurement data.

Table 3. Parameters for performance evaluation.

Parameter Description
tdown Time to send a download message
teopy Time to send a copy message
L Number of SREC lines sent by download
down message
L Number of SREC lines transferred by copy
copy message
Neopy Number of copy messages
T Transmission time of Fixed Block Compari-
son
Transmission time of non-incremental deliv-
Toap ery

Table 4. Transmission time for each case.

Case 1 Case 2 Case 3 Case 4 Case 5
Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.6KB
#-SR 1139 1167 1167 1156 1155
ECs
Ldown 19 911 1135 1124 1123
Leopy 1120 256 32 32 32
Neopy 70 16 2 2 2
Estimation
T 23.3s 114.1s 136.8s 135.5s 135.4s
Txnp 136.7s 138.7s 140.0s 138.7s  138.6s
Speed-up
Ten! T 5.87 1.22 1.02 1.02 1.02
Measurement
T 25.1s  124.4s 149.0s 147.1s 146.8s
Tynp 149.9s 153.0s 153.0s 150.5s  150.5s
SpeedUp s 153 103 102 102
Tap ! T
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Table 5. Level of code sharing in blocks, lines and bytes.

Case 1 Case 2 Case 3

Blocks 97.2% 21.9% 2.7%
SREC lines 98.3% 40.8% 12.0%
Bytes 100.0% 98.3% 90.5%

In Case 1, the difference between the two program im-
ages is small. Most SREC lines (1120 out of 1139) are
transferred by copy messages and the speed-up (Txnp / T)
is about 5.9.

In Case 2, where we added a few lines to the source
code, we find that less than a quarter of the SREC lines
are transferred by copy messages (256 out of 1167) and
the speed-up is 1.2.

In Case 3, only 32 out of 1167 lines are transferred by
copy messages and the speed-up is about 1.03. Although
XnpBlink and XnpCount share much at the source code
level, they share little at the binary code level. The main
reason is that XnpCount uses the radio stack components
while XnpBlink does not. The radio stack is one of the
most important modules in TinyOS, and it takes a large
number of source code lines.

In Case 4 and 5, where we commented out the Int-
TolLeds and the IntToRfm components in the configura-
tion file XnpCount.nc, we find that only a small number
of lines are transferred by copy messages and the
speed-up is very small (1.02 for each case).

Fixed block comparison was not so effective for in-
cremental network programming. It works well when the
program structure doesn’t change (Case 1). But, the level
of sharing was low when we added a few lines of code
(Case 2), which we think is a more general case of pro-
gram modification.

We want to see why we have such a small level of bi-
nary code sharing. Does the program code completely
change after the source modification, or does the pro-
gram code still have much similarity at the byte level?
To investigate further, we compared the program code at
different levels: blocks (Fixed Block Comparison),
SREC lines and bytes.

To compare the program code in SREC lines, we used
the UNIX diff command. diff takes two ASCII files and
describes how one file can be transformed to the other.
To compare the program code at the byte level, we ex-
tracted the data bytes from an SREC file and stored each
data byte in a line of the temporary file. We then used the
UNIX diff to find the difference between the two byte
list files.

Table 5 shows that Case 2 and Case 3 have a much
higher level of sharing at the byte level than at the block
level. For Case 2, most of the binary code was similar at
the byte level (98.3%) while a small number of blocks
were shared at the block level (21.9%). This implies that
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modifying the source code shifts the binary program
code, but the program code bytes are still preserved. We
can think of two ways to address this problem.

One approach is to place the shared code at a fixed lo-
cation in the binary code with the help of the compiler.
We can insert compiler directives and inline function
calls. Then, the compiler recognizes the network pro-
gramming module and determines its location in topo-
logical order.

Another approach is to utilize code sharing without
modifying the code. As Table 5 suggests, much of the
binary code is shared at byte level. By comparing the
two binary images with a variable size boundary like
Rsync [3] and LBFS [14], we can find more chances of
code sharing.

5. Optimizing Difference Generation

Fixed Block Comparison, our first design choice for in-
cremental network programming, was not effective in
reducing data transmission traffic. It worked well only
when the modified program image had the same struc-
ture as the previous program image. When additional
lines are inserted into the source code, the program im-
age is shifted and does not match the previous program
image at the fixed sized block boundary.

In this section, we use the Rsync algorithm to generate
the difference and rebuild the program image. The Rsync
algorithm was originally made for efficient binary data
update in a low bandwidth computer network. We expect
the Rsync algorithm to find more matching blocks than
the fixed block comparison because it compares the pro-
gram image block at an arbitrary position.

5.1. Design

5.1.1. Difference Generation
The host program generates the difference using the
Rsync algorithm as in Figure 10(a).

1) The Rsync algorithm calculates a checksum pair
(checksum, hash) for each fixed sized block (e.g. B
bytes) of the previous program image. And the checksum
pair is inserted into a lookup table.

2) Rsync reads the current program image and calcu-
lates the checksum for the B byte block at each byte. If it
finds a matching checksum in the lookup table, Rsync
calculates the hash for the block and compares it with the
corresponding entry in the table. If the hash also matches,
the block is considered a matching block.

3) Rsync moves to the next byte for comparison if the
block doesn’t have a matching checksum or hash. A re-
gion of bytes that doesn’t have any matching blocks is
tagged as a non-matching block and needs to be sent
explicitly for rebuilding.
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Figure 10(a) illustrates how the Rsync algorithm cap-
tures a matching block. Suppose there is a shift by a
modification operation in the middle of the program im-
age. Rsync forms a B byte window and calculates the
hash for it. If the modified bytes are different from any
blocks in the previous program image, there is a high
probability that the hash of the modified bytes won’t
match any hash table entry. Rsync moves the window
one byte at a time and calculates the checksum for any
possible match. It doesn’t match until Rsync starts to
read unmodified blocks. At this moment, Rsync has
found a matching block.

5.1.2. Program Code Storage and Rebuild

As with the case of fixed block comparison, we maintain
two memory chunks in a sensor node to build the pro-
gram image from the previous program image and the
difference. The difference consists of a list of matching
and non-matching blocks.

The host program sends a CMD_COPY_BLOCK me-
ssage for each matching block in the difference. After
hearing the message, the sensor node copies the block
from the previous image to the current image. The block
size of a copy message is a multiple of a SREC line and
the sensor node copies each SREC line iteratively. Since
the block from the previous image can be mapped to any
location in the current image, the offset address field of
the SREC record needs be modified (Figure 10(b)).

For each non-matching block in the difference, the
host program sends one or more download (CMD_
DOWNLOADING) messages. When a non-matching
block is bigger than a single SREC record (16 bytes), the
block is divided into multiple fragments and each frag-
ment is sent in a download message. The data bytes of a
download message can be shorter than a full SREC re-
cord if the non-matching block is not a multiple of 16

bytes. The host program does not fill the remaining bytes.

This is to avoid extra flash memory accesses although
the resulting program image can have a different layout
from the original program image (Figure 10(c)).

Unlike fixed block comparison, we use the base and
current program version to generate the program code
incrementally. If we rebuild the current program image
by comparing the last version and the current version, the
host program and the sensor node may have different
code leading to an incorrect program build. Instead, we
compare the base and the current program version. This
ensures that the sensor node reads the same data bytes as
the host program.

5.1.3. Operations

We modified the format of CMD_COPY_BLOCK to
specify the starting byte address of each copy block
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(Figure 11). When the Rsync algorithm generates the
difference, the starting byte address of each block may
not be a multiple of the SREC record size. We need to
specify the starting byte address as well as the CID to
correctly copy SREC records.

Difference Previous Current
Message Program Program
Image Image
°
°
°
[ Copy | 1
J’ copy
|__Download | download )
Download
Copy \L download
J’ copy 7]
°
°
°
(a) Generating a difference.
Previous
Program
Image
017 23 4 5 - &7 " gis
)16 8+datalen -1 “Bitataleti T Remaini
[ Data Checksum Fill
Old CID Old Offset
Current
Program
New CID New Offset Image
01/ 23 4 s~ 7 T gis
[PID, \l CID [8rec Typd length, [Srec address[.. Data l
e B &% __ - -
Data Checksum Fill
(b) Copying a matching block
Difference Previous Current
Message Program Program
Image Image
°
°
°
[ Copy | ]\
J’ copy
| Download | download |
Download
Copy ‘L download
[ copy
°
°
°

(c) Downloading a non-matching block.

Figure 10. Steps for incremental network programming wi-
th Rsync difference generation.
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CMD_COPY_BLOCK (using Rsync)

J.JEONG ET AL.

Copy SREC records from prev to current

Offsets after the TOS header 0 1 2:3 4:5 6:7 89 10 1112 13:14 15:28
. Command | Sub Capsulel PID | CID | BLK| New Old
TinyOS Headerl D I emd | PID D | Prev | Prev Sizel o Unused

CMD_QUERY_COMPLETE

Program ID of the current image

Starting address of the block in capsules

} A I

A A

Program ID of the previous image

Starting address of the block in capsules (prev)

Block size in capsules (16 bytes)

The position in the current image in bytes

The position in the previous image in bytes

Figure 11. Message format for incremental network programming with Rsync difference generation.

xn xnpUtil
User Input P P
| Load Previous File Command I readPrevSrecCode( )
| Load Current File Command I readSrecCode( )
| If two files are loaded? | buildScript()
convertBaseToFlat( )
| Download Command | convertNewToFlat( )
m_deltas = getDeltas( ) —}—
buildScriptFromDelta( )
rebuildNewFromScript( )
xnpXmitCode
Run_delta( )

For each block in the list
if (matching block)
send CMD_COPY_BLOCK message
else

send CMD_DOWNLOADING message

Rdiff
makeSignatures( ) |+
makeDeltas( ) D —

Figure 12. Host program for Rsync difference generation.

5.2. Implementation

5.2.1. Difference Generation

We used Jarsync [16] for the Rsync algorithm imple-
mentation. The host program calls the following methods
to generate the difference: Rdiff.makeSignatures() and
Rdiff.makeDeltas(). makeSignatures() calculates the
checksum pair for each block in the image file and re-
turns a list of checksum pairs. makeDeltas() compares
the two image files and returns the difference as a list of
matching blocks and unmatched blocks. Since these Jar-
sync methods assume a flat data file as input, the host
program extracts only the data bytes from the SREC
program image file and stores them in a temporary file
before it calls the Jarsync module.

The difference returned by makeDeltas() needs post-
processing. The data bytes of an unmatched block can be
an arbitrary size, but a download message can contain
only up to 16 bytes. The host program divides an un-
matched block into multiple blocks so that the data bytes
of each block can fit in an SREC record. List entries for
matching blocks are also postprocessed. Two matching
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blocks at consecutive locations are merged into a bigger
block and this reduces the number of message transmis-
sions.

5.2.2. Program Code Storage and Rebuild
The rebuilt program can be different from the original
file due to the missing packets. If the host program sends
a query for the missing record (CMD_GET_ CIDMISS-
ING), the sensor node scans the current program section
of external flash memory. Each record contains program
ID (PID) and the capsule ID (CID, sequence number)
fields. The PID should match the PID advertised at the
start of incremental network programming (CMD_
START_DOWNLOAD_INCR). The CID field should
match the line number where the record is written to. If
either PID or CID does not match, the sensor node consi-
ders this a missing record and requests the retransmission
of the SREC record. The host finds the missing record
and sends it back. Then, the sensor node can fill the hole.
When the sensor node requests the retransmission of a
missing SREC record, it specifies the missing record by
CID field. Since the rebuilt program image can have a
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Table 6. Complexity of incremental network programming.

Incremental Radio Stack ADC
Network Programming MAC Operation
Copy . Get and
Download (Rsync) Send Receive DataReady
136 153 112 88 35

different layout from the original program file, just read-
ing the specified record from the original program file
does not return the correct data. To address this issue, the
host program rebuilds the new program with the same
layout as the program image to be built in a sensor node.
The host program reads the SREC records of this image
for retransmission requests.

5.2.3. Code Complexity

To estimate the complexity of our implementation, we
counted the source code lines in the the XnpM.nc file. A
CMD_DOWNLOADING message costs 136 lines and a
CMD_COPY_BLOCK message (for Rsync) costs 153
lines. The details are shown in Table 13. These numbers
are comparable to those of other TinyOS modules.
Sending and receiving radio packets are handled in sev-

eral modules and CC1000RadiolntM.nc is a core module.

A send operation takes 112 lines and a receive operation
takes 88 lines in this module. As another example, we
analyzed the ADCM.nc module which handles the read-
ing of data from an ADC channel. It takes 35 lines to get
a byte of data with ADCM.nc. Table 6 summarizes this.

5.3. Results

To evaluate the performance of incremental network pro-
gramming with the Rsync algorithm, we estimated and
measured the transmission time for three cases: 1)
changing a constant in XnpBlink, 2) adding a few lines
in XnpCount and 3) transforming XnpBlink to Xnp-
Count. Table 7 shows the results.

In Case 1, most SREC records (1116 lines out of
1120) were transferred and the speed-up over non-incre-
mental delivery was 6.25 (measurement). This is almost
the same as the speed-up for Fixed Block Comparison
(Case 1 in Figure 13).

In Case 2, 954 lines out of 1154 lines were transferred
by copy messages and the speed-up over non-incre-
mental delivery was 2.44 (measurement). Whereas Fixed
Block Comparison has a speed-up of 1.2 (Case 2 in Fig-
ure 13). The improved speed-up was caused by the effi-
cient difference generation of the Rsync algorithm.

In Case 3, the level of sharing was much smaller and
the speed-up was 1.04 (measurement). We have some
number of copy messages (85 messages), but they cover
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only a small number of blocks and are not so helpful in
reducing programming time.

In Case 4, 814 lines out of 1140 lines were transferred
by copy messages and the speed-up over non-incre-
mental delivery was 1.92 (measurement). In contrast, the
speed-up with Fixed Block Comparison was almost neg-
ligible (1.02).

In Case 5, 276 lines out of 1140 lines were transferred
by copy messages and the speed-up over non-incre-
mental delivery was quite small — 1.06 (measurement).
Both Case 4 and Case 5 commented out a few lines in
the configuration file. But, in Case 5, commenting out
the IntToRfm component caused the radio stack to not be
used and this changed the layout of the program image
file a great deal.

Table 7. Transmission time with the Rsync algorithm.
Casel Case2 Case3 Case4 Case5
Bytes 48.2KB 49.4KB 49.4KB 48.9KB 48.9KB
#-SRECs 1120 1154 1156 1140 1147

Ldown 4 200 888 326 871
Leopy 1116 954 278 814 276
Neopy 72 104 85 107 83
Estimation
T 22.1s 55.2s 132.1s 71.2s 129.4s
Tynp 134.4s 138.5s 139.9s 136.8s 137.6s
Speed-ub 509 251 106 192 1.06
Txnp/T
Measurement
T 23.8s 61.0s 142.6s 77.1s 140.3s
Txnp 148.8s 148.9s 148.9s 148.2s 148.0s
SPeed-UD g5 our 104 192 105
Txnp/T
Speed-up over non-incremental delivery
8 : : ‘ ‘ ‘
[l Estimated speed-up (Fixed)
Il Measured speed-up (Fixed)
6 M [JEstimated speed-up (Rsync)||
[ IMeasured speed-up (Rsync)
Q.
]
s
%)
. I i

Case 1 Case2 Case3 Case4 Caseb

Figure 13. Speed-up in programming time for incremental
network programming with and without Rsync difference
generation.
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In summary, using the Rsync algorithm achieves a
speed-up of 6 for changing the constant and 2.4 for add-
ing a few source code lines. These numbers are larger
than those of Fixed Block Comparison, but using the
Rsync algorithm is not still effective with a major code
change.

As for the results in Table 7, we have some comments.
First, we can ask why 4 SREC lines were transmitted as
download messages in Case 1 when we changed only a
constant in the source file. One of the reason is that the
network programming module includes a timestamp
value that is given at compile time. This ensures that
each program image is different each time we compile
the program. Another reason is that the previous SREC
file was not aligned in the SREC record boundary at the
end of the file. When we convert the SREC file to a flat
file for Rsync, the layout changes.

Another question is why we sent 72 copy messages
even though we could send fewer messages. In our de-
sign, the sensor node copies the program image blocks
after hearing a copy message. To bound the execution
time, we made each copy message handle up to 16 SREC
lines (256 bytes).

6. Optimizing Difference Delivery

Compared to Fixed Block Comparison, the Rsync algo-
rithm achieves shorter programming time by efficiently
finding the shared blocks between the two binary code
files. However, we can find some things to improve:
First, the network programming module transfers only
a limited number of SREC records for each copy mes-
sage. This is to bound the running time of a copy mes-

CMD_DOWNLOADING (data)

Offsets after the TOS header 0 1 2:3

Send a script command to deposit data
6 7 89 10 10+da|alen—1\<

4:5

J.JEONG ET AL.

sage so that the network programming module finishes
processing a copy request before it receives another re-
quest.

Second, the network programming module interprets a
copy request right after it receives the request without
saving the request. In case there is a missing command,
the network programming module has to check the re-
built program image because it hasn’t stored the script
commands. Since the network programming module
does not know whether a missing hole was caused by a
missing copy message or a number of download mess-
ages, it sends a retransmission requests for each missing
record from the current program image. This will take
more time than retransmitting only the missing com-
mand.

Thus, we propose extending the implementation of
Section 5 as follows:

1) The sensor node receives all the commands for the
script.

2) The sensor node checks for any missing records in
the script.

3) The sensor node starts to decode script records in
response to the script decode message.

6.1. Design

6.1.1. Operations

Since the script commands are stored in the storage space
of the sensor node, we modified CMD_DOWNLOAD-
ING message to send script messages as in Figure 14.
This has an advantage that we can reuse most of the code
for handling normal data records to process the script
commands.

10+datalen
11+datalen
12+datalen

Program ID

Script Capsule ID
SREC data
New Capsule ID

CMD_DOWNLOADING (copy)
Offsets after the TOS header 0 1

TinyOS Header] COTMaNd | SUb T pip Scrpt-SRC ;R SREC
A A
CMD_DOWNLOADING I

check
sum

new

Data cID.

‘ Unusedl

Send a script command to copy data blocks
2:3 45

6 7:8 9110 11:12 13:14 15:16 17:28

CID [ BLK [ New [ OId

prev. ize | Offset Offset| Suse

[Tinyos Header| ORI SHB o e ] e |

CMD_DOWNLOADING
Program ID
Script Capsule ID

Type number (10) for copy record

Starting address of the block in capsules (new)
Starting address of the block in capsules (prev)
Block size in capsules (16 bytes)

The position in the current image in bytes

The position in the previous image in bytes

CMD_DECODE_SCRIPT
Offsets after the TOS header 0

Starts to decode the received script records

6:28

1
| TinyOS Header|comlgand| E;Z

2:3 4.5
PID | Capsulel

Data

CMD_DECODE_SCRIPT

Replying Node ID

Program ID

Capsule ID

Figure 14. Message format for incremental network programming with Rsync difference generation and decode script.
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(a) Receiving script commands.

Script
Commands
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Image
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CMD_DECODE_SCRIPT

Copy.

Download

|

Download

Copy

J

download

1

- download
copy
L Te

(b) Decoding script commands.

Figure 15. Steps for incremental network programming with Rsync difference generation and decode script.

Message CMD_DOWNLOADING (data) has almost
the same format as a normal data record download mes-
sage except for the script CID and new CID fields. The
script CID field is the sequence humber of the command
within the script and the new CID field is the location
where the data record embedded in the command will be
copied for building the program image.

Message CMD_DOWNLOADING (copy) is also sto-
red in a similar way as a normal data record. A copy
command has the SREC type field. This is for the Mo-
torola SREC type and only several values are allowed by
the specification (0,1,2,3,5,7,8 and 9). We extended the
meaning of this field so that the value 10 represents a
copy record. This allows us to store a copy command in
the same manner as other data records, but can still in-
terpret the copy command correctly. Finally, message
CMD_DECODE_SCRIPT makes the network program-
ming module start decoding the downloaded script
commands.

6.1.2. Storage Organization and Program Rebuild

As for the storage space for the script commands, we
need to choose among RAM, internal flash memory and
external flash memory. RAM would be better than the
others for its fast access time. However, the size of a
script can be as large as a list of download messages in
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the worst case. Since the largest program size is 128 KB,
it may not fit into RAM (4 KB) or the internal flash
memory (4 KB) when the program size is large. Thus,
the script should be stored in the external flash memory.

We divided the external flash memory into three sec-
tions: the previous program image, the current program
image and the script sections.

At first, the host program sends the script as CMD_
DOWNLOADING messages. The sensor node stores
these messages in the script section if it is in the incre-
mental network programming state. This is shown in
Figure 15(a). When the host program queries any miss-
ing script commands, the sensor node scans the script
section. When the difference between the two program
versions is small, the traversal of the script section can
finish quickly. If the sensor node finds any missing re-
cord, it requests the retransmission of the record. Then,
the host program sends the record again.

After receiving the decode command from the host
program, the sensor node starts rebuilding the program
code. This is shown in Figure 15(b). A download com-
mand is copied from the script section to the current pro-
gram image section after the CID field is modified to the
new CID value. As for a copy command, the sensor node
starts copying SREC records from the previous program
image to the current program image. A SREC record
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from the previous section is copied to the current pro-
gram section after the CID and the byte offset fields are
modified for the new values.

6.2. Results

Since a sensor node does not rebuild the program image
until it receives all the script commands, we modified the
metrics for the evaluation. We measured the transmission
time and the decode time for the three cases. The host
program saves the time stamp value when it sends a de-
code command and gets the next time stamp value when
it receives the reply from the sensor node. The decode
time is calculated as the difference of the two time stamp
values. Table 8 shows the results.

Table 8. Transmission time for incremental network pro-
gramming with Rsync difference generation and decode
script.

Case 1 Case 2 Case3 Case4 Caseb

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB
#-SRECs 1139 1167 1167 1156 1156
#-cmds 7 337 996 419 964

Estimation

T 0.9s 45.8s 130.7s  54.5s 125.6s

Taecoe 1605 16.7s 169s 1685  16.8s

Tynp 154.0s 158.5s 158.5s  150.7s 150.5s
Speed-up
Tp! T 9.10 2.53 1.07 211 1.06

Table 9. Speed-up in programming time for three versions
of incremental network programming.

Fixed block comparison

Casel Case2 Case3d Case4d Case 5

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.6KB

#-SRECs 1139 1167 1167 1156 1155

Ldown 19 911 1135 1124 1123
Lcopy 1120 256 32 32 32
Neopy 70 16 2 2 2
T 23.3s  114.1s 136.8s 1355s  135.4s
Tynp 136.7s 138.7s 140.0s 138.7s 138.6s
Speed-up

T/ T 5.87 1.22 1.02 1.02 1.02
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Rsync

Casel Case2 Case3d Cased4 Caseb
Bytes 48.2KB 49.4KB 49.4KB 48.9KB 48.9KB
#-SRECs 1120 1154 1156 1140 1147

Lo 4 200 888 326 871
Loy 1116 954 278 814 276
New 72 104 8 107 83
T 221s 5525 1321s 7125  129.4s
Tep 1344 13855 13995 136.8s 137.6s
S$e‘:d/$p 609 251 106 192 106

Rsync with split decode
Casel Case2 Case3 Cased4 Case5
Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB
#-SRECs 1139 1167 1167 1156 1156

#-cmds 7 337 996 419 964
T 0.9s 45.8s 130.7s 54.5s 125.6s
Tdecode 16.0s 16.7s 16.9s 16.8s 16.8s
Tynp 154.0s 158.5s 158.5s 150.7s  150.5s
Speed-up
Txnp/T 9.10 2.53 1.07 211 1.06
Speed-up over non-incremental delivery
10 T T T " T
_ Il Fixed Block Comparison
Il Rsync
8r [ IRsync with decoding
!
e}
]
& 4 .
I .
0 m | [N

Casel Case2 Case3 Case4 Caseb5

Figure 16. Speed-up in programming time for three ver-
sions of incremental network programming.

For Case 1, only 7 script messages were transmitted
and this made the transmission time very small. The sum
of transmission time and the decode time is 16.1s while
non-incremental delivery took 154.0s. This gives a
speed-up of 9.10. For Case 2, more script lines were
transmitted (337 script messages for the 1167 line pro-
gram code) and the speed-up over non-incremental de-
livery was 2.53. For Case 3, we sent an even larger num-
ber of script messages (996 messages for the 1167 line
program code) and the speed-up was 1.07. When we
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modified the configuration file, we had a similar result as
Section 5. For Case 4, 419 script messages for the 1156
line program code had a speed-up of 2.11 over nonin-
cremental delivery. For Case 5, most of the SREC re-
cords were transmitted as download script commands
(964 out of 1156) and the speed-up was 1.06.

Figure 16 and Table 9 show the results of the three in-
cremental network programming implementations: Fixed
Block Comparison, Rsync and Rsync with split decode.
We can find that splitting the script transmission and the
program rebuild improves the overall programming time.
When the source code is modified at minimum, the im-
plementation with Rsync and split decode saved pro-
gramming time by sending fewer script messages even
though it has to decode the script messages. When a
small number of source code lines were added, the pro-
gramming time was a little better than the implementa-
tion that just uses the Rsync algorithm. For the major
program change, it didn’t achieve the speed-up, but it
was still as good as non-incremental delivery.

We can comment on Case 3. Even though we used the
Rsync algorithm and split decode, the speed-up over
non-incremental delivery was negligible. This is because
the difference between the two program images cannot
be described with a small number of insert, copy and
skip operations.

7. Conclusions

Network programming is a way of programming wireless
sensor nodes by sending the program code over radio
packets. By sending program code packets to multiple
sensor nodes with a single transfer, network program-
ming saves the programming efforts for a large sensor
network. The network programming implementation in
TinyOS releases 1.1 or later provides the basic capability
of network programming — delivering the program code
to the sensor nodes remotely. However, the network pro-
gramming implementation is not optimized when part of
the program code has changed. It transmits all the code
bytes even though the new version of program code is
only slightly different.

We extended the network programming implementa-
tion so that it reduces programming time by transmitting
an incremental update rather than the entire program
code. The host program generates the difference of the
two program images using the Rsync algorithm and
transmits the difference to the sensor nodes. Then, the
sensor nodes decode the difference script and build the
program image based on the previous program version
and the difference script. We tested our incremental
network programming implementation with some test
applications. We have a speed-up of 9.1 for changing a
constant and 2.1 to 2.5 for changing a few lines of code
in the source code.

Copyright © 2009 SciRes.

For future work, we plan to extend our incremental
network programming for multihop delivery. One way is
to use an existing multihop network programming mech-
anism such as Deluge [6] or MOAP [5]. In this case, we
need to modify the underlying multihop delivery mecha-
nism to be compatible with an incremental program im-
age as well as non-incremental image. Another way is to
use a generic multihop routing protocol. Since a generic
routing protocol just delivers packets without storing the
program image, our incremental network programmig
mechanism can be easily extended for multihop delivery
by replacing a single-hop send command with a multihop
version.
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Table 10. Receiving the incoming message.

Message Command

Next State

Action

CMD_START_DOWNLOAD
CMD_DOWNLOADING
CMD_DOWNLOAD_COMPLETE
CMD_ISP_EXEC
CMD_GET_CIDMISSING
CMD_START_DOWNLOAD_INCR
CMD_COPY_BLOCK
CMD_GET_CURRENT _LINE
CMD_GET_PREV_LINE

SYS_DL_START

SYS_DL_END
SYS_ISP_REQ

SYS_DL_SRECWRITE

SYS_REQ_CIDMISSING
SYS_DL_START_INCR
SYS_COPY_BLOCK_PREP
SYS_GET_CURRENT_LINE_PREP
SYS_GET_PREV_LINE_PREP

post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()

Table 11. NPX_STATEMACHINE() state transision.

Start Download

Current State

Next State

Action

SYS_DL_START

Call from main application
Xnp.NPX_DOWNLOAD_ACK()

SYS_DL_START1

SYS_DL_START?2

SYS_ACK

SYS_DL_START1

SYS_DL_START2

fNPXStartDownload() signal
Xnp.NPX_DOWNLOAD_REQ()

Post NPX_STATE_MACHINE()

Call EEPROMWrite.endWrite()
Post NPX_STATEMACHINE()

Post NPX_STATEMACHINE()

Download End

Current State

Next State

Action

SYS_DL_END

SYS_DL_END_SIGNAL

SYS_ACK

SYS_DL_END_SIGNAL

Call EEPROMWrite.endWrite()
Post NPX_STATEMACHINE()

Post NPX_STATEMACHINE()
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Download

Current State

Next State

Action

SYS_DL_SRECWRITE
SYS_EEFLASH_WRITEPREP
SYS_EEFLASH_WRITE

SYS_EEFLASH_WRITEPREP or SYS_ACK
SYS_EEFLASH_WRITE
SYS_EEFLASH_WRITEDONE

post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
Call EEPROMWrite.endWrite()

SYS_EEFLASH_WRITEDONE SYS_ACK Post NPX_STATEMACHINE()
Idle
Current State Next State Action
SYS_ACK SYS_IDLE post NPX_STATEMACHINE()
SYS_IDLE SYS_IDLE post NPX_STATEMACHINE()
Retransmission
Current State Next State Action

SYS_REQ_CIDMISSING

SYS_GET_CIDMISSING
SYS_GETNEXTCID
SYS_GETDONE

SYS_GET_CIDMISSING

SYS_GETNEXTCID
SYS_GETNEXTCID or SYS_GETDONE
SYS_IDLE

Call EEPROMWrite.endWrite()
Post NPX_STATEMACHINE()

post NPX_STATEMACHINE()
post NPX_STATEMACHINE()
post NPX_STATEMACHINE()

Reprogram
Current State Next State Action
SYS_ISP_REQ SYS_ISP_REQ1 post NPX_STATEMACHINE()
SYS_ISP_REQ1 SYS_ACK post NPX_ISP()

SYS_DL_START_INCR

fNPXStartDownloadIncr()
signal Xnp.NPX_DOWNLOAD_REQ()

Table 12. NPX_STATEMACHINE() state transition (added for incremental network programming).

Start Download

Current State Next State Action
fNPXStartDownloadlIncr()
SYS_DL_START_INCR Signal Xnp.NPX_DOWNLOAD_REQ()
Copy Command
Current State Next State Action

SYS_COPY_BLOCK_PREP

SYS_COPY_BLOCK_READ

SYS_EEFLASH_COPYWRITE

SYS_EEFLASH_COPYWRITEDONE

SYS_COPY_BLOCK_READ

SYS_EEFLASH_COPYWRITE

SYS_EEFLASH_COPYWRITEDONE

SYS_COPY_BLOCK_PREP or SYS_ACK

Call EEPROMWrite.endWrite()
post NPX_STATEMACHINE()

Call EEPROMRead.read()
fNPXCopyBIk()
post NPX_STATEMACHINE()

Post NPX_WEE_LineWrite()
Post NPX_STATEMACHINE()

Post NPX_STATEMACHINE()

Debugging Commands

Current State

Next State

Action

SYS_GET_PREV_LINE_PREP

SYS_GET_CURRENT_LINE_PREP

SYS_ACK

SYS_ACK

Call EEPROMRead.read()
fNPXGetLine()

post NPX_STATEMACHINE()
Call EEPROMRead.read()
fNPXGetLine()

post NPX_STATEMACHINE()
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Table 13. Cost of message handling.
CMD_DOWNLOADING

Step Source Lines Description
CMD_DOWNLOADING 29
SYS_DL_SRECWRITE 41
SYS_EEFLASH_WRITEPREP 22
SYS_EEFLASH_WRITE 31
SYS_EEFLASH_WRITEDONE 13
Total 136

CMD_COPY_BLOCK (Fixed Block Comparison)

Step Source Lines Description
CMD_COPY_BLOCK 46
SYS_COPY_BLOCK_PREP 16 Repeated for each SREC line
SYS_COPY_BLOCK_READ 40 Repeated for each SREC line
SYS_EEFLASH_COPYWRITE 29 Repeated for each SREC line
SYS_EEFLASH_COPYWRITEDONE 22 Repeated for each SREC line
Total 153

CMD_COPY_BLOCK (Rsync)

Step Source Lines Description
CMD_COPY_BLOCK 46
SYS _COPY_BLOCK_PREP 16 Repeated for each SREC line
SYS_COPY_BLOCK_READ 44 Repeated for each SREC line
SYS_EEFLASH_COPYWRITE 29 Repeated for each SREC line
SYS_EEFLASH_COPYWRITEDONE 22 Repeated for each SREC line
Total 157
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