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Abstract 
The optimizing total velocity increment v∆  needed for orbital maneuver 
between two elliptic orbits with plane change is investigated. Two-impulse or-
bital transfer is used based on a changing of transfer velocities concept due to 
the changing in the energy. The transferring has been made between two el-
liptic orbits having a common centre of attraction with changing in their 
planes in standard Hohmann transfer with the terminal orbit which is elliptic 
orbit and not circular. We develop a treatment based on the elements of ellip-
tic orbits 1 1,a e , 2 2,a e  and ,T Ta e  of the initial orbit, final orbit and trans-
ferred orbit respectively. The first impulse 1ΔV  at the perigee induces a rota-
tion of the orbital plane by 1θ  which will be minimized. The second impulse 

2ΔV  at apogee is induced an angle 2θ  to product the final elliptic orbit. The 
total plane change required 1 2α θ θ= + . We calculate the total impulse v∆  
and minimize by optimizing angle of plane’s variation 1θ . We obtain a poly-
nomial equation of six degrees on the two transfer angles between neither two 
elliptic orbits 1θ  and 2 1θ α θ= − . The solution obtained numerically, using 
programming code of MATHEMATICA V10, with no condition on the ec-
centricity or the semi-major axis of the initial, transformed, and the final or-
bits. We find that there are constrains on the transfer angles 1θ  and α . For 
α  it must be between 40˚ and 160˚, and there is no solution if α  is less 
than 40˚ and bigger than 160˚ and 1θ  takes the values less than 40˚. The 
minimum total velocity increments obtained at the value of 1θ  less than 25o 
and α  equal to 160˚. This is an interesting result in orbital transfer problem 
in which the change of orbital plane is necessary for the transferring.  
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1. Introduction 

The problem of the optimal impulsive transfer between two orbits is almost se-
venty years old, but the question, how many impulses are still open despite of 
the theories and a lot of numerical works developed in this field. In 1925, Hoh-
mann produced a numerical study showing that the optimum two-impulse 
transfer path between coplanar circular orbits is a semi-ellipse, tangential at its 
apsides to both circular orbits, with an impulse occurring at each apse. Hoh-
mann transfer is generalized to the elliptic case (transfer between two coaxial el-
liptic orbits). A large number of works have been made to optimize 
non-coplanar transfer between circular or elliptic orbits having collinear major 
axes [1] [2] [3] [4]. An analytical solution for optimal two-impulse 180˚ transfer 
between non-coplanar elliptic orbits and the optimal orientation of the transfer 
plane is presented with numerical solutions under some terminal conditions in 
[5]. A polynomial equation of six degrees on the generalized Hohmann transfer 
with plane change using energy concepts is obtained without analytical solution 
[6]. A fundamental result is presented in Lawden’s work where a primer vector 
satisfying necessary condition for optimality of the total delta velocity was in-
troduced in coplanar transfer [7]. The necessary condition for optimality is re-
duced to a polynomial equation of the eighth degrees on the semi-latus rectum 
and with the fixed transfer angle, for which no solution has been found in 
two-impulse transfer between two elliptic coplanar orbits [8]. In this work, we 
give the optimum total velocity increment v∆  required to transfer between two 
elliptic orbits having a common centre of attraction with plane change. We con-
sidered here generalized Hohmann transfer consisted of two impulses through 
semi-elliptic path. The first thrust 1ΔV  occurring at the perigee does not only 
produce a transfer ellipse but also induce a rotation of the orbital plane by 1θ . 
The second impulse 2ΔV  at apogee is induced an angle 2θ  to produce the fi-
nal elliptic orbit. An engine firing in the out of plane direction is required for the 
change of the plane. The point of firing becomes a point in the new orbit, and the 
burn point becomes the intersection of the current orbit and the desired orbit. In 
the following treatment, we used a changing of transfer velocities concept due to 
the changing in the energy in terms of the elliptic orbital elements 1 1,a e , 2 2,a e  
and 2,T Ta e  of the initial orbit, final orbit and transferred orbit respectively. We 
calculate the total impulse v∆  and minimize by optimizing angle of plane’s vari-
ation 1θ , we obtain a polynomial equation of six degrees on the two transfer an-
gles between neither two elliptic orbits 1θ  and 2θ  with any restrictions on their 
eccentricities and semi-major axis, nor any restrictions on the terminal distances 
and the initial and final orbital velocities. The solution obtained numerically, using 
programming code of MATHEMATICA V10. The total velocity impulse is mini-
mized by optimizing angle of plane’s variation numerically under some constrains 
of the transfer angles. 

2. Formulation and Optimization 

Any analysis of orbital maneuvers, i.e., the transfer of a satellite from one orbit 
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to another by means of a change in velocity, begins with the energy as 

2 2 1  V
r a

µ  = − 
 

                        (1) 

where V  is the magnitude of the orbital velocity at some point, r  the magni-
tude of the radius from the focus to that point, a semi major axis of the orbit and 
µ  the gravitational constant of the attracting body. Equation (1) can be rear-
ranged as 

2

2 2
V

r a
µ µ

− = −                         (2) 

where it is evident that 

kinetic energy potential energy total energy
satellite mass satellite mass satellite mass

+ =  

Note that (energy/satellite mass) is dependent only on a, an increases, energy 
increases. Orbital maneuvers are based on the principle that an orbit is uniquely 
determined by the position and velocity vector at any point [9]. Conversely, 
changing the velocity vector at any point instantly transforms the trajectory to a 
new one corresponding to the new velocity vector. So if we want to move a 
spacecraft to a higher orbit, we have to increase the semi-major axis (adding 
energy to the orbit) by increasing velocity. On the other hand, to move the 
spacecraft to a lower orbit, we decrease the semi-major axis (and the energy) by 
decreasing the velocity. Any conic orbit can be transformed into another conic 
orbit by changing the spacecraft velocity vector. Coplanar maneuver only in-
volves the change of the orbit without changing the orbit plane, we have four 
kind of coplanar maneuvers (i) Tangential orbit Maneuver, (ii) Non-tangential 
orbit Maneuver, (iii) Hohmann transfer, (iv) Bi-elliptic orbit transfer. The 
Hohmann’s transfer is the minimum two-impulse transfer between coplanar 
circular or elliptic, it can be used to transfer a satellite between two noninter-
secting orbits, coaxial, aligned. The fundamental of the Hohmann’s transfer is a 
simple maneuver. This maneuver employs an intermediate elliptic orbit which is 
tangent to both initial and final orbits at their apsides. A V∆  maneuver (refers 
to the difference between the initial and final velocity vectors),can raise or lower 
the perigee or apogee, a change in inclination, escape, reduction or increase in 
period, begin a 2+ maneuver sequence of burns. This process takes two steps, to 
get from orbit one to the transfer orbit, we change the orbit’s energy by changing 
the spacecraft’s velocity by an amount 1V∆ . Then when the spacecraft gets to 
orbit two, we must change its energy again by changing its velocity by an 
amount 2V∆ , if we don’t the spacecraft will remain in the transfer orbit, indefi-
nitely, returning to where it started in orbit one, then back to orbit two, etc. 
Thus, the complete maneuver requires two separate energy changes, accom-
plished by changing the orbital velocities (using 1V∆  and 2V∆ ). For mission 
planning, we simply add the V∆  needed for the trip from orbit one to orbit 
two. Now we have gone through the Hohmann transfer, when the transfer be-
tween two elliptic non aligned orbits, for an example the spacecraft went from a 
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low orbit to a higher orbit or vice versa with different planes, to do this, it had to 
increase velocity twice, 1V∆  and 2V∆ . At the point ( )1 1 1,P r θ , we apply an 
impulse with magnitude 1V∆  increase the spacecraft’s velocity, taking the 
spacecraft out of orbit one and putting it into the transfer orbit, the transfer orbit 
crosses the final orbit at the point ( )2 2 2,P r θ , where we apply an impulse with 
magnitude 2V∆  putting it into the final orbit as in Figure 1. At point ( )1 1 1,P r θ , 

1r  is the perigee distance of orbit one (The initial orbit with an elements 1a , 1e ) 
and ( )1 1 11r a e= −  and at the point ( )2 2 2,P r θ , 2r  is the apogee distance of 
orbit two (The final orbit with an elements 2a , 2e ) and ( )2 2 21r a e= − . The 
transfer orbit given by an elements Ta  and Te , where 

2 1

2 1
T

r re
r r
−

=
+

                          (3) 

1 2

2T
a aa =
+                          (4) 

The total velocity increment will obtain from the following relations, as seen 
in Figure 2.  

2 2 2 2 2
1 1   2 cosp TP p TPV V V V V θ∆ = + −                   (5) 

 

 
Figure 1. Geometry of the orbital transfer with plane change. 

 

 
Figure 2. Geometry of the velocities changing. 
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( )2 2 2 2 2
2 1   2 cosA TA p TAV V V V V α θ∆ = + − −                 (6) 

where pV , TPV , AV , and TAV  are the perigee velocity at 1P  of the initial orbit, 
the transfer’s velocity of the transfer orbit at perigee, the apogee velocity at 2P  
of the final orbit and the transfer’s velocity of the transfer orbit at apogee respec-
tively.  

( )
( )

1

1 1

1
1p

e
V

a e
µ +

=
−

; ( )
( )
1
1

T
TP

T T

e
V

a e
µ +

=
−

 

( )
( )

2

2 2

1
1A

e
V

a e
µ −

=
+

; ( )
( )
1
1

T
TA

T T

e
V

a e
µ −

=
+

 

1θ  and 2θ  are the angles between the velocities at 1P  and 2P  as shown in 
Figure 1, and 12θ α θ= − . So Equations ((5) and (6)) will be  

( )
( )

( )
( )

( )
( )

( )
( )

1 1
1 1

1 1 1 1

1 1 1 1
2 cos

1 1 1 1
T T

T T T T

e e e e
V

a e a e a e a e
µ µ µ µ

θ
   + + + +

∆ + −    
− − − −    

=
 

   (7) 

( )
( )

( )
( )

( )
( )

( )
( ) ( )2 2

2 1
2 2 2 2

1 1 1 1
2 cos

1 1 1 1
T T

T T T T

e e e e
V

a e a e a e a e
µ µ µ µ

α θ
   − − − −

∆ + − −   
+ + + +      

=  (8) 

Thus, the total increment of the velocity is 

1 2V V V∆ = ∆ + ∆                         (9) 

For simplicity let 

( )
( )

1

1 1

1
1

e
A

a e
µ +

=
−

, ( )
( )
1
1

T

T T

e
B

a e
µ +

=
−

, ( )
( )

2

2 2

1
1

e
C

a e
µ −

=
+

, ( )
( )
1
1

T

T T

e
D

a e
µ −

=
+   

 (10) 

Then (9) will be in the form 

( ) ( ) ( )1 1  2 cos 2 cosV A B AB C D CDθ α θ   ∆ = + − + + − −     
 (11) 

1θ  to be optimized by the condition of minimization 
1

Δ   0.V
θ

∂
=

∂
 

By partial differentiation of (11) with respect to 1θ  and equating to zero, and 
after arrangements and clearing fraction, we find that 

( )
( )

( ) ( )

22
11

1 1

sinsin
2 cos 2 cos

CDAB
A B AB C D CD

α θθ
θ α θ

−
=

+ − + − −
        (12) 

From which we can deduce that  

( ) ( ) ( )
( ) ( )

2 2

2 2 2 2 2

2 1 1

2 2 1

AB C D CD bx a x x

CD A B AB x a b x b abx x

 + − + − −  
  = + − − + − −          

 (13) 

where 

1cosx θ= , 2
11 sinx θ=− , sina α= , cosb α=          (14) 

After some reduction, we find that 
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( ) ( ) ( )
( ) ( )( )

( )
( ) ( )

2 2

2 2 2

2 2 3

2 2

2 2

2 2

1 2 2 4 2

AB C D CD A B b CD ABb bAB CD x

AB C D CD A B a b x

bAB CD CD AB a b x

x aAB CD abCD A B x abCD AB aAB CD x

+ − + +

 − + + + 
 + +

−

−

− 

− − + += − 
 

 

Let 

( ) ( ) 2
1 AB C D CD A B b E+ − + =  

2
22 2CD ABb bAB CD E− =  

( ) ( )( )2 2
3–  – AB C D CD A B a b E + + + =   

( )2 2
42 2bAB CD CD AB a b E+ − =  

52aAB CD E=  

( ) 6– 2abCD A B E+ =  

74 2abCD AB aAB CD E− =  

Then 

( )2 3 2 2
1 2 3 4 5 6 71E E x E x E x x E E x E x=+ + + − + +

         (15) 

After squaring and some reduction, we may write  

( ) ( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2 2
1 5 1 2 5 6 1 3 2 5 7 6 5

3 2 2 2 4
1 4 2 3 6 7 5 6 2 4 3 7 5 7 6

5 2 2 6
3 4 6 7 4 7

2 2 2 2

  2 2 2 2 2 2

2 2 0 

E E E E E E x E E E E E E E x

E E E E E E E E x E E E E E E E x

E E E E x E E x

− + − + + − − −

+ + − + + − + +

+ + −

+

+ =

 (16) 

Set 
2 2
1 5 0 E E F− =  

1 2 5 6 12 2E E E E F=−  
2 2 2

1 3 2 5 7 6 5 22 2E E E E E E E F− − − =+  

1 4 2 3 6 7 5 6 32 2 2 2E E E E E E E E F− + =+  
2 2 2

2 4 3 7 5 7 6 42 2E E E E E E E F+ − + =+  

3 4 6 7 52 2E E E E F=+  
2 2
4 7 6E E F− =  

Then Equation (16) will be an algebraic equation of degree six in 1θ  (with 
α  explicitly) in the form 

2 3 4 5 6
0 1 2 3 4 5 6  0F F x F x F x F x F x F x+ + + + + + =            (17) 

3. Solution and Discussion 

There is no analytical solution for the Equation (17), but we solved it numerical-
ly, using code of MATHEMATICA V10, with no condition on the eccentricity 
or the semi-major axis of the initial, transformed, and the final orbits. The opti-
mization problem was solved for two angles of rotation of the apsidal lines, using 
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the computed values of the velocities at perigee and apogee, and the transfer an-
gle 1θ . The necessary optimal conditions are obtained using analytical code and 
different numerical code by MATHEMATICA V10. For each value of eccentrici-
ties, and semi-majors, we find at least one root satisfied Equation (17). Also we 
find that there is constrains on the transfer angles 1θ  and α  as seen in Table 
1 and Figure 3. For α  it must be between 40˚ and 160˚, there is no solution if 
α  is less than 40˚ and bigger than 160˚. Also the minimum total velocity in-
crements will obtain with the value of 1θ  less than 40˚ and α  less than 160˚. 
This is an interesting result in orbital transfer problem in which the change of 
orbital plane is necessary for the transferring. 

4. Conclusion 

We give a complete analytical analysis and numerical solution of optimal two- 
 

Table 1. The values of α  and 1θ  which satisfying the solution and the optimal velocity. 

α  degree 1θ  degree 1V∆  km/sec 2V∆  km/sec V∆  km/sec 

50˚ 8.90678 0.0246816 0.016775 0.0414565 

60˚ 17.0631 0.0246913 0.0165648 0.0412561 

70˚ 22.4788 0.024701 0.0160106 0.0407116 

80˚ 26.8003 0.0247105 0.0152661 0.0399766 

90˚ 30.4023 0.0247196 0.0143589 0.0390785 

100˚ 33.3842 0.024728 0.0132935 0.0380215 

110˚ 35.7109 0.024735 0.0120627 0.0367977 

120˚ 37.2327 0.0247398 0.0106488 0.0353886 

130˚ 37.6535 0.0247411 0.0090206 0.0337617 

140˚ 36.4428 0.0247373 0.0071325 0.0318697 

150˚ 32.629 0.0247258 0.00493346 0.0296593 

160˚ 24.1032 0.0247044 0.00241235 0.0271167 

 

 
Figure 3. The constrain of α  with 1θ  for minimum velocity increments. 

https://doi.org/10.4236/ijaa.2017.73010


M. H. A. Youssef 
 

 

DOI: 10.4236/ijaa.2017.73010 132 International Journal of Astronomy and Astrophysics 
 

impulse transfer with plane change. Our treatment is based on a changing of 
transfer velocities concept due to the changing in the energy. We obtained the 
total velocity increment 1 2   V V V∆ =∆ +∆  of the two impulses 1V∆  and 2V∆  
at perigee and apogee respectively, in terms of the semi-major axes 1 2, , Ta a a  
and the eccentricities 1 2, , Te e e  of the initial orbit, final orbit and transferred or-
bit respectively. The transferring has been made between two elliptic orbits hav-
ing a common centre of attraction with changing in their planes in a tight Hoh-
mann’s transfer with the terminal orbit which is elliptic orbit. We minimized 

v∆  by optimizing angle of plane’s variation 1θ . We obtain a polynomial equa-
tion of six degrees on the two transfer angles between neither two elliptic orbits 

1θ  and 2 1θ α θ= − . The optimization process here depends on the value of the 
plane change with no constrain on a or e, the optimal maneuver can be purely 
propulsive. It is shown that whenever an impulse is applied, a plane change is 
made. The necessary conditions for the optimal split of the plane changes are 
derived and simulated in computer program for the solution. We optimized with 
new constrains in the angles of transfer, for α  it must be between 40˚ and 160˚ 
and there is no solution if α  is less than 40˚ and bigger than 160o, 1θ  takes 
the values less than 40˚. The minimum total velocity increments obtained at the 
value of 1θ  less than 25˚ and α  equal to 160˚. This constrains are newer and 
more different than which are obtained in others works [3] [4] [5]. This is an in-
teresting result in orbital transfer problem in which the change of orbital plane is 
necessary for the transferring.  
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