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ABSTRACT 

In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet 
routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance in com-
puter networks. A combination of fuzzy logic and neural network can generate a fuzzy neural controller which in asso-
ciation with a neural network emulator can improve the output response of the controlled system. This combination uses 
the neural network training ability to adjust the membership functions of a PID like fuzzy neural controller. The goal of 
the controller is to force the controlled system to follow a reference model with required transient specifications of 
minimum overshoot, minimum rise time and minimum steady state error. The fuzzy membership functions were tuned 
using the propagated error between the plant outputs and the desired ones. To propagate the error from the plant outputs 
to the controller, a neural network is used as a channel to the error. This neural network uses the back propagation algo-
rithm as a learning technique. Firstly the parameters of PID of Fuzzy-Neural controller are selected by trial and error 
method, but to get the best controller parameters the Particle Swarm Optimization (PSO) is used as an optimization 
method for tuning the PID parameters. From the obtained results, it is noted that the PID Fuzzy-Neural controller pro-
vides good tracking performance under different circumstances for congestion avoidance in computer networks. 
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1. Introduction 

The term “congestion control” is used to describe the 
efforts made by network nodes to prevent or respond to 
overload conditions. Congestion in a computer network 
is a state in which performance degrades due to the satu- 
ration of network resources such as communication links, 
processor cycles, and memory buffers. Network conges- 
tion has been well recognized as a resource-sharing 
problem. When too many packets are difficult to be de- 
scribed as a mathematical model, and the controller can 
be designed to apply heuristic rules contending for the 
same link, the queue overflows and packets have to be 
dropped. 

When such drops become common events, the net-
work is said to be congested. Most networks provide a 
congestion-control mechanism to deal with just such a 
situation [1]. The Internet Engineering Task Force (IETF) 
has proposed the deployment of active queue manage-
ment (AQM) mechanisms [2] at gateways to improve the 
performance of TCP congestion control. AQM has been 
a very active research area in the Internet community. 
Random early detection (RED) [3] is an extensively stu-
died AQM algorithm that can detect congestion. It con-
trols congestion by randomly dropping packets with  

certain probability that is a function of the average queue 
size (qavg). In recent years, the more needs for the con-
gestion controllers having enough ability which is more 
logically predictable and reliable are occurred. For this 
reason, the traditional control algorithms which have 
been used only for mechanical or electrical systems are 
adopted to the area of congested network and their per-
formances which are known as relatively good. Conse-
quently, the more controllers which have various fea-
tured types have been adopted to the network congestion 
control area using control theories. On the issue of ap-
plying control theories to the network, especially AQM 
Router, a proportional (P) controller and a proportional- 
plus-integral (PI) controller for AQM [4] were designed 
based on the classical control theory and the dynamic 
model of the TCP congestion control [5] and its liearized 
model [6]. And also, [7] proposed an adaptive fuzzy 
AQM for congestion avoidance in TCP/AQM networks. 
More recently [8] developed a new AQM algorithm based 
on neural networks. The proposed controller is simple 
and can be easily implemented in high-speed routers. 

In [9] proposed the adoption of a Fuzzy Proportional 
Integral (FPI) base genetic controller as an AQM for in-
ternet router. 
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Here, a Fuzzy-Neural like PID controller based PSO is 
designed as an AQM for internet router. 

Developments in intelligent control had been made in 
the past years through the development of fuzzy logic 
control (FLC) and Neural Networks (NN) [10]. 

The main advantage of the Fuzzy Logic Controller 
(FLC) is that it can be applied to plants that are that re-
flect the experience of human experts. PID FLCs have 
been successfully applied to a variety of practical prob-
lems. In spite of its practical success, there is no standard 
procedure for tuning PID FLCs [11]. 

Artificial Neural Network (ANN) is a combination of 
processing elements that perform certain tasks through 
learning weights. 

Neural Networks provide a different approach to 
problem solving from linguistic or algorithmic systems 
such as FLC. 

By combining both algorithms of NNs and FLCs to-
gether a robust controller may be achieved, which can 
give precise actions and learn to enhance its performance. 
A FLC can represent human reasoning while NN can 
simulate human learning [12]. 

The organization of the paper is as follows: Section 2 
describes the linearized AQM model. Section 3 describes 
the Fuzzy Neural Network (FNN) design. 

The simulation results are given in Section 4 to verify 
the proposed controller using MATLAB package. Finally, 
a conclusion is given in section 5. 

2. TCP/AQM System Model 

AQM has been extensively analyzed using control-theo- 
retical methods. Control-theoretical approaches lead to 
stable, effective, and robust congestion control operation. 
In [5], the non-linear dynamic model for multiple TCP 
flows control has been developed based on fluid-flow 
theory to model the interactions of a set of TCP flows 
and AQM routers in computer networks which consist of 
a system of nonlinear differential equations. For the con-
trol theoretical analysis, it was approximated as a lin-
earized constant model by small signal linearization 
about an operating point (W0, q0, p0), see [6] for lineari-
zation details, which leads to the following : 
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where δW(t) ≈ W − W0, δq(t) ≈ q − q0, δp(t) ≈ p − p0, 
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notes the time derivativeof q(t), and 

W: Expected TCP window size (packets); 
q: Expected queue length (packets); 
R0: Round-trip time (seconds); 

C: Link capacity (packets/second); 
N: Load factor (number of TCP sessions); 
p: Probability of packet mark/drop; 
t: Time. 
The expected queue length q and the expected TCP 

window size W are positive value and bounded quantities. 
And also, the probability of packet (mark/drop) p takes 
value only in [0,1]. 

Taking the Laplace transform of Equation (1) and re-
arranging the following transfer functions are obtained: 
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So, the overall plant transfer function becomes: 
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And can be expressed as: 
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Thus, the block diagram of linearized AQM control 
system is shown in Figure 1. In this diagram PTCP (s) 
denotes the transfer function from loss probability δp(t) 
to window size δW(t), Pqueue (s) denotes the transfer func-
tion from δW(t) to queue length δq(t), and C(s) denotes 
the transfer function of controller. Taking the Z-trans- 
form to Equation (6), the designed plant transfer function 
is obtained after considering the sampling time half of R0. 
Precisely and for consider the case study with N = 60, C 
= 3750 packets/sec and R0 = 0.253 sec the following dis-
crete transfer function are obtained. 
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Figure 1. Block diagram of a linearized AQM as feedback 
control. 
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3. Fuzzy Neural Network Design  

In order to design a FNC a Neural Network (NN) should 
be designed first. This NN represents the structure of 
FLC. It’s called Fuzzy Neural Network (FNN) Structure. 
In this work, it assumed that a Mamdani type FLC with 
two inputs of error and rate of error and one output is 
used. The memberships used for the inputs and output 
are bill shaped type with 7 memberships for each. These 
rules are reduced from 7 × 7 to 7 only since any input has 
some contribution in all of the fuzzy sets and will circle 
around the main diagonal of the fuzzy rule table and set-
tle in the center of this table. Hence, fuzzy rule table will 
be as shown in Table 1. 

where the abbreviations of the table represent: PB as 
Positive Big, PM as a Positive Medium, PS as Positive 
Small, Z as Zero, NS as Negative Small, NM as Negative 
Medium and NB as Negative Big. Moreover, the rules 
are implied using product for AND operation. Further-
more, the defuzzification used in this controller is a cen-
ter of gravity type. 

3.1. FNN Structure 

The structure of FNN is shown in Figure 2. This struc-
ture consists of five layers which are: 

1) Input layer: in the input layer, each node transmits 
the corresponding input to the antecedent layer, thus: 

1
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                    (9) 

where 
I is the ith network input, 

1
iX  is the node input, and  

iI  is the node output.  
The subscript refers to the node number while the su-

perscript refers to the layer number. 
2) Antecedent layer: this layer will transmits each 

 
Table 1. Rules of fuzzy logic controller. 
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              (11) 

where i = 1,2 ··· 14, j = 1,2, , mij is the center of bill 
shaped fuzzy membership function, sij is the standard 
deviation, i refers to the antecedent node while j refers to 
the input node. 

3) Rule layer: this layer performs the implication of 
AND operation. The rule is implied using product opera-
tion. Since only 7 rules will contribute the rules which 
represent the diagonal of the fuzzy rule table mentioned 
in Table 1, then: 
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where i = 1,2 ··· 7. 
4) Consequent layer: only two nodes are available in 

this layer which performs the center of gravity defuzzifi-
cation algorithm. The first node has a weighted input and 
the second is of the strength of unity, thus: 
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where i = 1,2. n is the number of rules i  is the weight 
between the rule and the consequent layers. 

5) Action layer: the completion of center of gravity 
defuzzificztion algorithm is done in this layer, so the 
input and output of each node is given by: 
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3.2. FNN Learning Algorithm 

FNN structure is expressed analytically in the previous 
section, such that the optimization method (Steepest De-
scent) can be applied on such structure. Hence, it can be 
implemented in the layers as follows: 
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1) Consequent layer (layer four): 
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where η is the learning rate, Od is the desired output. 
2) Antecedent layer (layer two): In this layer, the 

learning equation of back propagation is: 

      

      
 

3 5

j

O k O k

    
 

 

1

5
24

2

1

       

ij i d

j i

i

ij

m k m k O

O m
y k O k

O s

     


  



 (20) 
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Equations (19), (20), and (21) will perform the back 
propagation procedure. Initializing the parameters in 
FNN is very important since it may reduce the learning 
time of the network, thus these parameters have been 
chosen at the same bases of choosing them in an ordinary 
fuzzy logic controller. That is mij will divide the universe 
of discourse to 7 equal intervals, while sij will give the 
bill shaped functions a reasonable width. Finally, yi is 
scattered along the output universe of discourse in an 
equal intervals. 

3.3. PID-Like Fuzzy Neural Controller 
(PID-FNC) 

The equation of PID controller in time domain is: 

    ( )P Du t K e t K e t        (22) 

where KP, KI and KD are the proportional, integral and 
 

 

Figure 2. Fuzzy neural network structure (FNN). 

derivative gains of the PID respectively. 
Thus, in the discrete case of a PID like fuzzy controller 

one has an additional process state variable, namely sum- 
of-error to dente the integral part. Unfortunately, if any 
input is described with (m) linguistic value, then since 
PID controller has three inputs and since any rule has 
three conditions, then there is a need of m × m × m = m3 

rules. So, it is too much work to write m3 rules. The PID- 
like fuzzy controller can be constructed as a parallel 
structure of a PD-like fuzzy controller and a PI-like fuzzy 
controller and the output can be approximated as [13]: 
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However, the first part of Equation (23) represents PD 
controller. PD controller for any pair of the values of e 
and δe, calculates the control signal (ua). 

     1a P Du t K e t K e t               (24) 

The fuzzy controller should do the same thing. For any 
pair of error (e) and change of error (δe), it should work 
out the control signal though rules. In fuzzy rules, the 
sampling time will be omitted since such a rule expresses 
a causal relationship between the process state and con-
trol output variables, which holds for any sampling time. 

Moreover, the second part of Equation (23) represents 
PI controller, which can represent PI like fuzzy controller. 
The Fuzzy controller and the rules table have other inputs; 
error and sum of error. It means that, the rules them-
selves should be reformulated. Since only the diagonal of 
the rule table will be used, it is found that the rules of 
PI-controller part are the same rules mentioned in Table 
1. However, the equation of PI controller is: 

     2 db P Iu t K e t K e t t            (25) 

The proposed PID-FNC will consist of two FNNs. The 
first one is for PD like controller action mentioned in 
Equation (23), while the second FNN is for PI like con-
troller action mentioned in Equation (25). The general 
block diagram of PID-FNC is shown in Figure 3. The 
parameters of Kua and Kub are the output scaling factors of 
PD like and PI like fuzzy controllers respectively. It will 
be assumed in this work that there is no need to any rule 
definition, since the rule layer is fixed and take the opti-
mal rules of the fuzzy logic controller. However, the 
general Block Diagram of the PID-FNC Controlled Sys-
tem is shown in Figure 4. In this figure, Neural Network 
Emulator (NNE) is used to emulate the plant model. 
Hence, it is used to generate the required propagated er-
ror signal to PID-FNC (FNCe). This NNE uses the back 
propagation algorithm as a learning technique and uses 
the error between the plant and NNE, (NNEe), as the 
learning signal to adjust its weights. PID-FNC uses the  
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Figure 3. General block diagram of PID-FNC. 
 

 

Figure 4. General block diagram of PID-FNC controlled 
system. 
 
error between the plant output and the reference model 
output to generate both error, sum of error and change of 
error internally. Then after generating the controller ac-
tion, it updates its weights using FNCe; which is the error 
between the reference model output and the plant output 
propagated through NNE. 

4. Simulation 

In this section the proposed controller is evaluated using 
MATLAB. 

Figure 5 shows the network topology used for this set 
of simulation in which the shared bottleneck link be-
tween router R1 and router R2 has a capacity of 15 Mbps 
with propagation delay of 20 ms and N = 60 and the 
packet size is set to be 500 bytes and the reference input 
(queue size) which has rectangular form changes every 
50 seconds as shown in Equation (26). 
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The maximum queue length in the AQM router Router 
1 is 800 packets. The AQM mechanism is configured at 
Router1, and drop Tail is used at other gateways  

First the simulation is done for the system without 
controller as shown Figure 6. 

Figure 6 shows that the system without controller is 
unable to track the queue length around the queue length 
to the desired level, where the system goes into a sus- 
tained oscillation with high congestion exceeding the 
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Figure 5. Network topology case study. 
 

 

Figure 6. System response without controller. 
 
maximum buffer size. In [9] a classical control (PI-con- 
troller) is applied in order to eliminate this sustained os-
cillation and get better tracking performance, also FPI 
controller is designed to speed up the system response, 
and FPI based genetic is designed to get the best pa-
rameters of FPI controller and to enhance the system 
response. 

In this paper we used the PSO as a suitable optimiza-
tion method for tuning FPI Parameters, the PSO parame-
ter was: population size 80, the inertia weight factor w is 
0.9, acceleration constant c1 = 1.2 and c2 = 0.12 and the 
fitness function is the integral time absolute error 

 
0

ITAE
T

refT q q
31 10
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The FPI parameters obtained in PSO are (Kp = 
31 10

, 
Ki =  35 10, Ku =  ). 

It is found that that the FPI baesd PSO is better than 
FPI and could speed up the system response with less 
computation time than FPI based G.A as shown in Fig-
ure 7. 

Although the FPI based PS0 shows good performance 
the system response has overshoot and to overcome this 
drawback, first we design a Fuzzy-Neural like PI (FNPI) 
controller to can compare it with FPI and show how can 
the addition of NN can improve the system response. 

To design a FNPI controller, we use the second part 
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only of Figure 3. 
The FNPI controller parameters are selected first by 

trial and error method as follows (Kp2 = 200, Ki = 
7761200, Ku = ) and then by using PSO method 
to find the best parameters of FNPI, we get (Kp2 = 300, Ki 

= 8861200, Kub = ). As shown in Figures 8 and 
9. 

33 10

32 10

51 10 32 10

From Figure 9 it was found the FNPI based on PSO is 
better than FPI based PSO by decreasing the overshoot of 
the system response. 

Finally we design a Fuzzy Neural Controller like PID 
(FNC-PID) and show how it can improve the system 
response more than the FNPI. 

The FNC-PID parameters are selected first by trial and 
error method as follows (Kp1 = 1, Kd = 50.1261, Kua = 

, Kp2 = 80.2745, Ki = 50.2638, Kub =  ). 
and then by using PSO method to find the best parame- 
 

 

Figure 7. System response with FPI and FPI based PSO 
controller. 
 

 

Figure 8. System response with FNPI, FNPI based PSO 
controller. 

ters of FNC-PID, we get (Kp1 = 100.1616, Kd = 20.1261, 
Kua = 51 10 32 10, Kp2 = 140.5, Ki = 30.2638, Kub =  ) 
as shown in Figures 10 and 11. 

Figure 11 shows that FNC-PID based PSO is best than 
FNPI based PSO controller by making the response of 
the system more faster with zero overshoot. 

The overall simulation results are shown in Table 2. 

5. Conclusions 

From the design and the simulation results, it can be con-
cluded that: 

1) The designed FPI based PSO is better than FPI 
which can improve the system response by decreasing 
it’s overshoot and make it more faster by decreasing it’s 
settling time which proves the efficiency of PSO as a 
suitable optimization method. 

2) By using the PSO to optimally select the best pa 
 

 

Figure 9. System response with FPI based PSO, FNPI based 
PSO controller. 
 

 

Figure 10. System response with FNC-PID, FNC-PID based 
PSO controller. 
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Figure 11. System response with FNPI based PSO, FNC- 
PID based PSO controller. 
 
Table 2. TCP/QAM system response performance of FPI, 
FNPI, and FNC-PID based PSO with error criteria 5%. 

Settling Time

 pt  (sec)

Peak Time 

 p%pM t  (sec) 
Overshoot 

 

Rise Time  

 %pM  (sec) 
Controller 

 

8 5 54 4 FPI 

4 3 28 2.5 FPI-PSO 

12 3.8 60 2.7 FNPI 

13 7 5 5.7 FNPI-PSO 

15 4.7 29 3.8 FNC-PID 

7 - - 6.5 FNC-PID-PSO 

 
rameters of FNPI, the system response is improved by 
decreasing its overshoot as shown in Table 2 which also 
proves the efficiency of PSO as a suitable optimization 
method. 

3) The designed FNPI based PSO controller can de-
crease the overshoot of system response comparing with 
FPI based PSO controller. 

4) The designed FNC-PID based PSO is better than 
FNC-PID controller which can improve the system re-
sponse by making its overshoot zero and faster by de-
creasing its settling time which also proves the efficiency 
of the PSO as a suitable optimization method. 

5) The designed FNC-PID based PSO controller can 
decrease the overshoot of system response of FNPI based 
PSO controller by making it zero and make the system 
response faster by decreasing its settling time. 

6) The designed FNC-PID based PSO controller can 

deal with congestion problem with a good tracking per-
formance about the desired queue size with high link 
utilization and faster system response. 
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