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Abstract 
Water quality monitoring has one of the highest priorities in surface water 
protection policy. Many variety approaches are being used to interpret and 
analyze the concealed variables that determine the variance of observed water 
quality of various source points. A considerable proportion of these ap-
proaches are mainly based on statistical methods, multivariate statistical 
techniques in particular. In the present study, the use of multivariate tech-
niques is required to reduce the large variables number of Nile River water 
quality upstream Cairo Drinking Water Plants (CDWPs) and determination 
of relationships among them for easy and robust evaluation. By means of mul-
tivariate statistics of principal components analysis (PCA), Fuzzy C-Means 
(FCM) and K-means algorithm for clustering analysis, this study attempted to 
determine the major dominant factors responsible for the variations of Nile 
River water quality upstream Cairo Drinking Water Plants (CDWPs). Fur-
thermore, cluster analysis classified 21 sampling stations into three clusters 
based on similarities of water quality features. The result of PCA shows that 6 
principal components contain the key variables and account for 75.82% of 
total variance of the study area surface water quality and the dominant water 
quality parameters were: Conductivity, Iron, Biological Oxygen Demand 
(BOD), Total Coliform (TC), Ammonia (NH3), and pH. However, the results 
from both of FCM clustering and K-means algorithm, based on the dominant 
parameters concentrations, determined 3 cluster groups and produced cluster 
centers (prototypes). Based on clustering classification, a noted water quality 
deteriorating as the cluster number increased from 1 to 3. However the clus-
ter grouping can be used to identify the physical, chemical and biological 
processes creating the variations in the water quality parameters. This study 
revealed that multivariate analysis techniques, as the extracted water quality 
dominant parameters and clustered information can be used in reducing the 
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number of sampling parameters on the Nile River in a cost effective and effi-
cient way instead of using a large set of parameters without missing much in-
formation. These techniques can be helpful for decision makers to obtain a 
global view on the water quality in any surface water or other water bodies 
when analyzing large data sets especially without a priori knowledge about 
relationships between them. 
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1. Introduction 

The Nile constitutes the essential source of life in Egypt; it provides people with 
their fresh water needs. It is an essential factor of production and vital for agri-
culture, transport, tourism and henceforth the socio-economic development of 
the country. However, the Nile has become, to a great extent, adversely affected 
by human activities. On the other hand, industrial waste discharge, leakage of 
sewage by urban agglomeration and agricultural runoff directly lead to the Nile 
contamination (Abd El-Daiem, 2011). 

Surface water quality deterioration at the intakes of Cairo water treatment 
plants along River Nile due to increasing level of some pollutants concentration 
above the guidelines paid the attention of public concern and may cause health 
hazards. Thus, the need for better management of Cairo treatment plants water 
sources quality is becoming essential. 

The water quality can be characterized by many parameters that represent a 
water composition in specific localities and time. Real raw data are mostly huge; 
it means that they are not normally distributed, often co-linear or autocorre-
lated, including outliers or errors etc. Due to this reason, multivariate methods 
such as principal component analysis, cluster analysis, the factor analysis, and 
the discriminant analysis, are used (Zen & Rasmussen, 2005). 

Principal Components Analysis( PCA) is a data analysis tool that is usually 
used to reduce the number of variables of a large number of interrelated va-
riables, while retaining as much of the information (variation) as possible. PCA 
calculates an uncorrelated set of variables. These factors are ordered so that the 
first few retain most of the variation present in all of the original variables. 

In cluster analysis, the objects are grouped on the basis of similarities within a 
class and dissimilarities among different classes (Panda et al., 2006). The similar-
ities and dissimilarities are obtained on the basis of distance measures which are 
Euclidean and Manhattan (Kaufman & Rousseeuw, 1990). 

Fuzzy clustering generalizes partition clustering methods by allowing an indi-
vidual to be partially classified into more than one cluster. In regular clustering, 
each individual is a member of only one cluster. Fuzzy C-means (FCM) can be 
achieved through more careful and informed initialization based on data con-
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tent. By carefully selecting the cluster centers in a way which disperses the initial 
cluster centers through the data space, the resulting FCM approach determines 
the cluster centers during the initialization phase. The cluster centers are well 
spread in the input space, resulting in both faster convergence times and higher 
quality solutions. 

K-means can be used for cauterizing monitoring stations with similar water 
quality characteristics. K-means cluster analysis is a divisive clustering method 
with k number of groups set a priori to analysis (Akume & Weber, 2002). Once 
the number of clusters is set as an input and cluster centroids are initialized, ob-
servations are added iteratively to the most similar cluster, whose centroid is 
then recalculated until all of the observations are grouped (Davis, 2002). 

2. Study Area 

The Nile River enters Egypt at its southern boundary with Sudan and runs 
through 1000 km long narrow valley, then divided at a distance of 25 km north 
of Cairo into two branches (Rosetta and Damietta) forming a delta which ends at 
the Mediterranean Sea. Cairo, located on the Nile River south of the Mediterra-
nean Sea, just upstream of the point where the river widens into the Delta. Cairo 
has an area of 353 km2 with an average reach length along the river about 50 km 
(from 900 km to 950 km referenced to Aswan High Dam). Figure 1 illustrates  

 

 
Figure 1. Study area layout. 
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the study area layout which covers Cairo governorate along the River Nile, 
bounded by El Saff town (Giza Governorate) at 877.00 km from the South and El 
Kanater town (Qalubia Governorate) at 953.00 km from the North. The study 
scope will focus on the upstream of drinking water plants located in Cairo go-
vernorate along Nile River (Tibeen, Kafr Elw, North Helwan, Maadi, Fostat, El 
Roda and Rod Farg). 

Cairo Drinking Water Plants (CDWPs) 

Cairo water company (CWC), a subsidiary of the Holding Company of Water 
and Wastewater, produces potable water with an amount reaches to 6 million 
m3/day used by inhabitants of Greater Cairo (CDWC, Central Laboratory An-
nual Technical Report, 2018). This is done through 13 Cairo drinking water 
plants (Tibeen, Kafr Elw, North Helwan, Maadi, Fostat, El Roda, Rod El Farg, 
Amerea, Mostrod, El Marg, El Obour, El Asher, Shubra el Khiema) distributed 
in Greater Cairo. Table 1 shows the annual average raw water, treated water and 
sludge & washing water for Greater Cairo drinking water plants (CDWC, Cen-
tral Laboratory Annual Technical Report, 2018). 

From Table 1 and according to the study scope which focus on seven CDWPs 
located on Cairo governorate along Nile River only (Tibeen, Kafr Elw, North 
Helwan, Maadi, Fostat, El Roda and Rod Farg). 

3. Materials and Methods 
3.1. Data Requirements 

Surface Water samples were collected from various sampling locations of rivers,  
 

Table 1. CDWPs surface water source, annual average raw water and treated water. 

Treated water 
production (m3/day) 

Raw water 
(m3/day) 

Surface water 
source 

Plant intake  
geographic location 

Drinking water plant 

155,649 178,608 

River Nile Cairo 

Tibeen 

70,728 78,238 Kafr Elw 

283,539 321,003 North Helwan 

161,772 209,179 Maadi 

1,046,974 1,114,381 Fostat 

164,625 323,216 El Roda 

720,908 819,695 Rod El Farg 

389,853 404,226 

Ismailia Canal 

Cairo 

Amerea 

1,155,899 1,281,328 Mostrod 

526,232 650,000 El Marg 

790,000 860,000 
New Cities 

El Obour 

500,000 600,000 El Asher 

358,091 379,146 Sharkawia Canal Qalubia Shubra el Khiema 
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canal, drains and industrial pollution sources of the study area. The analyses of 
water samples were carried on twenty water quality parameters for twelve con-
sequence months during two years (2017, 2018) to show the effect of the spatial 
and temporal variation. 

These water quality parameters included: pH, Turbidity, Electric Conductivi-
ty(EC), Total hardness, Total dissolved solids (TDS), Total alkalinity, Sulfates, 
Chlorides, Ammonia (NH3), Nitrates (NO3), Nitrites(NO2), Phosphate, Iron, Man-
ganese, Calcium, Magnesium, Aluminum, Biological Oxygen Demand (BOD), 
Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), Total Coliform 
(TC). 

3.2. Methods 

The methods consisted of three main components as follows:- 
1) Perform the principal component analysis; 
2) Develop the dominant water quality parameters; 
3) Develop the optimum number of clusters by using Fuzzy C-Means (FCM); 
4) Apply K-means algorithm technique to produce the generalized characte-

ristics of clusters using the dominant parameters normalized data. 

3.2.1. Principal Component Analysis 
Principal component analysis (PCA) is mainly applied for the removal of data 
noise by the reduction of their dimensionality (Jolliffe, 2002). PCA searches new 
abstract orthogonal principal components (eigenvectors) which explain most of 
the data variation in a new coordinate system. Each principal component (PC) is 
a linear combination of the original variables and describes a different source of 
variation. 

1 1 2 2i n nPC w x w x w x= + + +                    (1) 

where xi and wi are the original variable and the component weight, respectively. 
The principal component weights are used as measures of the correlation be-
tween the variables and the principal components. The largest or first PC is 
oriented in the direction of largest variation of the original variables and passes 
through the center of the data. The second largest PC lies in the direction of the 
next largest variation, passes through the center of the data and is orthogonal to the 
first PC. The third largest PC is directed towards the next largest variance, goes 
through the data center and is orthogonal to the first and second PCs, and so forth. 
Classical PCA is based on the decomposition of a covariance/correlation matrix 
by the eigenvalue decomposition or by the singular value decomposition of real 
data matrices. The eigenvalues or singular values indicate variations among the 
observed variables (Yu et al., 2003). 

Before the computation, the testing data were standardized in order to avoid 
misclassifications arising from different orders of magnitude of tested variables. 
Therefore the original data were meaning (average) centered and scaled by the 
standard deviations. 
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Procedural steps of the PCA (Suhr, 2005) are: 
• Number of components equal to number of variables is generated; 
• The number of components to retain is determined; 
• Components are rotated (rotations is a linear transformation of the solution 

to make interpretation easier); 
• Rotated solution is interpreted. 

3.2.2. Dominant Water Quality Parameters 
In this study, to determine the main dominant water quality parameter, varimax 
rotation used as an effective orthogonal rotation method that minimized the 
number of variables that have high loading on each factor. The Varimax coeffi-
cient having correlation greater than 0.75 are considered as strong and indicate 
high proportion of its variance explained by the factor, between 0.50 and 0.75 is 
considered as moderate loading while 0.30 - 0.50 as weak significant factor 
loading, indicating much of that attribute’s variance remains unexplained and it 
is less important (Reghunath et al., 2002). 

3.2.3. Fuzzy C-Means Clustering (FCM) Analysis 
FCM applied for clustering the raw data into several categories using the selected 
operators without respect to any predetermined criteria in relation to each cate-
gory. Most of the rules designed for FCM are based on the proper search for 
centroids or representative objects around which all observations will be clus-
tered on a minimum basis (Selim, 1984; Trauwaert et al., 1991). 

FCM seeks to minimize the following objective function, C, made up of clus-
ter memberships and distances (Kaufman & Rousseeuw, 1990). 
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where mik represents the unknown membership of the object i in cluster k and dij 
is the dissimilarity between objects i and j. The memberships are subject to con-
straints that they all must be non-negative and that the memberships for a single 
individual must sum to one. 

One of the most difficult tasks in cluster analysis is choose the appropriate 
number of clusters. In fuzzy clustering, the following coefficients are used: 

1) The amount of “fuzziness” in a solution may be measured by Dunn’s parti-
tion coefficient which measures how close the fuzzy solution is to the corres-
ponding solution. This hard solution is formed by classifying each object into 
the cluster which has the largest membership. The formula for Dunn’s partition 
coefficient is: 

( ) 2

1 1

1 K N

ik
k i

F U m
N = =

= ∑∑
 

This coefficient ranges from 1/K to 1. Its value is 1/K when all memberships 
are equal to 1/K. The value of one results when, for each object, the value of one 
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membership is unity and the rest are zero. 
2) Dunn’s partition coefficient may be normalized so that it varies from 0 

(completely fuzzy) to 1 (hard cluster). The normalized version is 

( ) ( ) ( )
( )

1
1 1

F U K
Fc U

K
−

=
−  

3) Another partition coefficient, given in Kaufman and Rousseeuw (1990) is: 

( ) ( )2

1 1

1 K N

ik ik
k i

D U h m
N = =

= −∑∑
 

4) The normalized version of this equation is: 

( ) ( )
( )1 1

D U
Dc U

K
=

−  
Fc(U) and Dc(U) together give a good indication of an optimum number of 

clusters. We should choose K so that maximize the value of Fc(U) and minimiz-
es Dc(U) (Kaufman & Rousseeuw, 1990). 

3.2.4. K-Means Algorithm 
K-means is a simple and efficient algorithm. It divides n observations into given 
K clusters and each observation belongs to cluster with nearest mean. 

It uses the sum of square error criteria. The cluster pattern is assigned when 
sum of square error is minimum. The sum of square error equation (SSE) for 
K-means is given by: 

2SSE
i i

i
C x C

x m
∈

= −∑ ∑
 

where mi is the mean of the ith cluster and ix C∈  is a pattern assigned to that 
cluster. The K-means clustering has advantage over other methods as it can be 
used to assign new cases to the existing clusters. 

4. Results and Discussion 
4.1. Descriptive Statistics 

Basic statistics were carried out in order to give initial information about the 
water quality data. Table 2 shows the details of descriptive statistics for the water 
quality variables measured in two years. 

4.2. Principal Component Analysis 

The calculated principal components loadings, eigenvalues, total variance and 
cumulative variance are shown in Table 3 while the scree plot of the eigenvalues 
of observed components is depicted in Figure 2. 

The results of principal components analysis illustrated in Table 3 and Figure 
2 of Cattel scree plot (Cattel, 1966) show that of the 20 components, only 6 had 
extracted eigenvalues over 1. This is based on Chatfield and Collin (1980) as-
sumption which stated that components with an eigenvalue of less than 1 should 
be eliminated. The extracted 6 components were subsequently rotated according 
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to varimax rotation in order to make interpretation easier and fundamental sig-
nificance of extracted components to the water quality status of the selected 
study period. The result of rotation revealed further, the percentages of the total 
variances of the 6 extracted components when added account for 75.82% (that is 
their cumulative variance) of the total variance of the observed variables. This 
indicates that the variance of the observed variables had been accounted for by 
these 6 extracted components. 

As it is obvious, the first principal component (PC1), accounts for 31.48% 
from total variation, can be called as an indication of salt component because it 
is mainly saturated with conductivity, hardness (including calcium). PC1 ac-
counts show a strong loading on EC (0.902), TDS (0.889), Total Hardness 
(0.887), Sulfates (0.883), Chlorides (0.881), Magnesium (0.811), while moderate 
loading on Calcium (0.726), Nitrates (0.674) and Total Alkalinity (0.65). Electric 
Conductivity (EC) measurements indicate the presence of dissolved salts and 
electrolytic contaminants, but it gives no information about specific ion compo-
sitions (Adekunle et al., 2007). There was a strong positive correlation between 
TDS and EC values which revealed positively strong correlation to each other (r = 

 
Table 2. Mean and standard deviation of surface water quality parameters. 

Variables Mean Standard Deviation Minimum Maximum 

PH 8.291 0.041 8.200 8.450 

Turbidity 7.751 2.294 2.810 13.960 

EC 420.622 59.143 338.000 584.000 

Total Hardness 128.623 12.188 116.000 164.000 

TDS 278.514 40.173 176.500 385.440 

Total Alkalinity 151.420 7.131 138.000 170.000 

Sulphates 24.679 8.608 11.770 48.280 

Chlorides 25.226 7.461 11.520 51.000 

Ammonia (NH3) 0.150 0.090 0.010 0.470 

Nitrates (NO3) 0.336 0.311 0.010 1.220 

Nitrites (NO2) 0.035 0.051 0.010 0.490 

Iron 0.208 0.185 0.003 0.690 

Manganese 0.016 0.017 0.002 0.064 

Calcium 31.470 2.696 22.800 38.400 

Magnesium 11.934 1.778 0.030 17.280 

Aluminium 0.052 0.037 0.001 0.140 

BOD 3.851 0.202 3.370 4.120 

COD 17.013 0.177 16.580 17.470 

DO 7.473 0.153 2.000 7.990 

TC 20106.330 3327.820 14000 24,000 
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Table 3. Principal component analysis after varimax rotation. 

Variables PC1 PC2 PC3 PC4 PC5 PC6 

PH 0.241 0.038 −0.085 −0.385 −0.054 0.701 

Turbidity −0.124 0.455 −0.065 0.135 0.600 0.046 

EC 0.902 0.134 −0.091 0.165 0.105 0.050 

Total Hardness 0.887 0.149 0.046 −0.124 0.121 0.059 

TDS 0.889 0.196 −0.082 0.154 0.131 0.059 

Total Alkalinity 0.650 −0.529 −0.132 0.290 0.078 0.169 

Sulfates 0.833 −0.115 −0.278 0.071 0.036 −0.016 

Chlorides 0.818 −0.454 −0.106 0.147 0.038 −0.001 

Ammonia (NH3) −0.137 −0.001 0.043 −0.130 0.853 −0.043 

Nitrates (NO3) −0.674 −0.122 −0.083 0.170 −0.430 −0.205 

Nitrites (NO2) −0.336 −0.183 −0.134 0.362 0.028 0.256 

Iron −0.038 0.879 −0.075 −0.134 0.158 0.116 

Manganese 0.088 0.819 0.007 0.090 0.038 −0.018 

Calcium 0.726 0.536 0.003 −0.151 0.088 0.075 

Magnesium 0.811 −0.240 0.087 −0.079 0.075 0.005 

Aluminum −0.332 0.133 0.042 0.353 0.286 0.589 

BOD 0.099 0.045 0.938 0.065 0.009 0.065 

COD 0.096 −0.099 0.926 0.086 0.017 −0.144 

DO 0.353 −0.002 0.025 −0.127 0.062 0.666 

TC 0.066 0.003 −0.167 0.760 0.100 0.021 

% Variability 31.480 13.290 9.730 6.550 7.360 7.400 

Cumulative percentage 31.480 44.780 54.510 61.060 68.420 75.820 

 

 
Figure 2. Scree plot of the eigenvalues of observed components. 
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+0.99), so the study results were in accordance with Toufeek and Korium (2009). 
The second principal component (PC2), accounts for 13.29%, is associated 

with strong loading on Iron (0.879) and Manganese (0.819), while moderate 
loading on Calcium (0.536). The concentration of iron and manganese recorded 
higher attribute due to the intense of human activities and industrial effluents 
from for iron and steel companies. 

The third principal component (PC3) described 9.73% of the total variance 
had a strong positive loading on BOD (0.938) and COD (0.926). These factors 
loading explained the effects of organic pollution and reflect strong influence of 
anthropogenic activities in the area, probably from domestic waste and industrial 
waste. High BOD and COD levels in the study area are related to the existence of 
high bacterial load and organic matters as well as relative high temperatures which 
enhance the enumeration of bacteria. However all results of study area water sam-
ples were higher than the permissible limit guidelines (COD should not exceed 10 
mg/l) according to Egyptian National water quality standards, Egyptian Go-
vernmental Law No. 48, 1982 regarding the protection of the River Nile and wa-
terways from pollution. 

Out of the total variance, 6.55% is explained by the fourth principal compo-
nent (PC4), is mainly carried by TC with a positive strong correlation (0.76) that 
is indicators for water contamination. The high counts of total coliform might be 
due to pollution by industrial activities discharging their wastes to the Nile water 
in Cairo (Saleh, 2009). All results of Nile water samples were higher than the 
permissible limit guidelines (TC should not exceed 5000 cfu/100 ml) according 
to Tebbutt (1998).  

Additionally, 7.36% of the total variance of water quality is exhibited by NH3 
with a strong positive loading under the fifth principal component (PC5). NH3 is 
closely related to the organic matter contents of the sediment and this high 
amount of nutrients might also result from the application of manure in agri-
cultural activities (Terceiro et al., 2008). 

The six principal component (PC6), with 7.4% of the total variance, consists 
mainly of pH (0.701) and DO (0.701) with a moderate loading. This factor re-
sulted due to the anaerobic conditions in the river from the strong loading of 
dissolved organic matter which leads in the formation of organic acids. pH value 
has an effect on the biological, chemical reactions, as well as it controls the metal 
ion solubility and thus it affects the natural aquatic life. The study results were in 
accordant with Toufeek and Korium (2009). 

Based on the component loadings, the variables are grouped accordingly with 
their designated components as follows: 
• Component 1: EC, TDS, Total Hardness, Sulfates, Chlorides, Magnesium, 

Calcium, Nitrates and Total Alkalinity. 
• Component 2: Iron and Manganese. 
• Component 3: BOD and COD. 
• Component 4: TC. 

https://doi.org/10.4236/gep.2019.76003


M. A. R. Hamed 
 

 

DOI: 10.4236/gep.2019.76003 36 Journal of Geoscience and Environment Protection 
 

• Component 5: NH3. 
• Component 6: pH and DO. 

4.3. Dominant Water Quality Parameters 

The dominant parameters identified by the PCA are: EC, Iron, BOD, TC, NH3 
and pH (see Table 3). The previous discussion indicated that most of measured 
water quality parameters such as EC, TDS, Total Hardness, different major ions 
and Total Alkalinity, loaded with positive values, and they have strong effects on 
PC1. EC has the maximum strong loading value in PC1. Thus, EC is considered 
as a dominant parameter. 

The Iron is considered as the next dominant water quality parameter as it is 
loaded strong in PC2 with the highest positive values. Also, the concentrations 
iron in the Nile water cause the exceedance of the drinking water guidelines, 
particularly at the anthropogenic impact points, where, iron is regulated by sec-
ondary drinking water contaminant that may cause offensive taste, odor, color 
corrosion or staining problems (EWQS, 2007). 

The BOD is considered as the third dominant water quality parameter as it is 
loaded strong in PC3 with highest value (0.938). These two parameters (BOD 
and COD) may have a strong relationship with each other, particularly the dis-
charge of industrial and agricultural effluents containing a large amount of or-
ganic matter (Goher et al., 2014). 

The TC is considered as the fourth dominant water quality parameter as it is 
loaded strong in PC4 with highest value (0.760). 

The Ammonia is considered as the fifth dominant water quality parameter as 
it is loaded strong in PC4 with highest value (0.853). Ammonia may result from 
fertilizers that are present in soil and it is relatively easily oxidized to nitrite and 
finally to nitrate (Karavoltsos et al., 2008) and it possesses a serious threat to 
public health. 

The pH is considered as the third dominant water quality parameter as it is 
loaded strong in PC6 with highest value (0.701). pH value has an effect on the 
biological, chemical reactions, as well as it controls the metal ion solubility and 
thus it affects the natural aquatic life. Moreover pH could control the pathogenic 
microorganism growth (Zamxaka et al., 2004). 

4.4. Cluster Analysis 
4.4.1. Optimum Number of Clusters 
FCM applied to determine the optimum number of clusters (k) that maximize the 
value of Fc(U) and minimizes Dc(U) (Kaufman & Rousseeuw, 1990). Table 4 illu-
strates the values of Fc(U) and Dc(U) with the corresponding number of clusters. 

FCM results illustrated in Table 4, it noticed that the optimum number of 
clusters for the study area is three clusters which satisfies the above conditions. 

4.4.2. Clusters Characteristics 
According to the optimum number of clusters which determined by using FCM 
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in the previous step, K-means algorithm applied to produce the generalized 
clusters characteristics using the dominant parameters. After finding medians of 
clusters, the clusters are developed by assigning each object of dataset to the 
nearest medians of the clusters. The dissimilarities from each of the objects in 
the dataset from these centers of the clusters are determined using Euclidean 
distance. Cluster Centers are selected on the basis of the minimum distance. Sil-
houette is used for interpretation and validation of clusters (Kaufman & Rous-
seeuw, 1990). Table 5 and Figure 3 illustrate generalized characteristics mean 

 
Table 4. Results of optimum number determination. 

Number of clusters (K) F (U) Dc (U) 

2 0.3333 0.9998 

3 0.2500 1.0122 

4 0.2000 1.0131 

5 0.1667 1.0134 

6 0.1429 1.0136 

7 0.1250 1.0137 

8 0.3333 0.9998 

 
Table 5. Clusters centers mean values. 

Dominant Parameter Cluster 1 Cluster 2 Cluster 3 

PH 8.303 8.340 8.4010 

Turbidity 8.052 8.5382 10.537 

EC 414.611 502.888 539.111 

Total Hardness 148.444 153.200 164.666 

TDS 334.976 363.307 398.026 

Total Alkalinity 143.222 150.622 163.777 

Sulphates 23.484 25.683 27.358 

Chlorides 19.777 20.300 24.777 

Ammonia 0.225 0.120 0.228 

Nitrates 0.497 0.531 0.684 

Nitrites 0.118 0.126 0.217 

Iron 0.120 0.155 0.617 

Manganese 0.006 0.014 0.039 

Calcium 34.022 34.302 34.666 

Magnesium 10.854 11.141 11.300 

Aluminium 0.069 0.043 0.068 

BOD 3.792 3.852 3.944 

COD 16.975 17.006 17.950 

DO 7.219 7.402 7.563 

TC 18266.670 19922.220 21666.670 
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values and the six dominant parameters mean values of the three clusters respec-
tively. 

It is obvious from Table 5 and Figure 3 for the K-means algorithm results, as 
the cluster number changed from 1 to 3, the value of the six dominant parame-
ters and the water quality deterioration increased. 

4.4.3. DWPs and Monitoring Stations Clusters Allocation 
According to the K-means algorithm generalized clusters characteristics results, 
the allocation for CDWPs and monitoring stations clusters were developed. The 
output of the cluster characteristics analysis is dispensed in dendogram, Figure 4.  

 

 
Figure 3. Dominant Parameters mean values. 

 

 
Figure 4. Cluster analysis dendrogram based on the measured parameters 
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Dendogram gives the picture of the clusters describing the spatial variation in 
the water quality and the grouped monitoring stations, CDWPs of each cluster. 

Based on the results of cluster analysis, stations and CDWPs grouped under 
each cluster in Figure 4, it was concluded that: 

The first cluster, mainly located in the upstream of the study area with less 
polluted (LP) stations, included the stations from (878.00) to (868.00) and three 
DWPs (Tibeen, Kafr Elw and North Helwan). The changes in water quality in 
this cluster were mainly due to the agricultural drainage water mixed with par-
tially treated or untreated domestic wastewater, industrial wastewater and waste-
water from these three drinking water plants sludge disposal. The second cluster, 
comprised only the three DWPs (Maadi, Fostat and El Roda) with moderate pollu-
tion (MP), is mainly affected by the cumulative pollution from the previous cluster 
in additional to the wastewater from the three mentioned drinking water plants 
sludge disposal. The common feature of these sites was relatively high dominant pa-
rameters concentrations compared to the first cluster. The third cluster located in the 
downstream of the study area, included Rod El Farag DWP and the different stations 
from (932.00) to (950.00) along the river, had the highest pollution level (HP). 
These stations are distinguished from other stations concerning the level of pol-
lution and have the most distance from other stations. 

5. Conclusion  

This study revealed the usefulness of multivariate statistical techniques for anal-
ysis and interpretation of complex data sets, and in water quality assessment, 
understanding temporal variations in water quality management. The PCA re-
vealed that six principal components (PCs) were able to explain ~75.82% of the 
variability and the dominant water quality parameters were total EC, Iron, BOD, 
TC, NH3 and pH. 

In this study, a methodology for clustering twenty one locations along Nile Riv-
er uses dominant water quality parameters. FCM indicated three as the most op-
timum number of clusters. K-means clustering technique is used on the norma-
lized data of the dominant parameters to obtain the generalized characteristics of 
three clusters. The water quality deteriorated as the cluster number increased from 
1 to 3. Pattern-match using K-means clustering technique was applied to allocate 
clusters to all monitoring station including seven CDWPs along Nile River for two 
consecutive years (2017 and 2018). The Cluster analysis confirmed the existence of 
three types of clusters water quality (i.e. low-, medium-, and high-polluted). Ac-
cording to the study methodology, the decision makers can develop optimal strat-
egy in which sampling stations can be reduced, identifying the specific pollutants 
in source waters for designing economical, targeted and effective management for 
drinking water plants facilities. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

https://doi.org/10.4236/gep.2019.76003


M. A. R. Hamed 
 

 

DOI: 10.4236/gep.2019.76003 40 Journal of Geoscience and Environment Protection 
 

References 
Abd El-Daiem, S. (2011). Water Quality Management in Egypt. Journal of Water Re-

sources Development, 27, 181-202. https://doi.org/10.1080/07900627.2010.531522 

Adekunle, L., Adetunji, M., & Gbadebo, A. (2007). Assessment of Ground Water Quality 
in a Typical Rural Settlement in South Nigeria. International Journal of Environmental 
Research and Public Health, 4, 307-318. https://doi.org/10.3390/ijerph200704040007 

Akume, D., & Weber, G.-W. (2002). Cluster Algorithms: Theory and Methods. Journal of 
Computational Technologies, 7, 15-27. 

Cattel, R. D. (1966). The Scree Test for the Number of Factors. Multivariate Behavioral 
Research, 1, 245-276. https://doi.org/10.1207/s15327906mbr0102_10 

CDWC (2018). Central Laboratory Annual Technical Report. Cairo Drinking Water 
Company. 

Chatfield, C., & Collin, A. J. (1980). Introduction to Multivariate Analysis. New York: 
Chapman and Hall in Association with Methuen, Inc.  
https://doi.org/10.1007/978-1-4899-3184-9 

Davis, J. C. (2002). Statistics and Data Analysis in Geology (3rd ed.). New York: John 
Wiley and Sons, Inc. 

Egyptian Governmental Law No. 48 (1982). The Implementer Regulations for Law 
48/1982 Regarding the Protection of the River Nile and Water Ways from Pollution 
(pp. 12-35). Map. Periodical Bulletin, 3-4 December. 

EWQS (Egyptian Drinking Water Quality Standards) (2007). Ministry of Health, Popula-
tion Decision Number 458. 

Goher, M. E., Hassan, A. M., Abdel-Moniem, I. A., Fahmy, A. H., & El-Sayed, S. M. 
(2014). Evaluation of Surface Water Quality and Heavy Metal Indices of Ismailia Canal, 
Nile River, Egypt. Egyptian Journal of Aquatic Research, 40, 225-233.  
https://doi.org/10.1016/j.ejar.2014.09.001 

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer-Verlag. 

Karavoltsos, S., Sakellar, A., Mihopoulos, N., Dassenakis, M., & Scoullos, M. J. (2008). 
Evaluation of the Quality of Drinking Water in Regions of Greece. Desalination, 224, 
317-329. https://doi.org/10.1016/j.desal.2007.06.013 

Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data—An Introduction to 
Cluster Analysis. New York: John Wiley & Sons Inc.  
https://doi.org/10.1002/9780470316801 

Panda, U. C., Sundaray, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of 
Factor and Cluster Analysis for Characterization of River and Estuarine Water Sys-
tems—A Case Study: Mahanadi River (India). Journal of Hydrology, 331, 434-445.  
https://doi.org/10.1016/j.jhydrol.2006.05.029 

Reghunath, R., Murthy, S. T. R., & Raghavan, B. R. (2002). The Utility of Multivariate 
Statistical Techniques in Hydrogeochemical Studies. An Example from Karnataka, In-
dia. Water Research, 36, 2437-2442. https://doi.org/10.1016/S0043-1354(01)00490-0 

Saleh, A. R. (2009). Bacteria and Viruses in the Nile. Monographiae Biologicae, 89, 
407-429. https://doi.org/10.1007/978-1-4020-9726-3_20 

Selim, S. Z. (1984). Soft Clustering of Multi-Dimensional Data: A Semi-Fuzzy Approach. 
Pattern Recognition, 17, 559-568. https://doi.org/10.1016/0031-3203(84)90054-2 

Suhr, D. (2005). Principal Component Analysis vs. Exploratory Factor Analysis. SUGI 30 
Proceedings. http://www2.sas.com/proceedings/sugi30/Leadrs30.pdf 

Tebbutt, T. (1998). Principles of Water Quality Control (5th ed.). Sheffield: Hallam Uni-

https://doi.org/10.4236/gep.2019.76003
https://doi.org/10.1080/07900627.2010.531522
https://doi.org/10.3390/ijerph200704040007
https://doi.org/10.1207/s15327906mbr0102_10
https://doi.org/10.1007/978-1-4899-3184-9
https://doi.org/10.1016/j.ejar.2014.09.001
https://doi.org/10.1016/j.desal.2007.06.013
https://doi.org/10.1002/9780470316801
https://doi.org/10.1016/j.jhydrol.2006.05.029
https://doi.org/10.1016/S0043-1354(01)00490-0
https://doi.org/10.1007/978-1-4020-9726-3_20
https://doi.org/10.1016/0031-3203(84)90054-2
http://www2.sas.com/proceedings/sugi30/Leadrs30.pdf


M. A. R. Hamed 
 

 

DOI: 10.4236/gep.2019.76003 41 Journal of Geoscience and Environment Protection 
 

versity. 

Terceiro, P., Lobo-Ferreira, J. P., & Leitão, T. E. (2008). Análise da qualidade da água e 
questões de governân-ciana Albufeirado Alqueva. Comunicaçãoapresen-tada no 9◦ 
Congresso da Água-Água: Desafios de hoje, exigências de amanhã. Cascais, Portugal. 
(In Portuguese)  
http://www.aprh.pt/congressoagua2008/PDF/Lobo-FerreiraAlqueva.pdf  

Toufeek, M. A., & Korium, M. A. (2009). Quality in Lake Nasser Water. Global Journal of 
Environmental Research, 3, 141-148. 

Trauwaert, E., Kaufman, L., & Rousseeuw, P. (1991). Fuzzy Clustering Algorithms Based 
on the Maximum Likelihood Principle. Fuzzy Sets and Systems, 42, 213-227.  
https://doi.org/10.1016/0165-0114(91)90147-I 

Yu, S., Shang, J., Zhao, J., & Guo, H. (2003). Factor Analysis and Dynamics of Water 
Quality of the Songhua River Northeast China. Water, Air, & Soil Pollution, 144, 
159-169. https://doi.org/10.1023/A:1022960300693 

Zamxaka, M., Pironcheva, G., & Muyima, N. Y. O. (2004). Microbiological and Physi-
co-Chemical Assessment of the Quality of Domestic Water Sources in Selected Rural 
Communities of the Eastern Cape Province, South Africa. Water SA, 30, 333-340.  
https://doi.org/10.4314/wsa.v30i3.5081 

Zeng, X., & Rasmussen, T. C. (2005). Multivariate Statistical Characterization of Water 
Quality in Lake Lanier, Georgia, USA. Journal of Environmental Quality, 34, 1980-1991.  
https://doi.org/10.2134/jeq2004.0337 

 
 

https://doi.org/10.4236/gep.2019.76003
http://www.aprh.pt/congressoagua2008/PDF/Lobo-FerreiraAlqueva.pdf
https://doi.org/10.1016/0165-0114(91)90147-I
https://doi.org/10.1023/A:1022960300693
https://doi.org/10.4314/wsa.v30i3.5081
https://doi.org/10.2134/jeq2004.0337

	Application of Surface Water Quality Classification Models Using Principal Components Analysis and Cluster Analysis
	Abstract
	Keywords
	1. Introduction
	2. Study Area
	Cairo Drinking Water Plants (CDWPs)

	3. Materials and Methods
	3.1. Data Requirements
	3.2. Methods
	3.2.1. Principal Component Analysis
	3.2.2. Dominant Water Quality Parameters
	3.2.3. Fuzzy C-Means Clustering (FCM) Analysis
	3.2.4. K-Means Algorithm


	4. Results and Discussion
	4.1. Descriptive Statistics
	4.2. Principal Component Analysis
	4.3. Dominant Water Quality Parameters
	4.4. Cluster Analysis
	4.4.1. Optimum Number of Clusters
	4.4.2. Clusters Characteristics
	4.4.3. DWPs and Monitoring Stations Clusters Allocation


	5. Conclusion 
	Conflicts of Interest
	References

