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nificant differences exist between submarine-landslide 
and coseismic seafloor deformation. First, the duration of 
a landslide is much longer and is in the order of magni-
tude of several minutes. Hence the time-history of the 
sea floor movement will affect the characteristics of the 
generated wave and needs to be included in the model. 
Secondly, the effective size of the landslide region is 
usually much smaller than the co-seismic seafloor-de- 
formation zone. Consequently, the typical wavelength of 
the tsunamis generated by a submarine landslide is also 
shorter. Therefore, the frequency dispersion could be 
important in the wave-generation region. 

The case of particular interest to this study is the me-
chanism of generation of tsunamis by submarine landsl- 
ides. When a submarine landslide occurs the ocean-bottom 
morphology may be significantly altered, in turn dis-
placing the overlying water. Waves are then generated as 
water gets pulled down to fill the area vacated by the 
landslide and to a lesser extent, by the force of the slid-
ing mass. Submarine slides can generate large tsunami, 
and usually result in more localized effects than tsunami 
caused by earthquakes, [5].  

Modeling of tsunami generation and propagation caused 
by submarine slides and slumps is a much more compli-
cated problem than simulation of seismic-generated tsu-
nami as the characteristics of a tsunami generated by a 
submarine landslides are mainly determined by the vo-
lume, acceleration, velocity and rise time of the slide 
motion. However, we constructed a realistic submarine 
landslide based on two-dimensional curvilinear slide 
model representing submarine slump and slide involved 
in the transform methods that may generate a tsunami 
neat the source region.  

The speed at which the mass moves across the sea 
floor is critical for the wave heights attained. Very fast 
slides (debris-flows) generate tsunamis roughly as high 
as the slide is thick while very slow moving slides pro-
duce little or no tsunamis. However, where slides move 
at velocities close or equal to that of the tsunami being 
produced, they develop ‘in phase’, building the waves up 
to exceptional size.  

Constant velocity implies that the slide starts and stops 
impulsively, i.e. the deceleration is infinite both initially 
and finally. Clearly, this is not true for real slides, and a 
more complex shape of the generated wave is expected.  

Tsunami waves may be generated by a slide that starts 
from rest accelerates with the same maximum velocity 
and decelerate back to rest. Another morphological fea-
ture of underwater slides is that the mass often travels 
significant distances from the headwall scar before com-
ing to rest. This indicates a rapid acceleration and large 
translational velocities. Hence, landslides sources are not 
impulsive and tsunami propagation starts while the forc-
ing process is still in action. Rock slides plunging into 
fjords, lakes, or reservoirs are most often super-critical 
and can generate huge, destructive waves. Tsunamis may 

cause large oscillations in basins or fjords, causing a se-
ries of incident waves. In this study, we determine the 
possibility of similar trends for a submarine rock slide. 
We study slide motion and deformation at early times 
while the slide is still decelerating and while tsunami 
generation is still taking place. These two conditions are 
redundant because one can define the duration of tsuna-
mi generation by the characteristic duration of slide ac-
celeration [5].  

Previous studies of tsunami generation have been 
concerned with the surface elevations induced by the 
impulsive motion of an impermeable rigid bottom re-
sulting from an undersea earthquake in one direction, 
[6-9] and in two directions, [10,11]. All these studies are 
taken into account solely for constant depth. It is obvious 
that the effects of ocean depth on tsunami amplitudes are 
significant. Therefore, in our work, the effects of ocean 
depth on tsunami amplitudes are analyzed. To determine 
the effects, 19 ocean depths ranging from 200-2000 m 
are studied. 

In recent years, the results of numerical and analytical 
studies, simulating mechanism of tsunami caused by 
submarine landslides are discussed. Beisel, et al. [12] 
studied numerically the landslide mechanism of tsunami 
generation based on a complex of multi-parameters cal-
culations with the help of algorithms. Lynett and Liu 
Philip [13] derived mathematically a full nonlinear mod-
el to describe the generation and propagation of water 
waves by a submarine landslide. The model consists of a 
depth-integrated continuity equation and momentum 
equations, in which the ground movement is the forcing 
function. This model is capable of describing wave 
propagation from relatively deep water to shallow water. 
They developed a numerical algorithm for the general 
fully nonlinear model. Jiang and Le Blond [14] investi-
gated coupling of a submarine slide and the surface water 
waves it generates. They found that the two major para-
meters that determine the interaction between the slide 
and the water waves are the density of sliding material 
and the depth of initiation of the slide. Rzadkiewicz et al. 
[15] simulated an underwater landslide by introducing a 
two-phase description of sediment motion and using the 
volume of fluid (VOF) technique. Grilli and Watts [16] 
simulated waves due to moving submerged body using a 
boundary element method. Watts et al. [17] found that, 
assuming a realistic maximum displacement for a slump, 
everything else being equal, the slump generates smaller 
tsunami surface elevations and wave lengths than a cor-
responding slide, particularly in the far-field. With iden-
tical initial acceleration, tsunami characteristics of simi-
lar slides and slumps are initially similar, but differences 
arise since the acceleration phase lasts longer and the 
displacement is larger for a slide. Ataie-Ashtiani and 
Shobeyri [18] presented an incompressible-smoothed 
particle hydrodynamics (I-SPH) to simulate impulsive 
waves generated by landslides. Agustinus [19] investi-
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gated the breaking of long-waves propagating on shallow 
water with nonlinear friction on the sloping bottom. He 
found from his numerical results that in order to over-
come wave breaking, nonlinear friction needs to be be-
low certain level. Also, laboratory experimental studies 
on tsunami generation by a rigid solid body moving 
along the slope have been carried out by many research-
ers, [20-25]. 

The speed at which the mass moves across the sea 
floor is critical for the wave heights attained. Very fast 
slides (debris-flows) generate tsunamis roughly as high 
as the slide is thick while very slow moving slides pro-
duce little or no tsunamis. However, where slides move 
at velocities close or equal to that of the tsunami being 
produced, they develop ‘in phase’, building the waves up 
to exceptional size, [26]. The transient wave generation 
due to the coupling between the slide deformation and 
time variations in the moving velocity and the free sur-
face has been considered by Trifunac et al. [27]. They 
discussed the effect of variable speeds of spreading of 
submarine slumps and slides on the near-field tsunami 
amplitudes. They illustrated the nature and the extent of 
variations in the tsunami waveforms caused by simple 
time variations of the frontal velocity of spreading for 
two-dimensional kinematic models of slides and slumps 
and compared the results with those for slide spreading 
with constant velocity. They found that the overall nature 
of the near-field tsunami amplitudes depended on the 
overall average speed of slumping and sliding remains 
unchanged, with respect to their previous studies in [6-9] 
with constant velocities of spreading. Hayir [28] investi-
gated the motion of a submarine block slide with variable 
velocities and its effects on the near-field tsunami am-
plitudes. He found that the amplitudes generated by the 
slide are almost the same as those created by its average 
velocity. Both Trifunac et al. [27] and Hayir [28] used 
very simple kinematic source models represented by a 
Heaviside step functions for representing the generation 
and propagation of tsunami.  

Therefore, in this paper, we concern about the tsunami 
amplitudes predicted in the near-field caused by time 
variation of a two-dimensional realistic curvilinear slide 
model. The curvilinear tsunami source model we consi-
dered based on available geological, seismological, and 
tsunami elevation. This model resembles the initial 
source predicted according to the initial disturbance rec-
orded in [29,30]. At present, it is difficult to describe the 
details of movements at the ocean floor during sliding 
because of the paucity of high frequency inverse studies 
of ground deformations in the source area of past tsuna-
mi, [31]. Therefore, the basic idea is to illustrate the 
possible range of tsunami amplitudes using realistic 
source model.  

The aim of this study is to determine how near-field 
tsunami amplitudes change according to variable veloci-
ties of submarine slide. We discuss the nature and the 

extent of variations in the peak tsunami waveforms 
caused by time variations of the frontal velocity and the 
deceleration for the two-dimensional curvilinear block 
slide model and compares the results with those for the 
slide moving with constant velocity. It will show how the 
changes in the slide velocity as function in time acts to 
reduce wave focusing. Numerical results are presented 
for the normalized peak amplitude as a function of the 
propagation length and width of the slump and the slide, 
the water depth, the time variation of moving velocity 
and the deceleration of the block slide.  

The problem is solved using linearized shallow-water 
theory for constant water depth by transform methods 
(Laplace in time and Fourier in space), with the forward 
and inverse Laplace transforms computed analytically, 
and the inverse Fourier transform computed numerically 
by the Inverse Fast Fourier Transform (IFFT). Particular 
cases are compared with the results obtained by Trifunac 
et al. [9] and Hayir [28]. 
 
2. Mathematical Formulation of the Problem  
 
Consider a three dimensional fluid domain   as shown 
in Figure 1. It represents the ocean above the submarine 
slump and slide area. It is bounded above by the free 
surface of the ocean  , ,z x y t and below by the rigid 

ocean floor    , , ,z h x y x y t   , where  , ,x y t  

is the free surface elevation,  ,h x y  is the water depth 

and  , ,x y t  is the sea floor displacement function. 

The domain   is unbounded in the horizontal direc-
tions x and y, and can be written as  2 ,R h x y     

   , , , , ,x y t x y t   . For simplicity, before the earth-

quake,  ,h x y  is assumed to be a constant and the fluid 

is assumed to be at rest, thus the free surface and the  
 

 , ,0x y

 , ,0x y

h Ω 

z 

0 

0 y 0 x 
 

Figure 1. Fluid domain and coordinate system for a very 
rapid movement of the assumed source model. 
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solid boundary are defined by 0z   and z h  , re-
spectively. Mathematically, these conditions can be 
written in the form of initial conditions:  , ,0x y   

 , ,0 0x y  . At time 0t   the bottom boundary 

moves in a prescribed manner given by z h    

 , ,x y t  The deformation of the sea bottom is assumed 

to have all the necessary properties needed to compute its 
Fourier transforms in ,x y  and its Laplace transform in 

t . The resulting deformation of the free surface 

 , ,z x y t  is to be found as a part of the solution. It 

is assumed that the fluid is incompressible and the flow 
is irrotational. The former implies the existence of a ve-
locity potential function  , , ,x y z t  which fully de-

scribes the flow and the physical process. By definition, 
the fluid velocity vector can be expressed as q 


   

Thus,  , , ,x y z t  must satisfy the Laplace’s equation 

   2 , , , 0 where , ,x y z t x y z         (1) 

Also,  , , ,x y z t  must satisfy the following kine-

matic and dynamic boundary conditions on the free sur-
face and the solid boundary, respectively 

 on , ,z t x x y y z x y t               (2) 

 on , ,z t x x y y z h x y t               (3) 

and 

   21
0 on , ,

2t g z x y t            (4) 

where g  is the acceleration due to gravity. As de-

scribed above, the initial conditions are given by 

     , , ,0 , ,0 , ,0 0x y z x y x y         (5) 

The solution of (1)-(4) for a prescribed bed movement 

 , ,x y t  is inherently difficult owing to the nonlinear 

terms in the boundary conditions and the unknown loca-
tion of the free surface a priori. The usual procedure for 
solving problems of this type is to circumvent these dif-
ficulties by substituting a linear approximation for the 
complete description of wave motion. In this approxima-
tion the nonlinear terms in the boundary conditions are 
omitted and the resulting equations are applied at the 
initial position of the boundaries. 
 
2.1. Linear Shallow Water Theory 
 
Various approximations can be considered for the full 
water-wave equations. One is the system of Boussinesq 
equations that retains nonlinearity and dispersion up to a 

certain order. Boussinesq model is used to study transient 
varying bottom problems. Fuhrman and Madsen [32] and 
Zhao et al. [33] presented a developed numerical model 
based on the highly accurate Boussinesq-type formula-
tion subjected to exact expressions for the kinematic and 
dynamic free surface conditions. Their results show that 
the model was capable of treating the full life cycle of 
tsunami evolution, from the initial generation of bottom 
movements, to the subsequent propagation, and through 
the final run-up process. Reasonable computational effi-
ciency has been demonstrated in their work, which made 
the model attractive for practical coastal engineering 
studies, where high dispersive and nonlinear accuracy is 
sought. Another one is the system of nonlinear shal-
low-water equations that retains nonlinearity but no dis-
persion. Solving this problem is a difficult task due to the 
nonlinearities and the priori unknown free surface. The 
simplest one is the system of linear shallow-water equa-
tions. The concept of shallow water is based on the 
smallness of the ratio between water depth and wave 
length. In the case of tsunamis propagating on the sur-
face of deep oceans, one can consider that shallow-water 
theory is appropriate because the water depth (typically 
several kilometers) is much smaller than the wave length 
(typically several hundred kilometers), which is reasona-
ble and usually true for most tsunamis triggered by sub-
marine earthquakes, slumps and slides, [34,35]. Hence, 
the problem can be linearized by neglecting the nonlinear 
terms in the boundary conditions (2)-(4) and if the boun- 
dary conditions are applied on the nondeformed instead 
of the deformed boundary surfaces (i.e. z h   and on 

0z   instead  , ,z h x y t   of and  , ,z x y t ). 

The linearized problem in dimensional variables can 
be written as 

     2 2, , , 0 where , , ,0x y z t x y z R h       (6) 

subjected to the following boundary conditions 

on 0z t z                 (7) 

onz t z h                 (8) 

0 on 0t g z                (9) 

The linearized shallow water solution can be obtained 
by the Fourier-Laplace transforms. 
 
2.2. Solution of the Problem 
 
Our interest is focused on the resulting uplift of the free 
surface elevation  , ,x y t . An analytical analysis is to 
examine and illustrate the generation and propagation of 
the tsunami for a given bed profile  , ,x y t . Mathe-
matical modeling of waves generated by vertical and 
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lateral displacements of ocean bottom using the com-
bined Fourier–Laplace transforms of the Laplace equa-
tion analytically is the simplest way of studying tsunami 
development. All our studies took into account constant 
depth for which the Laplace and Fast Fourier Transform 
(FFT) methods could be applied. Equations (6)-(9) can 
be solved by using the method of integral transforms. We 
apply the Fourier transform in (x, y) given by 

ृ        1 2
21 2

ˆ , , i k x k y

R
f f k k f x y e dxdy     

with its inverse transform 

ृ  
 

   1 2
2

1
1 2 1 22

1ˆ ˆ, ,
2

i k x k y

R
f f x y f k k e dk dk


        

and the Laplace transform in time t, 

£      
0

stg G s g t e dt
     

For the combined Fourier and Laplace transforms, the 
following notation is introduced 

ृሺ£ሺ    1 2, , , ,f x y t F k k s  

   1 2
2 0

, ,i k x k y st

R
e dxdy f x y t e dt

      

Combining (7) and (9) yields the single free-surface 
condition 

   , ,0, , ,0, 0tt zx y t g x y t           (10) 

and the bottom condition (8) will be 

   , , , , ,z tx y h t x y t             (11) 

The solution of the Laplace Equation (6) which satis-
fies the boundary conditions (10)-(11) can be obtained 
by using the Fourier-Laplace transforms method. 

First, by applying the transforms method to the Lap-
lace equation (6), gives 

F ቄ£ ቀ
డమథ

డ௫మ
ቁቅ ൅ F ቄ£ ቀ

డమథ

డ௬మ
ቁቅ ൅ F ቄ£ ቀ

డమథ

డ௭మ
ቁቅ ൌ 0  (12) 

By using the property ृ    
n

n

n

d f
ik F k

x

 
 

 
, (12) 

will be 

     2 2
1 2 1 2 1 2, , , , , , 0tt k k z s k k k k z s       (13) 

Second, by applying the transforms method to the 
boundary conditions (10)-(11) and the initial conditions 
(5), yields 

   2
1 2 1 2, ,0, , ,0, 0zs k k s g k k s        (14) 

and 

   1 2 1 2, , , , ,z k k h s s k k s           (15) 

The transformed free-surface elevation can be ob-
tained from (9) as 

   1 2 1 2, , , ,0,
s

k k s k k s
g

          (16) 

The general solution of (13) will be 

     
   

1 2 1 2

1 2

, , , , , cosh

, , sinh

k k z s A k k s kz

B k k s kz

 


    (17) 

where 2 2
1 2k k k  . The functions  1 2, ,A k k s  and 

 1 2, ,B k k s  can be found from the boundary conditions 

(14)-(15) as follows 
For the bottom condition (at z h  ): 

     1 2, , ,
sinh cosh

k k h s
Ak kh Bk kh

z

 
  


  (18) 

Substituting from (18) into (15), yields 

     1 2sinh cosh , ,Ak kh Bk kh s k k s      (19) 

For the free surface condition (at 0z  ): 

   1 2
1 2

, , ,
and , ,0,

k k h s
Bk k k s A

z




 
 


  (20) 

Substituting from (20) into (14), gives 

2

gk
A B

s


                 (21) 

Using (21), (19) can be written as 

     1 22
cosh 1 tanh , ,

gk
Bk kh kh s k k s

s
    

   (22) 

From which, 

   
   

1 2
1 2 2

, ,
, ,

cosh tanh

gs k k s
A k k s

kh s gk kh




  
, 

   
   

3
1 2

1 2 2

, ,
, ,

cosh tanh

s k k s
B k k s

k kh s gk kh




  
. 

Substituting the expressions for the functions 

 1 2, ,A k k s  and  1 2, ,B k k s  in (17) yields, 

   
  

   

1 2
1 2 2 2

2

, ,
, , ,

cosh

cosh sinh

gs k k s
k k z s

kh s

s
kz kz

gk





 



 
 

 

    (23) 
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where  tanhgk kh   is the circular frequency of 

the wave motion.  
The free surface elevation  1 2, ,k k s  can be ob-

tained from (16) as 

   
  

2
1 2

1 2 2 2

, ,
, ,

cosh

s k k s
k k s

kh s








       (24) 

A solution for  , ,x y t  can be evaluated  for spe-

cified  , ,x y t  by computing approximately its trans-

form  1 2, ,k k s  then substituting it into (24) and in-

verting  1 2, ,k k s  to obtain  , ,x y t  We are con-

cerned now to evaluate  , ,x y t  by transforming ana-

lytically the assumed source model then inverting 

 1 2, ,k k s  using the inverse Laplace Transform to ob-

tain  1 2, ,k k t  which is further converted to 

 , ,x y t  by using double inverse Fourier Transform. 

The circular frequency   describes the dispersion 

relation of tsunamis and implies phase velocity c
k


  

and group velocity 
d

U
dk


 . 

Hence,
 tanhg kh

c
k

 , and 
 

1 2
1

2 sinh 2

kh
U c

kh

 
   

 
. 

Since, 
2

k



 , hence as 0kh  , both c gh  

and U gh , which implies that the tsunami velocity 

tv gh  for wavelengths λ long compared to the water 

depth h . The above linearized solution is known as the 
shallow water solution. We considered three stages for 
the mechanism of the tsunami generation caused by 
submarine gravity mass flows, initiated by a rapid curvi-
linear down and uplift faulting with rise time 10 t t  , 

then propagating unilaterally in the positive x-direction 

with time 1t t t  , to a length L both with finite veloc-

ity v  to produce a depletion and an accumulation zones. 
The last stage represented by the time variation in the 
velocity of the accumulation slide (block slide) moving 

in the x-direction with time maxt t t    and decelera-

tion  , where maxt  is the maximum time that the slide 

takes to stop with minimum deceleration min . In the 

y-direction, the models propagate instantaneously. The 
set of physical parameters used in the problem are given 
in Table 1. 

The first and second stages of the bed motion are  

Table 1. Parameters used in the analytical solution of the 
problem. 

Parameters First stage Second stage

-Source width, W, km 100 100 

-Whole width in 1st Stage and 
Propagation length in 2nd Stage, km 

W’ = 100 L = 150 

-Water depth (uniform), h, km 2 2 

-Acceleration due to gravity,  
g, km/sec2 

0.0098 0.0098 

-Tsunami velocity,  

tv gh , km/sec 0.14 0.14 

-Moving velocity, v, km/sec 0.14 0.14 

-Duration of the source process,  
t, min 1

50
5.95t

v
   

200
23.8t

v
  

 
shown in Figures 2 and 3, respectively, and given by: 

1) First Stage: Curvilinear down and Uplift Faulting 

 

 

 

down

0

0

0

, ,

1 cos 1 cos 150 ,
2 50 100

50 50, 150 50,

1 cos ,
50

50 50, 50 50,

1 cos 1 cos 50 ,
2 50 100

50 50, 50 150.

x y t

vt
x y

W

x y

vt
x

W

x y

vt
x y

W

x y



 



 



              
      


      
     
               
    

  (25) 

 

   

 

   

up

0

0

0

, ,

1 cos 200 1 cos 150 ,
2 50 100

200 300, 150 50,

1 cos 200 ,
50

200 300, 50 50,

1 cos 200 1 cos 50 ,
2 50 100

200 300, 50 150.

x y t

vt
x y

W

x y

vt
x

W

x y

vt
x y

W

x y



 



 



              
      


       
     
               

   



(26) 

For these displacements, the bed rises during 10 t t   

to a maximum displacement 0  such that the volume of  
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(a) 

 
(b) 

Figure 2. Normalized bed deformation represented by a 
rapid curvilinear down and uplift faulting at the end of 

stage one ( 1
50

t
v

 )(a) Side view along the axis of symmetry 

at 0y   (b) Three- dimensional view. 
 

 
(a) 

 
(b) 

Figure 3. Normalized Bed deformation model represented 
by the accumulation and depletion zones at the end of stage 

two (  200
t

v
 ) (a) Side view along the axis of symmetry at 

0y   (b) Three-dimensional view. 

soil in the uplift increases linear with time and vise verse 
in the down faulting. 

For 1t t  the soil further propagates unilaterally in 

the positive x-direction with velocity v till it reaches the 
characteristic length L = 150 km at 200t t v  . 

2) Second Stage: Curvilinear down and Uphill 
Slip-Fault (Slump and the Slide) 

     
 

down 1down 2down

3down

, , , , , ,

, ,

x y t x y t x y t

x y t

  



 


   (27) 

where, 

 

 

 

 

    

   

1down

0

0

1

0
1

1 1

, ,

1 cos 1 cos 150 ,
4 50 100

50 0, 150 50,

1 cos 150 ,
2 100

0 , 150 50,

1 cos 1 cos 150 ,
4 50 100

50, 150 50.

x y t

x y

x y

y

x t t v y

x t t v y

t t v x t t v y



  

 

  



             
      


      
      

              
        








 

 

 

  

   

2down

0

0

1

0
1

1 1

, ,

1 cos ,
2 50

50 0, 50 50,

,

0 , 50 50,

1 cos ,
2 50

50, 50 50.

x y t

x

x y

x t t v y

x t t v

t t v x t t v y



 



 



      
     

      
        
        

 

 

 

 

 

    

   

3down

0

0

1

0
1

1 1

, ,

1 cos 1 cos 50 ,
4 50 100

50 0, 50 150,

1 cos 50 ,
2 100

0 , 50 150,

1 cos 1 cos 50 ,
4 50 100

50, 50 150.

x y t

x y

x y

y

x t t v y

x t t v y

t t v x t t v y



  

 

  



             
    


      
     

                
       

 

       up 1up 2up 3up, , , , , , , ,x y t x y t x y t x y t      (28) 
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By referring to Figure 3,  1up , ,x y t ,  2up , ,x y t  

and  3up , ,x y t  can be expressed in the same manner 

as  1down , ,x y t   2down , ,x y t  and  3down , ,x y t . 

The kinematic realistic tsunami source model shown 
in Figure 3 is initiated by a rapid curvilinear down and 
uplift faulting (First stage) which then spreads unilate-
rally with constant velocity v causing a depletion and 
accumulation zones. The final down lift of the depression 
zone and final uplift of the accumulation zone are as-
sumed to have the same amplitude 0 . We assume the 

spreading velocity v of the slump and the slide deforma-
tion in Figure 3 the same as the tsunami wave velocity 

tv gh  as the largest amplification of the tsunami 

amplitude occurs when tv v  due to wave focusing 

[6,36]. The slide and the slump are assumed to have con-
stant width W.  

The spreading is unilateral in the x-direction as shown 
in Figure 3. The vertical displacement, 0 , is negative 

(downwards) in zones of depletion, and positive (up-
wards) in zones of accumulation. All cases are characte-
rized by sliding motion in one direction, without loss of 
generality coinciding with the x-axis, and tsunami prop-
agating in the x-y plane. 

Figure 4 shows vertical cross-sections (through y = 0) 
of the mathematical models of the stationary submarine 
slump and the moving slide and their schematic repre-
sentation of the physical process that we considered in 

this study, as those evolve for time t t . The block 
slide starts moving in the positive x-direction at time 

t t  and stops moving at distance 150L   km while 
the downhill slide becomes stationary. We discuss the 
tsunami generation for two cases of the movement of the 
block slide. First, the limiting case in which the block 
slide moves with constant velocity v and stops after dis-
tance L  with infinite deceleration (sudden stop) at time 

mint t L v   . Second, the general case in which the 

block slide moves in time 2t t . With constant veloci-

ty and then with constant deceleration such that it stops 
softly after traveling the same distance L  in time 3t  

which depends on the deceleration   and the choice of 
time 2t . The variation of the ‘‘block slide’’ we consi-

dered could be used to represent the motion of the col-
lapsed blocks at the Blake Escarpment, east of Florida. 
(see Figure 7 in Dillon et al. [37]) and the block slide at 
the base of Middle Canyon along the Beringian Margin 
in Alaska (see Figure 8 in Carlson et al. [38]) and the 
Sur submarine landslide originated on the continental 
slope west of Point Sur, central California(see Figure 1 
in Gutmacher and Normark [39]). So, the evidence of a 
huge historical tsunami needs for investigating the possi-
bility of future tsunami generating by submarine land- 

slides. 
The velocity  v t  in this case can be defined as 

   
2

2 2 3

v t t t
v t

v t t t t t

   
   

          (29) 

where 0.14tv v   km/sec and   is the deceleration 

of the moving block slide. We need to determine the time 

3t  that the slide takes to reach the final distance L  and  

 

 
(a) 

 
v(t) 

Displaced

L' 
Landslide scar 

Landslide scar 

 
(b) 

 
Displaced 

v(t) 

L' 

L 

L 

Landslide scar 

 
(c) 

Figure 4. A schematic representation of a landslide (bottom) 
travelling a significant distance L downhill creating a “scar” 
and a moving uphill displaced block slide stopping at the 
characteristic length L . (a) Case 1: Mathematical model 
of the stationary slump and the moving submarine slide; (b) 
Case 2: Physical process of the displaced block moving with 
a variable slide velocity  v t ; (c) Case 3: Schematic repre-

sentation of the used model. 
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the corresponding deceleration  . This can be done by 
the following steps: 

1) Choosing time 2t  as  2t t t L v      in 

which the slide moves with constant velocity v where 

1t t L v    and 1 50t v . 

2) Getting the corresponding distance  

 2L t t v   . 

3) Evaluating the remaining distance 

 2L L t t v    . 

Substituting L  n the equation 

   2

3 2 3 2

1

2
L t t v t t             (30) 

When the block slide stops moving, then  

    3 2 3 2 0v t v t t t t            (31) 

Eliminating   from (30) and (31), we get a relation 
between 3t  and 2t  which further on substituting in 

(31), we obtain the deceleration  . 
For 2 3t t t  , the block slide moves with velocity 

   2v t v t t    . Table 2 represents the different  

 
Table 2. Values of 2t  and the corresponding calculated 

values of 3t and  . 

Time t2 (minutes) Time t3 (minutes) Deceleration α

t* = 23.80 59.51 6.53 × 10-5 

t* + 0.1(L’/v) = 25.58 57.72 7.25 × 10-5 

t* + 0.2(L’/v) = 27.37 55.95 8.16 × 10-5 

t* + 0.3(L’/v) = 29.37 54.15 9.33 × 10-5 

t* + 0.4(L’/v) = 30.94 52.36 1.08 × 10-4 

t* + 0.5(L’/v) = 32.72 50.57 1.30 × 10-4 

t* + 0.6(L’/v) = 34.51 48.79 1.63 × 10-4 

t* + 0.7(L’/v) = 36.30 47.01 2.17 × 10-4 

t* + 0.8(L’/v) = 38.08 45.22 3.26 × 10-4 

t* + 0.9(L’/v) = 39.87 43.44 6.53 × 10-4 

t* + (L’/v) = 41.65 41.65 infinity 

values of 2t  and the corresponding calculated values of 

3t  and  . 

Figure 5 illustrates the position of the slides in the 
third stage for different choice of deceleration  . In this 
stage, min  is the minimum deceleration required such 

that the slide stops after traveling distance L . 
In this case 2t t  and  3 max 2t t t L v      

59.51min . For any other min  , the slide moves with 

constant velocity with time 2t t t    and with decele-

ration   until it stops at time 3t  which is less than 

maxt . 

So, the stationary landslide scar for t t   and the 

movable block slide with variable velocity  v t  for 

 2t t t L v      and    3 2t L v t t L v       

can be expressed respectively as 

     
 

stat.landslide 1 2

3

, , , , , ,

, ,

x y t x y t x y t

x y t

  



  



 


  (32) 

     
 

block slide 1 2

3

, , , , , ,

, ,

x y t x y t x y t

x y t

  



 


    (33) 

 stat.landslide , ,x y t   is the same as (27) except the time 

parameter t will be substituted by t . 

For  block slide , ,x y t , let η(x,0,t) 

 

 

Figure 5. Slide block position against the instants of times 

     2t t t L v  and  min 3 maxt t t . 
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 
   

2

2

2 2 3

for

1
for

2

t t v t t t
S

t t v t t t t t

 



   
 

    


 

be the distance the slide moves during stage three, hence 

 

    

 

    

1

0

0

0

, ,

1 cos 200 1 cos 150 ,
4 50 100

200 250 , 150 50,

1 cos 150 ,
2 100

250 250 , 150 50,

1 cos 250 1 cos 150 ,
4 50 100

250 300 , 150

x y t

x S y

S x S y

y

S x S L y

x S L y

S L x S L y



  

 

  



             
       

    
        

              
        50.













  

 

 

  

  

2

0

0

0

, ,

1 cos 200 ,
2 50

200 250 , 50 50,

,

250 250 , 50 50,

1 cos 250 ,
2 50

250 300 , 50 50.

x y t

x S

S x S y

S x S y

x S L

S L x S L y



 



 



       
       




      
        
         

 

 

    
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

 

Laplace and Fourier transforms can now be applied to 
the bed motion described by (25)-(28) and (32)-(33). 
First, beginning with the down and uplift faulting (25) 

and (26) for 10 t t   where 1

50
t

v
 , and 

ृሺ£ሺ    1 2, , , ,x y t k k s   

   1 2

0
, ,i k x k y ste dxdy x y t e dt

   


    (34) 

The limits of the above integration are apparent from 
(25)-(26). 

Substituting the results of the integration (34) for 

down  and up  into (24). The free surface elevation 

 1 2, ,k k t  can be evaluated by using the inverse Lap-

lace transforms of  1 2, ,k k s . From which,
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  

 
 
 
 
 
 
 
 
 
 
  
 

           (35)
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In case of 1t t ,  1 2, ,k k t  will have the same ex-

pression except in the convolution step, the integral be-

comes 
 1

0

sinsin
cos

t t tt
d

 
 


   instead of 

0

sin
cos

t t
d

 


 . 

Finally,  , ,x y t  is evaluated using the double in-

verse Fourier transform of  1 2, ,k k t   

 
 

 2 1
1 2 1 22

1
, , , ,

2

ik y ik xx y t e e k k t dk dk 


 

 
       

(36) 

This inversion is computed by using the FFT. The in-
verse FFT is a fast algorithm for efficient implementa-
tion of the Inverse Discrete Fourier Transform (IDFT) 
given by 

   
2 21 1

0 0

1
, , ,

0,1, , 1, 0,1, 1,

M N i pm i qn
M N

p q

f m n F p q e e
MN

p M q N

         
   

 



   

 
 

 

where  ,f m n  is the resulting function of the two spa-

tial variables m and n, corresponding to x and y, from the  

frequency domain function  ,F p q  with frequency 

variables p and q, corresponding to k1 and k2. This inver-
sion is done efficiently by using the Matlab FFT algo-
rithm.  

Using the same steps,  1 2, ,k k t  is evaluated by ap-

plying the Laplace and Fourier transforms to the bed 
motion described by (27) and (28), then substituting into 
(24) and then inverting  1 2, ,k k s  using the inverse 

Laplace transform to obtain  1 2, ,k k t . This is verified 

for 1t t t   where 
200

t
v

   as 

     1 2 down 1 2 up 1 2, , , , , ,k k t k k t k k t       (37) 
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then 
and 
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, , , , , ,
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Substituting  down 1 2, ,k k t  and  up 1 2, ,k k t  into 

(37) gives  1 2, ,k k t  for 1t t t  . For the case 

t t ,  1 2, ,k k t  will have the same expression as (37) 

except for the term resulting from the convolution theo-
rem, i.e. 
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. 

So,  , ,x y t  is computed using inverse FFT of 

 1 2, ,k k t . 

Finally,  block  slide 1 2, ,k k t  is evaluated by applying 

the Laplace and Fourier transforms to the block slide 
motion described by (33), then substituting into (24) and 

then inverting  block  slide 1 2, ,k k s  using the inverse 

Laplace transform to obtain  block  slide 1 2, ,k k t . This is 

verified for  2t t t L v      and   3t L v t    

 2t L v   . Then, 

     
 

block  slide 1 2 1 1 2 2 1 2

3 1 2

, , , , , ,

, ,

k k t k k t k k t

k k t

  



 


  (38) 

Then, 
Finally,  , ,x y t  is computed using inverse FFT of 

 1 2, ,k k t .  

We investigated mathematically the water wave mo-
tion in the near and far-field by considering a kinematic 
mechanism of the sea floor faulting represented in se-
quence by a down and uplift motion with time followed 
by unilateral spreading in x-direction, both with constant 
velocity v , then a deceleration movement of a block 
slide in the direction of propagation. Clearly, from the 
mathematical derivation done above,  , ,x y t  de-

pends continuously on the source  , ,x y t . Hence, 

from the mathematical point of view, this problem is said 
to be well-posed for modeling the physical processes of 
the tsunami wave.  
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3. Results and Discussion 
 
We are interested in illustrating the nature of the tsunami 
build up and propagation during and after the movement 
process of a variable curvilinear block shape sliding. In 
this section three cases are studied. We first examine the 
generation process of tsunami waveform resulting from 
the unilateral spreading of the down and uplift slip fault-
ing in the direction of propagation with constant velocity 
v. We assume the spreading velocity of the ocean floor 
up and down lift to be equal to the tsunami wave velocity 

0.14tv gh  km/sec as it has been verified in [6,36] 

that the largest wave amplitude occurs when tv v  due 

to wave focusing. 
 
3.1. Tsunami Generation caused by Submarine 

Slump and Slide-Evolution in Time 
 
We assume the waveform initiated by a rapid movement 
of the bed deformation of the down and uplift source 
shown in Figure 2. Figure 6 shows the tsunami gener-

ated waveforms during the second stage at time evolu-

tion 0.4 ,0.6 ,0.8 , .t t t t t     at constant water depth h = 
2 km. It is seen how the amplitude of the wave builds up 
progressively as t increases where more water is lifted 
below the leading wave depending on its variation in 
time and the space in the source area. The wave will be 
focusing and the amplification may occur above the 
spreading edge of the slip. This amplification occurs 
above the source progressively as the source evolves by 
adding uplifted fluid to the fluid displaced previously by 
uplifts of preceding source segments. This explains why 
the amplification is larger for wider area of uplift source 
than for small source area. It can be seen that the tsunami 
waveform 0   has two large peaks of comparable 

amplitudes, one in the front of the block due to sliding of 
the block forward, and the other one behind the block 
due to spreading of the depletion zone. These results are 
in good agreement with the aspect of the tsunami wave-
forms generated by a slowly spreading slump and slide 
of the ocean bottom presented by Todorovsk et al. [9]  
and Hayir [28] who considered very simple kinematic 
source models represented by sliding Heaviside step   
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(a)                                                          (b) 

Figure 6. Dimensionless free-surface elevation caused by the propagation of the slump and slide in the x-direction during the 

second stage with  tv v  at h = 2 km, L = 150 km, W = 100 km and  200t v  sec; (a) Side view along the axis of symmetry 

at y = 0; (b) Three-dimensional view.  
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functions. It is difficult to estimate, at present, how often 
this type of amplification may occur during actual slow 
submarine process, because of the lack of detailed 
knowledge about the ground deformations in the source 
area of past tsunamis.Therefore, we presented here only 
the basic ideas and illustrated the possible range of am-
plification factors by means of a realistic curvilinear 
slip-fault models.  

Figures 7 and 8 illustrate the normalized peak tsunami 
amplitudes ,max 0R  , ,min 0L   respectively in the 

near-field versus L h  at 1t t t L v   , the time 

when the spreading of the slides stops for h = 0.5, 1, 1.5 
and 2 m and for tv v  and L = 150 km, W = 100 km. 

From Figures 7 and 8, the parameter that governs the 
amplification of the near-field water waves by focusing, 
is the ratio L h . As the spreading length L in the 

slip-faults increases, the amplitude of the tsunami wave 
becomes higher. At L = 0, no propagation occurs and the 
waveform takes initially the shape and amplitude of the 
curvilinear uplift fault (i.e. ,max 0 ,min 01,  1R L     ) 

The negative peak wave amplitudes are approximately 
equal to the positive peak amplitudes ( ,min 0L    

,max 0R  ) when tv v  as seen in Figures 7 and 8. 

The peak tsunami amplitude also depends on the water 
depth in the sense that even a small area source can gen-
erate large amplitude if the water is shallow.  

Figure 9 shows the effect of the water depth h on the 
amplification factor ,max 0R   for tv v , with L = W = 

10, 50, 100 km and L = 150 km, W = 100 km at the end 

of the second stage (i.e. at 1t t t L v   ). Normalized 

maximum tsunami amplitudes for 19 ocean depths are 
calculated. As seen from Figure 9, the amplification  
 

 

Figure 7. Normalized tsunami peak amplitudes, ,max 0R   

at the end of second stage for different water depths h = 0.5, 
1, 1.5 and 2 k at 

1t t L v   with  tv v  and L = 150 km, 

W = 100 km. 

 

Figure 8. Normalized tsunami peak amplitudes, ,min 0L   

at the end of second stage for different water depths h = 0.5, 

1, 1.5 and 2 k at 
1t t L v   with  tv v  and L = 150 km, 

W = 100 km. 
 

 

Figure 9. Normalized maximum tsunami amplitudes 

,max 0R   for different lengths and widths at t t   

1t L v  for  tv v . 

 
factor ,max 0R   decreases as the water depth h increases. 

This happens because the speed of the tsunami is related 

to the water depth ( tv v gh  ) which produces small 

wavelength as the velocity decreases and hence the 
height of the wave grows as the change of total energy of 
the tsunami remains constant. Mathematically, wave 
energy is proportional to both the length of the wave and 
the height squared. 

Therefore, if the energy remains constant and the wa-
velength decreases, then the height must increase. The 
results shown in Figures 7-9 agree with the results ob-
tained by Hayir (see Figures 5(b) and 1(b) in [40]) who 
determined the effects of ocean depth on tsunami ampli-
tudes for very simple kinematic source models represented 
by a Heaviside step function, since the ratio L h  and 

the ocean depth have primary effects on normalized peak 
tsunami amplitudes. 
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3.2. Tsunami Generation and Propagation-Effect 
of Variable Velocities of Submarine Block 
Slide 

 
In this section, we investigated the motion of a subma-
rine block slide, with variable velocities, and its effect on 
the near-field tsunami amplitudes. We considered the 
limiting case, in which the slide moves with constant 
velocity and stops suddenly (infinite deceleration) and 
the case in which the slide stops softly with constant de-
celeration for L = 150 km, W = 100 km and tv v . 

 
3.2.1. Displaced Block Sliding with Constant  

Velocity v 
Constant velocity implies that the slide starts and stops 
impulsively, i.e. the acceleration and deceleration are 
infinite both initially and finally. This means that the 
slide takes minimum time to reach the characteristic 

length 150L  km given by  min 41.65t t L v     

min. We illustrated the impulsive tsunami waves caused 
by sudden stop of the slide at distance L  in Figure 10. 

Figure 10 shows the leading tsunami wave propagat-
ing in the positive x-direction during time evolution 

t t ,  0.2t L v  ,  0.4t L v  ,  0.6t L v  , 

 0.8t L v  ,  t L v   ec at. EL  = 0, 30, 60, 90, 

120, 150 km respectively, where EL  represents that 

part of L (see Figure 4(c)) for 0.14tv v   km/sec. It 

is seen in Figure 10 that the maximum leading wave 
amplitude decreases with time, due to the geometric 
spreading and also due to the dispersion. At mint t   

  41.65t L v   , the wave front is at x = 693 km and 

,max 0R   decreases from 7.906 at t t  to 5.261 at 

time mint . This happens because the amplification of the 

waveforms depends only on the volume of the displaced 
water by the moving source which becomes an important 
factor in the modeling of the tsunami generation. This 
was clear from the singular points removed from the 
block slide model, where the finite limit of the free sur-
face depends on the characteristic volume of the source 
model. This result agrees with the results obtained by 
Guard et al. [41] who studied the tsunami wave genera-
tion caused by a simple seabed deformation represented 
by a translating hump that moves with constant velocity. 
It has seen in their results that the tsunami amplitudes are 
reduced with time when the hump moves with constant 
velocity and that the characteristic wavelength was in-
creased with the increase in the water depth. 
 
3.2.2. Displaced Block Slide Moving with Linear  

Decreasing Velocity with Time T 
The velocity of the movable slide is uniform and equal 

 v t  up to time maxt  as shown in Figure 4(a), followed 

by a decelerating phase in which the velocity is given by 

   v t v t t    , for maxt t t   . where tv v   

0.14 km/sec and   is the deceleration of the moving 
block slide. The block slide moves in the positive  

x-direction with time maxt t t    where maxt t   

2 L v  is the maximum time that the slide takes to stop 

after reaching the characteristic length 150L   km 
with minimum deceleration min . Figure 11 shows the 

leading tsunami wave propagating in the positive x-di- 

rection during time evolution t t ,  0.2t L v  , 

 0.4t L v  ,  0.6t L v  ,  0.8t L v  , t   

 L v  min in case 2t t  (i.e. minimum magnitude of 

 ). 
It is clear from Figures 10 and 11 that at the instant 

the slide stops, the peak amplitude in case of sudden stop 
is higher than that of soft stop.  

Figures 12 and 13 show the effect of the water depth 
at L= W 10, 50, 100 km and L= 150, W = 100 km on 
the normalized peak tsunami amplitude ,max 0R   

when the slide stops moving at length L  instanta-

neously at  mint t L v   with infinite deceleration 

and stops moving softly at L  at the time maxt t   

 2 L v  with minimum deceleration for tv v . 

It is clear from Figures 12 and 13 that the waveforms 
which are caused by sudden stop of the slide motion after  

 

 

Figure 10. Normalized tsunami waveforms 0   along the 

axis of symmetry at y = 0 and their corresponding moving 
slide 0   with constant velocity v along y = 0, at time 

   t t t L v    for h = 2 km, L  = 150 km and W = 

100 km. 
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Figure 11. Normalized tsunami waveforms 0   and their 

corresponding moving slide 0   with variable velocity 

 v t  along y = 0, at time    2t t t L v    at h = 2 km, 

L  = 150 km and W = 100 km. 
 

 

Figure 12. Normalized maximum tsunami amplitudes 

,max 0 R  when the slide stops suddenly at time mint   

  t L v  with different slide lengths L and widths W and 

for tv v . 

 
they reach the characteristic length L  at time mint   

 t L v   have higher amplitude than stopping of the 

slide with slow motion at time  max 2t t L v   . This 

agrees with the mathematical relation between the wave-
length and the wave height where the wave energy is 
proportional to both the length of the wave and the 
height squared. 
 
3.2.3. Displaced Block Slide Moving with Constant 

Velocity v Followed by Variable Velocity  v t  

In this section, we studied the generation of the tsunami 
waveforms when the block slide moves a significant dis-
tance with constant velocity tv v  then continues moving  

 

Figure 13. Normalized maximum tsunami amplitudes 

,max 0 R  when the slide stops softly at time maxt   

  2t L v  with different slide lengths L and widths W 

and for tv v . 

 
with variable velocity  v t  with constant deceleration 

until it stops at the characteristic length L  = 150 km. 
Figure 14 shows the tsunami waveforms at the times 
calculated in Table 2 when the slide reaches the charac-
teristic length L  = 150 km. 

In Figure 14, the blue waveform indicates the shape 
of the wave at the time  3 min 41.65t t t L v      

min in the limiting case when the slide stops moving 
suddenly. The green waveform indicates the wave in the 

other limiting case at the time  3 max 2t t t L v     

when the slide stops moving with minimum deceleration 
at the distance L . In between the two limiting cases, the 
slide begins moving with constant velocity a significant 
distance followed by decelerating movement until it 
stops at the characteristic length L  = 150 km at the 
time min 3 maxt t t  , see Table 2. It is seen how the peak 

amplitudes of the leading waves decreases gradually 
from 5.261 to 3.894. 

In order to compare the shape and maximum height of 
tsunami wave at certain time for different deceleration 
 , we choose the time maxt t . For the limiting case 

min , there is no free propagation, while for the other 

limiting case “the sudden stop”, there is maximum free 
propagation between time mint  and maxt . For the cases 

between the two limiting cases, the propagation time is 

prop max 3t t t  . 

Figure 15 shows the shape of the tsunami propagation 
waveform at  max 2 59.51t t L v     min (curves in 

black) for different deceleration   and time 3t  (time 

at which the slide stops). As the wave propagates, the 
wave height decreases and the slope of the wave front 
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Figure 14. Normalized tsunami waveforms 0   along y = 

0 at 3t t  calculated in Table 2 with L  = 150 km. 

 
becomes smaller, causing a train of small wave forms 
behind the main wave. The maximum wave amplitude 
decreases with time, due to the geometric spreading and 
also due to the dispersion. 

Figure 16 represents the normalized peak tsunami 
amplitudes 0min

   and max 0   of the leading 

propagating wave in the far-field at the time maxt t  for 

the different deceleration   and time 3t  (time at 

which the slide stops) chosen in Figure 15.  
 

 
 

 

 
 

 
 

 
 

 

Figure 15. Normalized tsunami propagation waveforms 

0   along the axis of symmetry at y = 0 at time maxt  = 

59.51 min and at time 3t  for different deceleration  . 
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Figure 16. The normalized peak tsunami amplitudes 

0min
   and max 0   at time maxt t  for the different 

deceleration   and time 3t . 

 
It can be seen in Figure 16 that the absolute minimum 

peak amplitudes of the leading propagated waves at time 

 max 2t t L v   , after the block slide stops moving 

with different deceleration   and time 3t , decrease 

gradually, while the maximum peak amplitudes increase 
progressively. 
 
4. Conclusions 
 
In this paper, we presented a review of the main physical 
characteristics of the tsunami generation caused by rea-
listic curvilinear submarine slumps and slides in the 
near-field. It is seen that the tsunami waveform has two 
large peaks of comparable amplitudes, one in the front of 
the block due to forward sliding of the block, and the 
other one behind the block due to spreading of the deple-
tion zone. The negative peak wave amplitudes are ap-
proximately equal to the positive peak amplitudes. These 
results agree with the qualitative behaviour of the tsuna-
mi waveforms generated by a slowly spreading slump 
and slide of the ocean bottom presented by Todorovsk et 
al. [9] and Hayir [28] who considered very simple kine-
matic source models represented by sliding Heaviside 
step functions. We studied the effect of variable veloci-
ties of submarine block slide on the tsunami generation 
in the limiting cases, in which the slide moves with con-
stant velocity and stops suddenly (with infinite decelera-
tion) and the case in which the slide stops softly at the 
same place with minimum deceleration. It is seen that the 
leading tsunami amplitudes are reduced in both cases due 
to the geometric spreading and also due to the dispersion. 
We observed that the peak tsunami amplitudes increase 
with the decrease in the sliding source area and the water 
depth. We also investigated the more realistic case in 
which the block slide moves a significant distance with 
constant velocity v then continue moving with time de-

pendence velocity  v t  and different constant decelera-

tion until it stops at the characteristic length. It is seen 
how the peak amplitudes of the leading waves decrease 
gradually with time between the two limiting cases. In 
this case we demonstrated also the shape of tsunami 
propagated wave at certain time maxt  (time at which the 

slide stops with minimum deceleration). The results 
show that the wave height decreases due to dispersion 
and the slope of the front of the wave becomes smaller, 
causing a train of small wave forms behind the main 
wave. It can be observed that just a slight variation in the 
maximum and the minimum tsunami propagated ampli-
tudes after the block slide stops moving with different 
deceleration   and time 3t , see Figure 16. The pre-

sented analysis suggests that some abnormally large tsu-
namis could be explained in part by variable speeds of 
submarine landslides. Our results should help to enable 
quantitative tsunami forecasts and warnings based on 
recoverable seismic data and to increase the possibilities 
for the use of tsunami data to study earthquakes, particu-
larly historical events for which adequate seismic data do 
not exist. 
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