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Abstract 
Load flow is an important tool used by power engineers for planning, to determine the best opera-
tion for a power system and exchange of power between utility companies. In order to have an ef-
ficient operating power system, it is necessary to determine which method is suitable and efficient 
for the system’s load flow analysis. A power flow analysis method may take a long time and there-
fore prevent achieving an accurate result to a power flow solution because of continuous changes 
in power demand and generations. This paper presents analysis of the load flow problem in power 
system planning studies. The numerical methods: Gauss-Seidel, Newton-Raphson and Fast De-
coupled methods were compared for a power flow analysis solution. Simulation is carried out us-
ing Matlab for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system. The simulation re-
sults were compared for number of iteration, computational time, tolerance value and conver-
gence. The compared results show that Newton-Raphson is the most reliable method because it 
has the least number of iteration and converges faster. 
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1. Introduction 
In a power system, power flows from generating station to the load through different branches of the network. 
The flow of active and reactive power is known as load flow or power flow. Load flow analysis is an important 
tool used by power engineers for planning and determining the steady state operation of a power system. Power 
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flow studies provide a systematic mathematical approach to determine the various bus voltages, phase angles, 
active and reactive power flows through different branches, generators, transformer settings and load under 
steady state conditions. The power system is modeled by an electric circuit which consists of generators, trans-
mission network and distribution network [1]. 

The main information obtained from the load flow or power flow analysis comprises magnitudes and phase 
angles of load bus voltages, reactive powers and voltage phase angles at generator buses, real and reactive power 
flows on transmission lines together with power at the reference bus; other variables being specified [2] [3]. The 
resulting equations in terms of power, known as the power flow equations become non-linear and must be 
solved by iterative techniques using numerical methods. Numerical methods are techniques by which mathe-
matical problems are formulated so that they can be solved with arithmetic operations and they usually provide 
only approximate solution.  

For the past three decades, various numerical analysis methods have been applied in solving load flow analy-
sis problems. The most commonly used iterative methods are the Gauss-Seidel, the Newton-Raphson and Fast 
Decoupled method [4]. Also with the industrial developments in the society, the power system kept increasing 
and the dimension of load flow equation also kept increasing to several thousands. With such increases, any 
numerical mathematical method cannot converge to a correct solution. Thus power engineers have to seek more 
reliable methods. The problem that faces power industry is how to determine which method is most suitable for 
a power system analysis. In power flow analysis, a high degree accuracy and a faster solution time are required 
to determine which method is best to use. 

Hand calculations are suitable for the estimation of the operating characteristics of a few individual circuits, 
but accurate calculations of load flows or short circuits analysis’ would be impractical without the use of com-
puter programs. The use of digital computers to calculate load flow started from mid 1950s. There have been 
different methods used for load flow calculation. The development of these methods is mainly led by the basic 
requirement of load flow calculation such as convergence properties, computing efficiency, memory require-
ment, convenience and flexibility of the implementation [5]-[9]. With the availability of fast and large size digi-
tal computers, all kinds of power system studies, including load flow, can now be carried out conveniently [10]. 
The numerical method provides an approach to find solution with the use of computer, therefore there is need to 
determine which of the numerical method is faster and more reliable in order to have best result for load flow 
analysis. 

This paper compares numerical methods: Gauss-Seidel, Newton-Raphson and Fast Decoupled methods use 
for load flow analysis; for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system to determine which 
of the method is best for power system planning studies. 

2. Bus Classification 
A bus is a point or node in which one or many transmission lines, loads and generators are connected. In a pow-
er system study, every bus is associated with 4 quantities, such as magnitude of voltage (|V|), phase angle of 
voltage (δ), active power (P) and reactive power (Q) [2] [3] [11] [12]. Two of these bus quantities are specified 
and the remaining two are required to be determined through the solution of equation [13]. The buses are classi-
fied depending on the two known quantities that have been specified. Buses are divided into three categories as 
shown in Table 1. 

2.1. Slack Bus 
This is used as a reference bus in order to meet the power balance condition. Slack bus is usually a generating 
unit that can be adjusted to take up whatever is needed to ensure power balanced [12]. The effective generator at 
this bus supplies the losses to the network, this is necessary because the magnitude of the losses will not be 
known until the calculation of the current is complete. Slack bus is usually identified as bus 1. The known varia-
ble on this bus is |V| and δ and the unknown is P and Q. 

2.2. Generator (PV) Bus 
This is a voltage control bus. The bus is connected to a generator unit in which output power generated by this 
bus can be controlled by adjusting the prime mover and the voltage can be controlled by adjusting the excitation  
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Table 1. Bus classification. 

No. Type of Bus 
Variables 

P Q |V| δ 

1 Slack Bus Unknown Unknown Known Known 

2 Generator Bus (PV) Known Unknown Known Unknown 

3 Load Bus (PQ) Known Known Unknown Unknown 

 
of the generator. Often, limits are given to the values of the reactive power depending upon the characteristics of 
individual machine. The known variable in this bus is P and |V| and the unknown is Q and δ [8] [12]. 

2.3. Load (PQ) Bus 
This is a non-generator bus which can be obtained from historical data records, measurement or forecast. The 
real and reactive power supply to a power system are defined to be positive, while the power consumed in a 
power system are defined to be negative. The consumer power is met at this bus. The known variable for this 
bus is P and Q and the unknown variable is |V| and δ [8] [12]. 

3. Power Flow Analysis Methods  
The numerical analysis involving the solution of algebraic simultaneous equations forms the basis for solution of 
the performance equations in computer aided electrical power system analyses e.g. for load flow analysis [4]. 
The first step in performing load flow analysis is to form the Y-bus admittance using the transmission line and 
transformer input data. The nodal equation for a power system network using Y bus can be written as follows: 

BusI Y V=                                        (1) 

The nodal equation can be written in a generalized form for an n bus system. 

1 for 1,2,3,n
i ij jjI Y V i n

=
= =∑                                (2) 

The complex power delivered to bus i is 

i i i iP jQ V I ∗+ =                                      (3) 

i i
i

i

P jQI
V ∗

−
=                                      (4) 

Substituting for Ii in terms of &i iP Q , the equation gives 

1 1
n ni i

i ij ij jj j
i

P jQ V y y V j i
V ∗ = =

−
= − ≠∑ ∑                            (5) 

The above equation uses iterative techniques to solve load flow problems. Hence, it is necessary to review the 
general forms of the various solution methods; Gauss-Seidel, Newton Raphson and Fast decoupled load flow. 

3.1. Gauss-Seidel Method  
This method is developed based on the Gauss method. It is an iterative method used for solving set of nonlinear 
algebraic equations [14]. The method makes use of an initial guess for value of voltage, to obtain a calculated 
value of a particular variable. The initial guess value is replaced by a calculated value. The process is then re-
peated until the iteration solution converges. The convergence is quite sensitive to the starting values assumed. 
But this method suffers from poor convergence characteristics [15]. 

This is an iterative method which is used to solve Equation (5) for the value of Vi, and the iterative sequence 
becomes 
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( )

( )
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                           (6) 

Using Kirchhoff current law, it is assumed that the current injected into bus i is positive, then the real and the 
reactive powers supply into the buses, such as generator buses, sch

iP  and sch
iQ  have a positive value. The real 

and the reactive powers flowing away from the buses, such as load buses sch
iP  and sch

iQ  have a negative val-
ues. Pi and Qi are solved from Equation (5) which gives 

( ) ( ) ( ){ }1
0Real n nk k k

i i ij ii jiP V y V j i+ ∗
=

 = − ≠
 ∑ ∑                         (7) 

( ) ( ) ( ){ }1
1Imaginary n nk k k

i i ij ij jiQ V y V j i+ ∗
=

 = − ≠
 ∑ ∑                       (8) 

The power flow equation is usually expressed in terms of the bus admittance matrix, using the diagonal elements 
of the bus admittance and the non-diagonal elements of the matrix, then the Equation (6) becomes, 

( )

( )
*( )

1

sch sch
ki i

ij jk
k i

I
ii

P jQ Y V
VV

Y
+

−
−

=
∑

                              (9) 

and 

( ) ( ) ( ) ( ){ }1
1, 1Real nk k k k

i i i ii ij ji jP V V Y y V j i+ ∗ ∗
= =

 = + ≠
 ∑                      (10) 

( ) ( ) ( ) ( ){ }1
1, 1Imaginary nk k k k

i i i ii ij ji jP V V Y y V j i+ ∗ ∗
= =

 = + ≠
 ∑                    (11) 

The admittance to the ground of line charging susceptance and other fixed admittance to ground are included 
into the diagonal element of the matrix. 

3.2. Newton-Raphson Method 
This method was named after Isaac Newton and Joseph Raphson. The origin and formulation of Newton-Ra- 
phson method was dated back to late 1960s [7]. It is an iterative method which approximates a set of non-linear 
simultaneous equations to a set of linear simultaneous equations using Taylor’s series expansion and the terms 
are limited to the first approximation. It is the most iterative method used for the load flow because its conver-
gence characteristics are relatively more powerful compared to other alternative processes and the reliability of 
Newton-Raphson approach is comparatively good since it can solve cases that lead to divergence with other 
popular processes [15]. If the assumed value is near the solution, then the result is obtained very quickly, but if 
the assumed value is farther away from the solution then the method may take longer to converge [12]. This is 
another iterative load flow method which is widely used for solving nonlinear equation.  

The admittance matrix is used to write equations for currents entering a power system.  
Equation (2) is expressed in a polar form, in which j includes bus i  

1
n

i ij i ij jjI Y V θ δ
=

= < +∑                                 (12) 

The real and reactive power at bus i is 

i i i iP jQ V I∗− =                                     (13) 

Substituting for Ii in Equation (12) from Equation (13) 

1i i i i ij
n
j j ij jP jQ V Y Vδ δ δ
=

− = < − < +∑                           (14) 

The real and imaginary parts are separated: 
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( )1 cosn
i i j ij ij i jjP V V Y θ δ δ

=
= − +∑                            (15) 

( )1 sinn
i i j ij ij i jjQ V V Y θ δ δ

=
= − +∑                            (16) 

The above Equation (15) and (16) constitute a set of non-linear algebraic equations in terms of |V| in per unit and 
δ in radians. Equation (15) and (16) are expanded in Taylor’s series about the initial estimate and neglecting all 
higher order terms, the following set of linear equations are obtained. 
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In the above equation, the element of the slack bus variable voltage magnitude and angle are omitted because 
they are already known. The element of the Jacobian matrix are obtained after partial derivatives of Equations 
(15) and (16) are expressed which gives linearized relationship between small changes in voltage magnitude and 
voltage angle. The equation can be written in matrix form as: 

1 3

2 4

J JP
VJ JQ
δ∆∆    

=     ∆∆     
                                (17) 

J1, J2, J3, J4 are the elements of the Jacobian matrix.  
The difference between the schedule and calculated values known as power residuals for the terms ( )k

iP∆  
and ( )k

iQ∆  is represented as: 

( ) ( )k ksch
i i iP P P∆ = −                                    (18) 

( ) ( )k ksch
i i iQ Q Q∆ = −                                    (19) 

The new estimates for bus voltage are 
( ) ( ) ( )1k k k

i iδ δ δ+ = + ∆                                   (20) 

( ) ( ) ( )1k k k
i iV V V+ = + ∆                                  (21) 

3.3. Fast Decoupled Method 
The Fast Decoupled Power Flow Method is one of the improved methods, which is based on a simplification of 
the Newton-Raphson method and reported by Stott and Alsac in 1974 [16]. This method, like the Newton- 
Raphson method, offers calculation simplifications, fast convergence and reliable results and became a widely 
used method in load flow analysis. However, fast decouple for some cases, where high resistance-to-reactance 
(R/X) ratios or heavy loading (low voltage) at some buses are present, does not converge well because it is an 
approximation method and make some assumption to simplify Jacobian matrix. For these cases, many efforts 
and developments have been made to overcome these convergence obstacles. Some of them targeted the con-
vergence of systems with high R/X ratios, and others with low voltage buses [17] [18].  
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This method is a modification of Newton-Raphson, which takes the advantage of the weak coupling between 
P δ−  and Q V−  due to the high X:R ratios. The Jacobian matrix of Equation (17) is reduced to half by ig-
noring the element of J2 and J3. Equation (17) is simplified as: 

1

4

0
0
JP

VJQ
δ∆∆    

=     ∆∆     
                                (22) 

Expanding Equation (22) gives two separate matrixes, 

1
PP J δ δ
δ
∂ ∆ = ∆ = ∆ ∂ 

                                 (23) 

4
PQ J V V
V

 ∂
∆ = ∆ = ∆ 

∂  
                               (24) 

i

P B
V

δ∆ ′= − ∆                                     (25) 

i

Q B V
V
∆ ′′= − ∆                                    (26) 

B' and B'' are the imaginary parts of the bus admittance. It is better to ignore all shunt connected elements, as to 
make the formation of J1 and J4 simple. This will allow for only one single matrix than performing repeated in-
version .The successive and voltage magnitude and phase angle changes are 

[ ] 1 PB
V

δ − ∆′∆ = −                                   (27) 

[ ] 1 QV B
V

− ∆′′∆ = −                                  (28) 

4. Simulation Results  
The simulation for Gauss-Seidel, Newton-Raphson and Fast Decouple is carried out using Matlab for test cases 
of IEEE 9. The base mva, selected valve for iteration (tolerance), and maximum numbers of iterations is speci-
fied. Figure 1 show IEEE 9-Bus System one line diagram, [12]. The simulation results are shown in Figure 2, 
Figure 3 and Figure 4 for Gauss-Seidel, Newton-Raphson and Fast Decouple respectively. 

IEEE 9 bus system represented in Table 2 consist of Bus 1 which act as a slack bus. It consist of 8 load buses, 
which are bus connected to load and 2 generator buses which are connected to generator. Bus 5 and 8 act as both 
load and generator bus because they are connected to generator and load. 
 

 
Figure 1. One line diagram for IEEE 9-bus system. 
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Figure 2. Show simulation result for IEEE 9 bus system using gauss-seidel. 

 

 
Figure 3. Show the simulation result for Newton-Raphson method on a 9 bus network system. 

 

 
Figure 4. Show the simulation result for fast decouple method on a 9 bus network system. 
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IEEE 9-bus system consist of eleven line data as represented in Table 3, which shows the values for resis-
tance, reactance and half susceptance in per unit for the transmission line connected together. It also shows the 
tap setting values for transformers and the position of the transformers on the transmission line. The information 
is used to form the admittance bus matrix. 

Table 4 represents the line flow and line losses for each of the IEEE 9 bus system. The line losses are com-
pared for the three numerical methods; Gauss-Seidel, the Newton-Raphson and Fast Decoupled method. Fast 
Decoupled method have the highest total losses of 6.279 MW, 14.893 Mvar, followed by Gauss-Seidel with to-
tal losses of 4.809 MW, 10.798 Mvar and Newton Raphson method with the least losses of 4.585 MW and 
10.789 Mvar. 
 

Table 2. Load data of IEEE 9 bus system. 

LOAD DATA 

Bus Type of  
Bus 

Voltage Load Generation 

V (P.U) δ (θ) P (MW) Q (Mvar) P (MW) Q (Mvar) 

1 Slack 1.0300 0 0 0   

2 PQ 1.0000 0 10 5   

3 PQ 1.0000 0 25 15   

4 PQ 1.0000 0 60 40   

5 PQ 1.0600 0 10 5 80  

6 PV 1.0000 0 100 80   

7 PQ 1.0000 0 80 60   

8 PV 1.0100 0 40 20 120  

9 PQ 1.0000 0 20 10   

 
Table 3. Line data of IEEE 9 bus system. 

LINE DATA 

Bus No. Bus No. R, PU X, PU 1/2 B, PU Transformer  
Tap 

1 2 0.0180 0.0540 0.0045 1 

1 4 0.0150 0.0450 0.0038 1 

2 3 0.0180 0.0560 0 1 

3 9 0.0200 0.0600 0 1 

4 5 0.0130 0.0360 0.0030 1 

4 6 0.0200 0.0660 0 1 

5 6 0.0600 0.030 0.0028 1 

5 7 0.0140 0.0360 0.0030 1 

6 9 0.0100 0.0500 0 1 

7 8 0.0320 0.0760 0 1 

8 9 0.0220 0.0650 0 1 
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Table 4. Line flow and losses comparing for IEEE 9 bus system. 

 Gauss-Seidel Method Newton-Raphson Method Fast Decouple Method 

From  
Bus 

To  
Bus 

P Q Lines loss P Q Lines loss P Q Lines loss 

MW Mvar MW Mvar MW Mvar MW Mvar MW Mvar MW Mvar 

1 2 47.024 5.514 0.381 0.199 46.912 10.350 0.393 0.238 47.411 8.677 0.396 0.244 

1 4 103.50 −25.023 1.600 3.997 103.225 −10.714 1.522 3.766 104.675 −37.340 1.742 4.418 

2 3 36.633 1.317 0.233 0.725 36.519 6.113 0.239 0.743 37.018 4.435 0.242 0.752 

3 9 11.390 −11.405 0.051 0.152 11.280 −6.631 0.034 0.101 11.775 −8.317 0.041 0.123 

4 5 11.520 −70.300 0.620 1.070 11.585 −59.488 0.454 0.620 12.085 −84.209 0.877 1.771 

4 6 30.343 1.291 0.175 0.577 30.119 5.009 0.179 0.591 30.860 2.456 0.180 0.594 

5 7 38.216 68.414 0.786 1.376 38.188 68.302 0.798 1.422 40.374 96.919 1.382 2.903 

6 9 −27.806 13.579 0.092 0.460 −27.670 12.022 0.089 0.445 −29.323 34.386 0.194 0.972 

7 8 −42.572 7.039 0.571 1.357 −42.610 6.880 0.583 1.385 −40.984 34.028 0.870 2.066 

8 9 36.846 9.327 0.300 0.885 36.806 6.024 0.294 0.869 38.138 −13.924 0.355 1.050 

5. Discussion 
5.1. Tolerance 
The selected tolerance iteration value used for the simulation is shown in Table 5. This is used to determine how 
accurate a solution will be. Thus, using a high tolerance value for a simulation increases the accuracy of the so-
lution whereas when a low tolerance value is used, it reduces the accuracy of the solution and number of itera-
tions. The selected tolerance value used for the simulation is 0.001 and 0.1 except for the IEEE 57 bus system 
solution for fast decouple, which does converge with 0.001. The only selected tolerance value used for IEEE 57 
bus system is the 0.1. 

5.2. Iteration Number 
Table 6 and Table 7 show the number of iterations for the power flow solution using selected iteration value of 
0.001 and 0.1 respectively to converge for the three load flow methods. Gauss-Seidel has the highest number of 
iterations before it converges. The number of iteration increases as the number of buses in the system increases. 
In the 9 bus system and 30 bus system, Newton-Raphson has the least number of iteration to converge. For the 
57 bus system using fast decouple, the load flow solution did not converge using 0.001. Then another selected 
value of 0.1 was chosen for the iteration.  

5.3. Computing Time 
The computation time for load flow solutions using selected iteration value of 0.001 and 0.1 is shown in Table 8 
and Table 9 respectively. Newton-Raphson and fast decouple have same computation time for 9 bus in Table 8. 
As the number of buses increases Newton-Raphson has more computational time compared among the three 
methods. Gauss-Seidel has the least computation time. Figures 5(a)-(c) show the graph for comparison of 
computing time using selected iteration value of 0.001. Figure 5(a) show the computing time for IEEE 9 bus 
system in which in Newton-Raphson and fast decouple have same computation time and they overlap each 
other in the graph. Figures 6(a)-(c) show the graph for comparison of computing time using selected iteration 
value of 0.1. 
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) Comparison of computational time for IEEE 9 bus using 
0.001; (b) Comparison of computational time for IEEE 30 bus 0.001; (c) 
Comparison of computational time for IEEE 57 bus using 0.001. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) Comparison of computational time for IEEE 9 bus using 
0.1; (b) Comparison of computational time for IEEE 30 bus using 0.1; (c) 
Comparison of computational time for IEEE 57 bus using of 0.1. 
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Table 5. Comparison of tolerance value. 

Test System Gauss-Seidel Newton-Raphson Fast Decouple 

IEEE 9 Bus 0.001/0.1 0.001/0.1 0.001/0.1 

IEEE30 Bus 0.001/0.1 0.001/0.1 0.001/0.1 

IEEE57 Bus 0.001/0.1 0.001/0.1 0.1 

 
Table 6. Comparison of iteration number using selected iteration value of 0.001. 

Test System Gauss-Seidel Newton-Raphson Fast Decouple 

IEEE 9 Bus 45 7 9 

IEEE 30 Bus 113 9 25 

IEEE 57 Bus 176 10  
 

Table 7. Comparison of iteration number using selected iteration value of 0.1. 

Test System Gauss-Seidel Newton-Raphson Fast Decouple 

IEEE 9 Bus 12 2 4 

IEEE 30 Bus 36 4 3 

IEEE 57 Bus 17 5 6 

 
Table 8. Comparison of computing time using selected value of 0.001. 

Test System Gauss-Seidel Newton-Raphson Fast Decouple 

IEEE 9 Bus 0.003 0.004 0.004 

IEEE 30 Bus 0.008 0.103 0.012 

IEEE 57 Bus 0.008 0.013  
 

Table 9. Comparison of computing time using selected iteration value of 0.1. 

Test System Gauss-Seidel Newton-Raphson Fast Decouple 

IEEE 9 Bus 0.038 0.091 0.074 

IEEE 30 Bus 0.205 0.213 0.243 

IEEE 57 Bus 0.367 0.500 0.455 

5.4. Convergence 
Convergence is used to determine how fast a power flow reaches its solution. The rate of convergence is deter-
mined by plotting a graph of maximum power mismatch against the number of iterations. Figures 7(a)-(c) 
shows the graph for convergence on IEEE-9, IEEE-30 and IEEE-57 Bus System respectively using selected ite-
ration value of 0.001. Figures 8(a)-(c) shows the graph for convergence on IEEE-9, IEEE-30 and IEEE-57 Bus 
System respectively using selected iteration value of 0.1. The convergence rate for Gauss-Seidel is slow com-
pared to the other methods. Newton-Raphson has the fastest rate of converging among the three numerical me-
thods shown in the graph. 
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(b) 

 
(c) 

Figure 7. (a) Convergence for IEEE 9 bus system using selected iteration 
value of 0.001; (b) Convergence for IEEE 30 bus system using selected 
iteration value of 0.001; (c) Convergence for IEEE 57 bus system using 
selected iteration value of 0.001. 
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(a) 

 
(b) 

 
(c) 

Figure 8. (a) Convergence for IEEE 9 bus system using selected iteration 
value of 0.1; (b) Convergence for IEEE 30 bus system using selected 
iteration value of 0.1; (c) Convergence for IEEE 57 bus system using se-
lected iteration value of 0.1. 
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6. Conclusions 
All the simulations were carried out using Mathlab and implemented for IEEE 9-bus, IEEE 30-bus and IEEE 
57-bus test cases for Gauss-Seidel, Newton-Raphson and Fast Decouple. In the load flow analysis methods si-
mulated, the tolerance values used for simulation are 0.001 and 0.1 for all the simulation carried out except for 
the IEEE 57-bus using the fast decouple method, which did not converge with the tolerance values. This ex-
plains why the Fast Decouple method is not as accurate as Newton-Raphson method because a lower tolerance 
value of 0.1 was used to carry out the simulation for the IEEE 57-bus Fast Decouple Method.  

The time for iteration in Gauss-Seidel is the longest compared to the other two methods, Newton-Raphson 
and Fast Decouple. The time for iterations in Gauss-Seidel increases as the number of buses increases. The 
Gauss-Seidel method increases in arithmetic progression, Newton-Raphson increases in quadratic progression 
while the fast decouple increases in geometric progression. This explains why it takes longer time for Gauss- 
Seidel to converge. The computational time for Gauss-Seidel is low compared to the other two methods; New-
ton-Raphson and fast decouple. Newton-Raphson have more computational time due to the complexity of the 
Jacobian matrix for each iteration but still converges fast enough because less number of iterations are carried 
out and required.  

The results of this paper suggest that the planning of a power system can be carried out by using Gauss-Seidel 
method for a small system with less computational complexity due to the good computational characteristics it 
exhibited. The effective and most reliable amongst the three load flow methods is the Newton-Raphson method 
because it converges fast and is more accurate. 
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