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Abstract 
An experimental study of the gas-solid flow dynamics in the high-flux CFB 
riser was accomplished by analysing the scaling regions from solid concentra-
tion signals collected from a 76 mm internal diameters and 10 m high riser 
of a circulating fluidized bed (CFB) system. The riser was operated at 4.0 to 
10.0 m/s gas velocity and 50 to 550 kg/m2s solids flux. Spent fluid catalytic 
cracking (FCC) catalyst particles of 67 µm mean diameter and 1500 kg/m3 
density together with 70% to 80% humid air was used. Solid concentration 
data were analysed using codes prepared in FORTRAN 2008 to get correla-
tion integrals at different embedding dimensions and operating conditions 
and plot their profiles. Scaling regions were identified by visual inspection 
method and their location on planes determined. Scaling regions were ana-
lysed based on operating conditions and riser spatial locations. It was found 
that scaling regions occupy different locations on the plane depending on the 
number of embedding dimensions and operating conditions. As the number 
of embedding dimensions increases the spacing between scaling regions de-
creases until it saturates towards higher embedding dimensions. Slopes of 
scaling regions increases with embedding dimensions until saturation where 
they become constant. Slopes of scaling regions towards the wall decrease 
while the number of scaling regions for a particular profile increases. The 
span of the scaling region is wider at the initial values of hyperspherical ra-
dius than its final values. The scaling regions in some flow development sec-
tions show multifractal behaviour for each embedding dimension which 
manifests into visible basin which is defined in this study as multifractal ba-
sin. Further, the end points of the scaling region for each correlation integral 
profile differ from each other as the embedding dimension changes. This 
study suggests that identification of scaling region by visual inspection 
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method is useful in understanding the gas-solid flow dynamics in the 
High-Flux CFB riser system. Further studies are recommended on risers of 
different diameters and heights operated at low and high solid fluxes and dif-
ferent gas velocities for comparison or usage of time series of different signal 
types like pressure fluctuations. 
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1. Introduction 

The application of chaos analysis in studying non-linear systems is one of the 
best techniques that provide significant understanding of the chaotic dynamic 
systems [1]. Such systems include the gas-solid circulating fluidised bed risers 
which are extensively used in various industrial applications including the 
gas-catalytic reactions systems like the fossil fuel production industries [2] [3]. 
However, the productivity of these processes depends largely on the dynamics of 
the gas-solid suspension flow behaviours in the reactor systems [2] [4]. Thus 
proper understanding of the gas-solid flow behaviours is vital to the successful 
operations since the hydrodynamics in such systems influences the mass transfer, 
heat transfer, the gas-solid interactions, reaction rate and yield [1] [2] [3]. 

The gas-solid flow in the fluidized bed systems has been shown to be complex 
and governed by the non-linear relationships. In particular, studies show that 
solid concentration time series signals from the circulating fluidised bed riser 
exhibit non-linear relationships that are characterized by low dimensional de-
terministic chaos and therefore require non-linear techniques for proper analysis 
[1] [5] [6]. Thus, to accurately understand and describe the dynamics of such 
system it necessitates the use of non-linear techniques such as chaos analysis 
which are based on the construction of an attractor of the dynamic evolution of 
the system in state-space [1] [5]. 

Chaos analysis is one of the successful techniques in studying the dynamics of 
the gas-solid suspension flow in the circulating fluidised bed riser systems [1]. It 
involves determination of characteristic parameters that describes the recon-
structed attractor such as correlation integrals and correlation dimensions. Cor-
relation integral and correlation dimensions are the key parameters that are ex-
tensively used in studying the dynamic features of the chaotic system such as the 
circulating fluidized bed riser systems [1]. Correlation integrals are used in ana-
lysing and distinguishing the dependencies of dynamical variables and testing 
the randomness of chaotic time series data [7]. Further, several studies employed 
correlation integrals in estimating correlation dimension which are used to 
characterize complex and non-linear dynamical systems [8] [9] [10] [11]. 

Correlation dimension is a characteristic parameter that measures the fractal 
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dimension of the time series which describes the complexity of the reconstructed 
chaotic attractor of the chaotic systems [9] [12]. It is one of the key parameters 
that give a quantitative description of the strangeness of the fractal attractor and 
also a means to identify chaotic processes [10]. Estimation of correlation dimen-
sion is accomplished from the slope of the linear part of the correlation sum 
function or correlation integral curves [10] [12]. The correlation integrals are 
computed from the data set and the correlation dimension is estimated from the 
linear section of the log(Cr) − log(r) or ln(Cr) − ln(r) plots, called the scaling re-
gion [9] [10]. However, the subject question for many researchers has been on 
the identification of the scaling region for the proper and accurate determination 
of the correlation dimension. In this study the correlation dimension was not 
determined but instead scaling regions were established in terms of location 
along the log(r) axis, due to changes in location and operating conditions. 

Several studies have developed methods to identify the scaling region in order 
to accurately determine the correlation dimension. However, the commonly, 
easy and quickest method is reported to be the visual inspection method [10]. 
Though seems to be subject to the human decision, when used accurately may 
give significant and reliable dimension sufficient to describe and characterize the 
chaotic dynamical system. Since its inception by Grassbeger and Procaccia [8], 
the correlation dimension, D2, has been the mostly examined and employed di-
mension in describing the characteristic of the multifractal attractors of the cha-
otic dynamic systems [9] [10]. The dimension, D2, is mostly used in chaotic 
time-series processing and analysis since it is identified as one of the critical 
characteristic parameter for measuring chaotic properties of the non-linear time 
series. In such investigations, most of studies utilize the numerical system like 
the Lorentz system to examine the suitability of correlation dimension, D2, in 
explaining the underlying characteristics of the dynamic features of the chaotic 
system [10]. 

In this study we use real time series signals of the solid concentrations sam-
pled from the high-flux CFB riser system to compute the correlation integrals 
and employ visual inspection method to identify and analyse the scaling regions. 
The study analyses the correlation integrals and scaling regions obtained as em-
bedding dimensions increases in different radial positions of the wall region for 
different flow development sections of the riser at different operating conditions. 
Scaling regions obtained are analysed and compared. Formation of visible basin 
defined in this study as multifractal basin in some locations is also analysed and 
is the new observation and further extension from past studies. Further, the 
number of scaling regions for each curve of the correlation integral are exam-
ined. 

2. Literature Review 
2.1. Correlation Integral 

The correlation integral or correlation sum, C(r), for a collection of points, xi, in 
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some vector space is the fraction of all possible pairs of points which are closer 
than a given distance, r, in a particular norm; where r is the radius of the hyper-
sphere. In this case the correlation sum or the correlation integral is referred to 
as the probability that a pair of points chosen randomly with respect to the 
natural measure is separated by a distance less than r on the attractor [9] [12]. 
The method of correlation integral or correlation sum consists of centering a 
hypersphere on a point in hyperspace or phase-space, by letting the radius of the 
hypersphere, r, increase until all points are covered in the realm of the radius. 
This happens when r equals or exceeds the maximum attractor’s size. The value 
of r is increased while keeping track of the number of data points that are en-
closed by the hypersphere of that radius [13] [14] [15] [16] [17]. 

For a given m-dimensional phase space and the vector signals Xi and Xj, the 
correlation sum or correlation integral C(r) is given by [10] [11] [14]: 

( ) ( ) ( )
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i j i
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Substituting the vector distances i jX X−  with the solid concentration sig-

nals, sε , and express the equation using the Euclidean distance formula, Equa-
tion (1) becomes; 
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2.2. Scaling Region 

Scaling region refer to the linear section of the correlation integral curve, i.e. the 
ln(Cr) − ln(r) curve. The scaling region can be defined as a domain with meas-
urement invariability in which the object exhibit self-similarity over ranges of 
distance or trajectory scales [10]. It is from this linear portion of the curve where 
the correlation dimension is estimated. The correlation dimension estimator of 
the attractor is the slope of the scaling region of the correlation integral, C(r), 
versus hypersphere radius, r, as given in Equation (1) [1] [10]. Since the scaling 
region is used in computation of the correlation dimension which is used in 
characterization of the multi-fractal structure of the chaotic attractor [9], its 
identification is very crucial for an accurate determination of the correlation di-
mension. There are various methods established by various scholars to identify 
the scaling region. However, the simple and fast method identification method is 
by visual inspection though the method is reported to be subjective to the indi-
vidual decisions which may lead to differences in estimation of the boundaries 
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or the upper and lower limit of the straight section and therefore resulting in 
differences for the calculated correlation dimension [10]. 

Various studies show that in the limit of an infinite amount of data ( N →∞ ) 
and for small r, the correlation integral, C(r), scales like a power law [10] [14]. It 
is shown that, if the time series data set has an attractor, the relationship between 
the correlation integral, C(r), and the hyperspherical radius, r, is given by [10] 
[14]: 

( ) 2DC r rα                           (3) 

Then, if the dynamical behaviour of the time series is periodic or quasi-periodic, 
the correlation dimension, D2 is equal to the topological dimension of the at-
tractor, where for the chaotic dynamical systems it is a strange attractor and the 
computed fractal dimension, D2, is a non-integer number. The parameter D2 is 
the slope of the scaling region and Grassberger and Procaccia showed that it can 
be calculated from Equation (4) [9] [11] [14]: 
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N

r N
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The slope D2 which gives an estimate of the correlation dimension is a char-
acteristic quantity for time series and it shows how the correlation sum, Cr, 
scales with r. The slope of the linear section of the log(Cr) versus log(r) plot pre-
sents the important information required for characterization of the phase space 
attractor [18]. The slope of the log(Cr) versus log(r) plot can be estimated by the 
least square fit method of a straight line also termed as a scaling region over a cer-
tain range of hypespherical radius, r. The hyperspherical radius, r, is a radius in-
terval of sufficient length for small r where the dimension D2 remains approxi-
mately constant and regarded as an estimate of the correlation dimension [19]. 

Studies show that for a given time series of finite length, N, the correlation 
sum depends on factors such as the delay time, τ , and the embedding dimen-
sions, m, [9]. This makes the correlation dimension to be calculated by observ-
ing the gradient of the scaling region, i.e. the straight section of the log(Cr) − 
log(r) curve by increasing the values of m [9]. When the embedding dimension, 
m < D2, then the dimension of the reconstructed phase space can not unfold it-
self enough to release all necessary information required to describe its charac-
teristic behaviours. Therefore, the slope from the log(Cr) − log(r) curve gives an 
estimate or the range of the embedding dimensions as well. As the embedding 
dimension, m, increases, the attractor in the reconstructed phase space unfold 
itself improving its resolution. The slope of the linear section of the log(Cr) − 
log(r) plot increases as m increases until it saturates reaching a constant value 
which estimates the value of the correlation dimension, D2 of the attractor [9]. 

3. Methodology 
3.1. Measurement of Solid Concentration Signals 

Solid Concentration were collected from a CFB system shown in Figure 1 with a  
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Figure 1. The circulating fluidized bed with two riser system. 

 
twin-riser having 76 and 203 mm internal diameters and 10 m high operated at 
50 to 550 kg/m2s solids flux and 4.0 to 10.0 m/s gas velocity. Fluid catalytic 
cracking catalyst particles with 67 µm mean diameter and density of 1500 kg/m3 
were used. A 70% to 80% humid air was used for transporting the solid particles. 
Signals were sampled from eight (8) axial levels (i.e. Z = 0.98, 1.52, 2.73, 3.96, 
5.13, 6.34, 8.74, and 9.42 m) and 11 radial points (i.e. r/R = 0.00, 0.16, 0.38, 0.50, 
0.59, 0.67, 0.74, 0.81, 0.87, 0.92, and 0.98) at each level where r/R is the normal-
ized radial distances from the centre to the wall of the riser. To each point, 
29,100 data points of solid concentration were sampled in 30 seconds using op-
tical fiber probe at 970 Hz. In this study, a 76 mm riser was used and only 6 ra-
dial position in the wall region were studied (i.e. r/R = 0.00, 0.74, 0.81, 0.87, 0.92, 
and 0.98). 

3.2. Data Processing 

Solid concentration signals were used to compute correlation integrals using 
FORTRAN 2008 codes by employing Equation (2) for the preset hyperspherical 
radius, r, by varying the number of embedding dimensions from 2 ≤ m ≤ 25. The 
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plots of correlation integral, ln(Cr), versus hypersphere radius, ln(r), were plot-
ted in the suitable ranges of r for each signal to establish a notable scaling region. 
Visual inspection method were used to identify the scaling region where by a 
relatively straight section of the ln(Cr) − ln(r) curve were selected thereby re-
moving the remaining portion of the curve. Then the scaling region was plotted 
for different radial positions in the wall region at different axial elevations and 
operating conditions. 

3.3. Determination of Scaling Region from Correlation Integrals 

To determine scaling regions, the following procedure were used: (a) generation 
of correlation integrals for different number of embedding dimensions (m = 2 to 
25) at fixed operating conditions, (b) generation of correlation integrals at fixed 
number of embedding dimension, m, and at different operating conditions and 
locations, (c) identification of number of scaling regions and their respective 
ranges for each correlation integrals, and (d) plotting scaling regions on ln(Cr) − 
ln(r) plane to identify their location and analysing them basing on their number, 
slope, location and operating conditions. Procedures (a) to (d) were thus re-
ferred to as mapping the dynamics of the gas-solid flow using scaling regions 
from solid concentration time series. 

4. Results and Discussion 
4.1. Sample Scaling Regions and Their Analysis 

Figure 2 shows correlation integral profiles in the first raw with their respective 
scaling region in the second raw from the entrance section (Z = 1.52 m) of the 
riser in the wall region at r/R = 0.81 for Ug = 5.5 m/s and Gs = 300 kg/m2s. The  

 

 
Figure 2. Labeled correlation integral and its respective scaling region from the entrance section of the riser 
at r/R = 0.81 for Ug = 5.5 m/s and Gs = 300 kg/m2s. 
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first column shows correlation integral profiles with their scaling region for se-
lected embedding dimensions, m = 5, 8, 12 and 19 while the second column 
show correlation integral profiles with their scaling region for embedding di-
mensions, m, from 2 to 25. 

Features of the correlation integral profiles and scaling regions are the 
non-linear parts which present a region on the reconstructed attractor with very 
scattered system’s condition points beyond which the attractor ends. The linear 
part which is the linear section of the correlation integral profile referred to as 
the scaling region where the correlation dimension of the attractor is computed 
from. This part presents a region on the reconstructed attractor with dense sys-
tem’s states points. Further the figure shows the boundary line on the top and 
the bottom which connects the end points of the scaling region. 

The correlation integral and scaling region profiles are the ln(Cr) versus ln(r) 
curves which indicates how the points of the system’s conditions are distributed 
on the reconstructed attractor in the phase space. In chaos analysis the attractor 
is reconstructed from which important information are extracted through vari-
ous techniques such as analysing correlation integrals and identifying the scaling 
regions. Then attractor’s parameters are determined which in turn are used to 
describe or related to gas solid flow dynamics in the riser from which a time se-
ries data signals were sampled. 

Several studies report the use of scaling regions in describing various phe-
nomenon of the non-linear and chaotic systems such as the gas-solid flow be-
haviours in circulating fluidized bed riser [1] [9] [10] [12] [20] [21]. However, 
most of these studies are limited to the identification and use of the scaling re-
gion in determining the correlation dimensions of the system’s attractor. This 
work has extended the study on extracting more detailed information from the 
scaling regions in various flow development sections of the riser in the centre 
and the wall region. This study further presents the fact that scaling regions 
shifts its location along ln(r) axis and change its height along ln(Cr) axis. It also 
shows the number of scaling regions that can be obtained from the correlation 
integral. This study has also identified and presented the top and bottom 
boundaries of the scaling region end points as they change with embedding di-
mensions. Further this study has presented the effects on the scaling region of 
operating conditions and location in the riser in terms of radial positions and 
axial elevations or flow development sections. The study has also been able to 
identify and locate the multifractal basin which is the region demarcating the 
two separate scaling regions, i.e. the non-linear middle part of the scaling region 
separating the top and bottom linear part or scaling region. 

From Figure 2 it can be observed that as m increases the line spacing between 
profiles decreases while the slope of the profiles increases until it saturates to a 
constant slope. Also the length of the scaling region differs as m changes. The 
length of the scaling region indicates the size of the attractor in the phase space. 
The longer the scaling region the larger the attractor of a system’s phase space at 
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a particular embedding dimensions. Also the slope of the scaling region indi-
cates how points of the state’s conditions are scattered on the attractor. High 
slope indicates very densely distributed points while low slope indicates less 
dense distribution. Further, some correlation integrals show more than one 
scaling regions. This indicates more than one gas-solid flow dynamics phe-
nomenon. 

Further, using the mapped scaling regions this study have been able to show 
the increase in the number of scaling region close to the wall (r/R = 0.92) from 
the entrance section towards the fully developed flow section. This indicates the 
increase in gas-solid flow dynamic phenomenon. Also results show the horizon-
tal span of the scaling region in some radial positions like (r/R = 0.81) narrows 
upwards from the entrance section towards the fully developed section especially 
at which indicates the shrinkage in size of the attractor from the bottom towards 
the top. 

4.2. Mapping the Dynamics in the Entrance Section of the Riser 

The correlation integral ln(Cr) profiles with their respective scaling region in the 
entrance section (Z = 1.52 m) of the riser at the centre and the wall region for Ug 
= 5.5 m/s and Gs = 300 kg/m2s at different radial positions (r/R = 0.0, 0.81 and 
0.98) are presented in Figure 3. Plots show variations of correlation integral with 
hypespherical radius ln(r) in a series of embedding dimensions, m, from 2 to 25. 

Analysis of scaling regions starts by plotting correlation integrals followed by 
identification of scaling regions obtained by varying embedding dimensions, m, 
spanning from 2 to 25. Observation of the linear part of correlation integral 
curves shows that the scaling regions have different locations on the plane ac-
cording to the embedding dimension. The results shows also that the scaling  

 

 
Figure 3. Correlation integrals and the corresponding scaling regions at different radial positions in the 
entrance section of the riser (at Z = 1.52 m) at Ug = 5.5 m/s and Gs = 300 kg/m2s using different phase re-
construction dimensions. 
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region concentrates in one region as embedding dimension becomes higher in-
dicating saturation of the phase space. The distance between adjacent correlation 
integral and scaling region curves decreases as m increases throughout from m = 
2 to 25 making them very close towards higher embedding dimensions. From m 
≥ 10 the scaling regions are parallel with closer distribution of curves. That is, 
the linearity of the scaling region becomes constant at higher embedding dimen-
sion. This observation is different from results obtained from the numerical 
studies as reported in [12] where distances between adjacent curves were found 
to be relatively constant and parallel from m ≥ 6. 

The steepness of the curves in the linear section which express the slope of the 
scaling region were found to increase as the embedding dimension (m) increases. 
However, the slope of the linear scaling region becomes relatively the same from 
m = 15. Further it can be seen that as the hyperspherical radius, r, increases the 
correlation integral increases also. That is, the scaling region shifts from left to 
right as m increases until saturation. The scaling region exists only in a specific 
region of the plane before and beyond which it does not exist. This makes the 
selection of r to be critical for a different time series. Further, it can be seen in 
Figure 3 that the scaling region end points differ for each embedding dimension. 
Also, the separation of the scaling region end points is higher at the initial values 
(ri) than the final values (rf) of the hypespherical radius. The same applies for 
increasing m. 

Further observation of the correlation integrals and scaling regions show that 
curves at the centre and in the wall region have single S-shape profile with one 
scaling region for each correlation integral. The scaling region at the centre is 
located between −7 to −3 on the ln(r) axis while in the wall region at r/R = 0.81 it 
is located between −4 to −1. At r/R = 0.98 the scaling region is located between 
−7 to −3 on the ln(r) axis. Vertically the scaling region is span between −6 to −1 
on the ln(Cr) axis. It can be also observed that curves in the scaling regions at 
the centre (r/R = 0.0) are more steeper compared to that in the wall especially at 
r/R = 0.81. 

4.3. Mapping the Dynamics in the Wall Region of the 
Flow-Development Section of the Riser 

Figure 4 shows the correlation integral plots and the corresponding scaling re-
gions in the flow development section (Z = 3.96 m) at the centre and the wall re-
gion of the riser for Ug = 5.5 m/s and Gs = 300 kg/m2s. 

Results show that the scaling regions have different location on the plane ac-
cording to the embedding dimension as reported also above. In the flow devel-
opment section of a high flux riser, the scaling regions indicated multifractal 
flow dynamics at r/R = 0.81. In this case, for m = 6 to 25, two scaling regions 
were observed one at the top and the other at the bottom of the correlation inte-
gral. Embedding dimension, m ≥ 6, was capable to discern multiple scaling re-
gions indicating that the attractor reconstruction unfolds the dynamics compared 
to m < 6. 
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Figure 4. Correlation integrals and scaling regions at different radial positions in the flow-development sec-
tion of the riser (at Z = 3.96 m) for Ug = 5.5 m/s and Gs = 300 kg/m2s using different number of embedding 
dimensions. 

 
For m between 6 and 25, the observed multifractal behaviour leads to double S 

shaped correlation integrals for each m which manifests into a visible basin 
when the integrals are plotted together as seen in Figure 4. We define this be-
haviour as a multifractal basin. This leads to the importance of choosing opti-
mum embedding dimension (m) since m below 6 does not show the multifractal 
behaviours. As the hyperspherical radius, r, increase the correlation integral in-
creases also until it diminishes forming an S-shape curve as it approaches ln(Cr) 
= 0.0. Also as r decreases, the value of ln(Cr) decreases until it approaches the 
minimum value at ln(Cr) = −7 where it level down. Again Figure 4 shows varia-
tions in the bottom and the upper limit of the scaling region for each embedding 
dimension. The figure also shows that, scaling regions have different location on 
the plane according to the embedding dimension and radial position. The corre-
lation integral profiles at r/R = 0.81 shows significant differences from the centre 
by showing tendency to form more than one scaling region, that is, multifractal 
dimensions particularly when 6 ≤ m ≤ 25. The sensitivity analysis for m show 
that embedding dimension less than 6 (m ≤ 6) does not show the multifractal 
behaviour as it shows only one linear part. 

Correlation integral profiles at r/R = 0.92 differs from that at the centre since 
at higher m, they form more than one S-shaped profiles especially for m ≥ 15. 
This leads to the formation of more than one corresponding scaling regions. At 
higher embedding dimensions, say for m ≥ 15, multiple scaling regions become 
more distinct up to four towards m = 25. The observed multiple scaling region 
indicates presence of the multifractal flow behaviours. This behaviour could not 
be observed for lower embedding dimensions such as m ≤ 15. 

Figure 5 presents correlation integrals and their respective scaling regions at  

https://doi.org/10.4236/eng.2019.111007


J. M. Jeremiah et al. 
 

 

DOI: 10.4236/eng.2019.111007 85 Engineering 
 

 
Figure 5. Correlation Integrals and scaling region at different radial positions for Z = 3.96 m, Ug = 5.5 m/s and Gs = 300 kg/m2s 
using different embedding dimensions. 
 

different radial positions in the developing flow section (Z = 3.96 m) at the cen-
ter and in the wall region of the riser for different embedding dimensions when 
the operating conditions were fixed at Ug = 5.5 m/s and Gs = 300 kg/m2s. 

From the scaling regions, it can be seen that their slopes decreases towards the 
wall indicating that correlation dimension decreases towards the wall. The scal-
ing regions at the centre are longer than the profiles in the wall region where the 
shortest scaling regions were observed for the profile close to the wall at r/R = 
0.98. Towards the wall, more than one scaling region were observed, changing 
from single S-shaped correlation integrals, to multiple S-shapes within one curve, 
behaviour which is more pronounced for m = 15 and 25. For m = 5, the signals 
show more than one scaling region at r/R = 0.87 and 0.92. This behaviour is also 
shown when m = 15 and 25 in the wall especially close to the wall at r/R = 0.98. 
For r/R = 0.98, the number of scaling regions increased from one at m = 5 to two 
and three at m = 15 and 25, respectively. The number of fractals or scaling re-
gions increases with embedding dimensions, m, showing that the attractor be-
comes fully unfolded at higher m. Where multifractal behaviour is exhibited, e.g., 
at r/R = 0.98; the slope of scaling regions increases along the ln(r) axis, but also 
there is a vertical shift of the scaling region. The correlation dimension increases 
along ln(r) being highest towards high ln(r) values, or towards the right. For r/R 
= 0.0, only one scaling region was observed regardless of increasing m although 
its slope increases towards m = 15 and remains constant until m = 25. Moreover, 
increasing m, the scaling region(s) at r/R = 0.0, shifts to the right at higher r, on 
the ln(Cr) − ln(r) plane indicating that the attractor expands with increasing 
trajectory distances. When compared to other studies which reported the maxi-
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mum correlation dimension, such as in [8] and others, this study reveals multi-
ple scaling regions with different distinct slopes or correlation dimensions. This 
observation reveals a detailed view of the multiphase flow behaviour at the wall 
of a high-flux riser. 

4.4. Mapping the Dynamics in the Fully-Developed Flow Section of 
the Riser 

4.4.1. Effect of Radial Position 
The scaling regions in the fully developed section at Z = 9.42 m at the centre re-
gion of the riser (r/R = 0.0) and in the wall region at r/R = 0.81 and 0.98 for Ug = 
5.5 m/s and Gs = 300 kg/m2s are presented in Figure 6. The plot shows the varia-
tion of correlation integral with hypespherical radius ln(r) and the respective 
scaling region at different embedding dimensions, m, spanning from 2 to 25. 
The behaviour of the correlation integral and scaling regions for different radial 
positions gives an insight of the gas-solid flow dynamics in the riser. 

Results show that the scaling regions have different location on the plane ac-
cording to the embedding dimension and radial positions. In Figure 6 it can be 
seen that the end points of the scaling region differ for each embedding dimen-
sion and the separation of the scaling region end points is higher at the initial 
values (ri) than the final values (rf) of the hypespherical radius, where the scaling 
region does not change location as m increases. Also the scaling regions are less 
steep in the wall region as compared to the profiles at the centre. 

Results in Figure 6 shows one scaling region at r/R = 0.0 and in the wall re-
gion at r/R = 0.81 with single S shaped correlation integrals for each m. As the  

 

 
Figure 6. Correlation integrals and scaling regions at different radial positions in the fully-developed flow section of 
the riser (at Z = 9.42 m) for Ug = 5.5 m/s and Gs = 300 kg/m2s using different number of embedding dimensions. 
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hyperspherical radius, r, increase the correlation integral increases until it di-
minishes forming an S-shape curve as it approaches ln(Cr) = 0.0 where it levels 
up. Also as r decreases, the value of ln(Cr) decreases until it approaches the 
minimum value at ln(Cr) = −7 where it level down. The plot also shows that, 
scaling regions have different location on the plane according to the embedding 
dimension and radial position. The Scaling region and correlation integral pro-
files at r/R = 0.81 have S-shaped profiles similar to that at the centre but with low 
slope comparatively. Curves are not evenly distributed where the distances be-
tween curves decreases as m increases from m = 2 to 25 making them very closer 
towards higher embedding dimensions. This indicates the saturation of the re-
constructed attractor. Further, slopes of the scaling region increases as m in-
creases and then becomes relatively constant at higher embedding dimension 
towards m = 25. Close to the wall (r/R = 0.98), two scaling regions are observed 
for embedding dimensions from m = 2 to 25 which leads to the double S shaped 
correlation integrals which again manifests into a visible basin when the inte-
grals are plotted together. These scaling regions indicate presence of multifractal 
flow dynamics. 

4.4.2. Effect of Gas Velocity in Different Radial Position 
The mapping in Figure 7 shows the correlation integrals and their respective 
scaling regions when the embedding dimensions, m = 5, in the developing flow 
section (Z = 3.96 m) at the centre (r/R = 0.0) and the wall region (r/R = 0.81 and 
0.98) for different gas velocities of Ug = 5.5, 8 and 10 m/s with Gs = 300 kg/m2s. 
The figure shows that the correlation integrals/scaling region occupy different 
locations along ln(r) axis and has different slopes at different gas velocities. At  

 

 
Figure 7. Correlation integrals and scaling region in the fully developed flow section (at Z = 3.96 m) for m = 5 and operating con-
ditions, Ug = 5.5, 8, and 10 m/s and Gs = 300 kg/m2s. 
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the centre (r/R = 0.0), single scaling region is observed which comes from a clear 
single S-shaped correlation integral profiles when the riser is operated at all three 
gas velocities. The scaling regions formed at the centre have steep slopes com-
pared to those in the wall region for all gas velocities. The increasing number of 
scaling regions when the gas velocity is high, i.e. Ug = 10 m/s, indicates forma-
tion of multifractal dynamics at r/R = 0.81 and 0.98. 

The formation of multiple scaling regions is also shown in Figure 8 where the 
correlation integrals and their respective scaling regions are presented when the 
embedding dimensions, m = 25, in the fully developed flow section (Z = 9.42 m) 
at the centre (r/R = 0.0) and the wall region (r/R = 0.81 and 0.98) for different 
gas velocities of Ug = 5.5, 8 and 10 m/s with Gs = 300 kg/m2s. It can be observed 
that the correlation integrals/scaling region have different locations along ln(r) 
length and different slopes at different gas velocities. At the centre (r/R = 0.0) a 
clear single scaling region was observed from a clear single S-shaped correlation 
integral profiles for all three gas velocities. The scaling regions at the centre have 
steep slopes compared to those in the wall region for all gas velocities. The for-
mation of multiple S-shaped correlation integral profiles increases the number of 
scaling regions which indicates multifractal flow dynamics in the wall region as 
shown at r/R = 0.81 and 0.98 for all gas velocities. At Ug = 5.5 m/s, a single scal-
ing region was observed for r/R = 0.0 and 0.81, while at Ug = 8.0 m/s and 10 m/s 
double scaling regions are observed at r/R = 0.81. At the wall, r/R = 0.98, when 
the riser is operated at all gas velocities the multiple scaling region is observed 
with lower gas velocity having up to three distinct scaling regions. Such behaviour 
can not be observed when the analysis is done using single value of correlation  

 

 
Figure 8. Correlation integrals and scaling region in the fully developed flow section (at Z = 9.42 m) for m = 25 and the operating 
conditions, Ug = 5.5, 8, and 10 m/s and Gs = 300 kg/m2s. 
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dimension. The correlation integrals at r/R = 0.98 have no clear S-shaped pro-
files with multiple scaling regions suggesting multifractal gas-solid flow behav-
iours. 

4.5. Comparing the Scaling Regions in Different Flow  
Development Sections of the Riser 

The comparison of scaling regions in three different flow development sections 
in the wall region and at the centre when the riser is operated at the gas velocity, 
Ug = 5.5 m/s and solid mass flux, Gs = 300 kg/m2s is shown in Figure 9. At the 
centre (r/R = 0.0), profiles have single scaling region for all sections indicating 
highly uniform flow behaviours. Profiles in the wall region, starting from r/R = 
0.81 in the developing flow section (Z = 3.96 m) towards the wall (r/R = 0.92) 
shows multiple scaling region. Formation of multiple scaling regions is more 
observed close to the wall for all flow development sections especially at higher 
embedding dimensions. This may imply presence of multiple gas-solid flow dy-
namic phenomena resulting from solid-solid interactions, gas-solid interactions, 
solid wall interactions, gas-gas molecules interactions, gas-wall interactions and 
solids back-flow. The influence of the exit shape and solids back-flow at the top 
of the riser and close to the wall is shown by the change of location and size of 
the scaling regions towards the top. At Z = 9.42 m and r/R = 0.92 the scaling re-
gion is small and more concentrated towards the origin of the ln(r) − ln(Cr) 
plane. The reduction of the size of the scaling region towards the wall may also  

 

 
Figure 9. Comparison of the scaling regions from different flow development sections of the riser for Ug = 5.5 m/s and Gs = 300 
kg/m2s. 
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indicate contraction of the system’s attractor. 
In Figure 9 the last two columns presents the scaling regions at different scale 

but from the same radial position (r/R = 0.92) along different flow development 
sections. The last column are drawn using large scale in order to unfold different 
features which are not visible when drawn using small scale like the presence of 
multiple scaling regions. 

Further observations show variations in locations and limits of the scaling re-
gion throughout the riser sections and regions. For instance, scaling regions at 
r/R = 0.81 along different flow development sections occupy different locations 
along the ln(r) axis for all sections. In the entrance section (Z = 1.52) it is located 
between 0.0 to −4, while in developing flow and fully developed flow sections 
they are located between −1 to −5 and −4 to −7 respectively. Vertically along the 
ln(Cr) axis, the scaling regions are located between −1 to −6 for the centre and in 
the wall region at r/R = 0.81 for all sections. 

Results further show that slopes of the scaling regions in the wall region are 
relatively lower than those at the centre and hence low correlation dimensions 
compared to that at the centre. The lowest slopes are observed in the developing 
flow section at r/R = 0.81 and in the developed flow section at r/R = 0.92. Most 
of the slopes of the scaling regions increase as the embedding dimensions in-
creases up to where it becomes relatively constant at higher embedding dimen-
sions. Also, the distances between curves decreases as embedding dimensions 
increases making profiles to become closer until the distances becomes relatively 
constant at higher embedding dimensions. These observations are shown at the 
centre and in the wall region at r/R = 0.81 for all sections. Such observations in-
dicate saturation of the reconstructed attractor. 

5. Conclusions 

Gas-solid flow dynamics in the high-flux CFB riser were studied by analysing the 
scaling regions at different radial position and axial elevations for different op-
erating conditions of gas velocity (Ug) and locations along the ln(r) axis. The 
number and length of scaling regions, slopes, presence of multifractal basins, 
and shifting tendency along ln(r) axis were assessed and discussed. Based on the 
results and discussion the following conclusions can be made: 

1) Scaling regions have different location on the plane according to the par-
ticular spatial location within the riser and operating conditions. 

2) As the number of embedding dimensions increases, spacing between scal-
ing regions decreases until it saturates towards higher embedding dimensions. 

3) The slope of scaling regions increases as the number of embedding dimen-
sions (m) increases until it saturates and becomes constant at higher embedding 
dimensions. 

4) Towards the wall, the slope of scaling regions decreases while the number 
of scaling regions increases. 

5) The span of the scaling region is wider at the initial values (ri) than the final 
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values (rf) of the hyperspherical radius. 
6) The scaling regions in the developing flow section (Z = 3.96) and the wall 

region (r/R = 0.81 and 0.98) show multifractal behaviour for each embedding 
dimension which manifests into a visible basin defined as multifractal basin. 

7) The end points of the scaling region for each profile differ from each other 
as the number of embedding dimension changes. 

However, this study is not exhaustive and therefore further studies are rec-
ommended on risers of different diameters and heights that are operated at dif-
ferent conditions of solid flux (low and high) and gas velocities for comparison. 
But also further studies are recommended using time series of different signal 
types like pressure fluctuations. 
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