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Abstract 
This paper presents the recognition of “Baoule” spoken sentences, a language of Côte 
d’Ivoire. Several formalisms allow the modelling of an automatic speech recognition 
system. The one we used to realize our system is based on Hidden Markov Models 
(HMM) discreet. Our goal in this article is to present a system for the recognition of 
the Baoule word. We present three classical problems and develop different algo-
rithms able to resolve them. We then execute these algorithms with concrete exam-
ples. 
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1. Introduction 

The speech recognition by machine has long been a research topic that fascinates the 
public and remains a challenge for specialists, and it has continued since then to be at 
the heart of much research. The progress of new information and communications 
technology has helped accelerate this research. In our first article, we presented a me-
thod to separate phonemes contained in a speech signal. 

In this article we propose to identify a flow of words often uttered in a more or less 
background noise. This task is made difficult not only by the deformations induced by 
the use of a microphone but also by a series of factors inherent in human language, 
homonyms; local accents; the habits of language; the speed differences between the 
speakers; the imperfections of a microphone, etc. For our human ear, these factors do 
not usually represent difficulties. Our brain juggles these deformations of speech by 
taking into account, almost unconsciously, nonverbal and contextual elements that al-
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low us to eliminate ambiguities. It is only by taking into account these elements that are 
external to the voice itself that voice recognition software will be able to achieve a high 
level of reliability. Today, speech recognition softwares that work best are all based on a 
probabilistic approach. The aim of speech recognition is to reconstruct a sequence of 
words M from a recorded acoustic signal A. In the statistical approach, we will consider 
all the consequences of M words that could match the signal A. In this set of possible 
word sequences, we will then choose the one (M) which is the most likely to maximize 
the P(M/A) probability that M is the correct interpretation of A, we note: 

( ) ( ) ( )Argmax | |
M

M P M A P A M P M= =  

This equation is the key to the probabilistic approach to speech recognition. Indeed, 
the first term P(A/M) is the probability of observing the acoustic signal A if the M se-
quence of words is pronounced: it is a purely acoustic problem; the second term P(M) 
is the probability that this is the result of M words that is actually stated: it is a linguistic 
problem. The above equation thus teaches us that we can split the speech recognition 
problem into two independent parts: we will model the acoustic aspects separately and 
language problems. In the literature, we usually speak of orthogonality between the 
ACOUSTIC MODELS and LANGUAGE. The succession of possible words that is ob-
tained must be refined and validated by the word patterns and language. The acoustic 
model can take into account the acoustic and phonetic constraints in a sound or group 
of sounds. On our part, we have chosen the WORD as decision unit. By integrating also 
a Markov modeling, which has higher levels of language, it becomes possible to achieve 
a pronounced phrases discretely recognition system (i.e. in single word). 

2. The Speech Signals 
2.1. Characteristics of the Speech Signal 

PAR is a difficult problem, mainly due to the specific material to interpret: the voice 
signal. The speech acoustic signal has characteristics that make complex interpretation. 

Redundancy: the acoustic signal carries much more information than necessary, 
which explains its resistance to noise. Of analytical techniques were implemented to 
extract relevant information without too degrading it. 

Variability: the acoustic signal is highly variable from one speaker to the other 
(gender, age, etc.) but also for a given speaker (emotional state, fatigue, etc.), which 
makes very difficult the recognition problem speaker’s independent speech. 

Continuity: the acoustic signal is continuous and contextual effects of sound on ele-
mentary visions are considerable. 

2.2. Processing of the Speech Signal 

By speech processing we mean the processing of the information contained in the 
speech signal. The objective is the transmission or recording of this signal, or its syn-
thesis or recognition. The speech processing is now a fundamental component of the 
engineering sciences. Located at the intersection of digital signal processing and lan-
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guage processing (that is to say, symbolic data processing), this scientific discipline has 
known since the 60s a rapid expansion, linked to the development of means and tele-
communications techniques. The special importance of speech processing in this 
broader context is explained by the privileged position of the word as an information 
vector in our human society. 

3. System Overview 
3.1. The Acoustic Model 

The ACOUSTIC MODEL (Figure 1) reflects the acoustic realization of each modeled 
element (phoneme, silence, noise, etc.). It is based on the concept of phonemes. Pho-
nemes can be considered as the basic sound units in verbal language. The first stage of 
speech recognition is to recognize a set of phonemes in words flow. Statistical realiza-
tion of acoustic parameters of each phone is represented by a Markov model Cache 
(HMM: Hidden Markov Model). Each phoneme is typically represented by 2 or 3 states 
and density multigaussienne (GMM: Gaussian Mixture Model) is associated with each 
state. See Figure 2 below. 

The speech signal (picked up using a microphone) is first digitized: it is sampled by a 
Fourier transformation which calculates the energy levels of the signal in bands of 25 
milliseconds, which strips overlap in 10 milliseconds time. 

The result is compared with prototypes stored in computer memory in both a stan-
dard dictionary and a speaker’s own dictionary. This dictionary is constructed by in-
itially sessions dictation standard texts that the speaker must make before effectively 
use the software. This own dictionary is regularly enriched by self learning during the 
software uses. It is interesting to note that thus constituted voiceprint is relatively stable 
for a given speaker and little influenced by external factors such as stress, colds, etc. 
(Figure 3). 

3.2. The Language Model 

It is generally divided into two part linked to language: a syntactic part and a semantic 
game. When ACOUSTIC MODEL has identified at best phonemes “heard”, we still 
look the most likely message M corresponding thereto, that is to say, the probability 
P(M) defined above. It is the role of syntactic and semantic models. See Figure 4 below. 

From the set of phonemes from the ACOUSTIC MODEL The SYNTACTIC MODEL 
will assemble phonemes into words. This work is also based on a dictionary and gram- 
 

 
Figure 1. System of speech recognition. 
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Figure 2. The part of the system using the acoustic model. 

 

 
Figure 3. Acoustic model (A phoneme is modeled as a sequence of acoustic vector). 

 

 
Figure 4. The part of the system using the semantic model. 
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mar standards (The language “Baoule” has one) as well as a dictionary and a grammar 
own speaker; these reflect the “habits” of the speaker and is continuously enriched. 
Then SEMANTIC MODEL seeks to optimize the identification of the message by ana-
lyzing the context of the words and while basing on both its own common language 
semantics and on cleanning the speaker semantics (a style). This modeling is usually 
built from the analysis of sequences of words from a large textual corpus. This clean 
semantics will be enriched as you use the software. Most softwares also allow enriching 
the analysis of texts that reflect the stylistic habits of the speaker. These two modules 
work together and it is easy to conceive that there is a feedback between them. 

Initially, the dictionary associated with these two modules were based on fixed syntax 
language models, that is to say, modeled on a grammar defined by a rigid set of rules 
(this is not the case in most African languages including the “Baoule” language). 

Then, the voice recognition software has evolved into the use of local probabilistic 
models: recognition no longer performs at a word but at a series of words, called 
n-gram where n is the length words in a sequence .The statistics of these models are 
obtained from standard texts and may be enriched gradually. See Figure 5 below. 

Here too, Hidden Markov Models are those currently used to describe the probabilis-
tic aspects. the most advanced software tend to combine the advantages of statistical 
models and fixed syntax models in what is called the “probabilistic grammars”, the idea 
being to derive from fixed grammars of probabilities that can be combined with those 
of a probabilistic model. In recent approaches, it becomes difficult to distinguish the 
syntactic model of the semantic model and we rather speak of a single language model. 

4. Hidden Markov Model Discrete Time 
4.1. Overview and Features 
4.1.1. Fundamentals 
Hidden Markov Models (HMM) were introduced by Baum and his collaborators in the 
60s and the 70s [1]. This model is closely related to Probabilistic Automata (PAs) [2]. A 
probabilistic automaton is defined by a structure composed of states and transitions, 
and a set of probability distribution on transitions. Each transition is associated with a 
symbol of a finite alphabet. This symbol is generated every time the transition is taken. 
An HMM is also defined by a structure consisting of states and transitions and by 
 

 
Figure 5. Semantic model. 
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a set of probability distribution over the transitions. The essential difference is that the 
IPs symbol generation is performed on the states, and not on transitions. In addition, is 
associated with each symbol, not a state, but a probability distribution of the symbols of 
the alphabet. 

HMMs are used to model the observation sequences. These observations may be dis-
crete (e.g., characters from a finite alphabet) or continuous (the frequency of a signal, a 
temperature, etc.). The first area in which the HMMs have been applied is the speech 
processing in early 1970 [3] [4]. In this area, the HMM will rapidly become the refer-
ence model, and most of the techniques for using and implementing HMM have been 
developed in the context of these applications. These techniques were then applied and 
adapted successfully to the problem of recognition of handwritten texts [5] [6] and 
analysis of biological sequences [7] [8]. Theorems, rating and proposals that follow are 
largely from [9]. 

4.1.2. Characteristics of HMM 
A sequence { }kX  of random variables with values in a finite set E is a Markov chain if 
the following property holds (Markov property):  

[ ] [ ]0 0 1 1 1 1| , , |k k k k k k k kP X i X i X i P X i X i− − − −= = = = = =  for any time k and any suite 

0 , , ki i E∈  
Note that notion generalizes the notion of deterministic dynamical system (finite 

state machine recurrent sequence, or ordinary differential equation): the probability 
distribution of the present state kX  depends only on the immediate past state 1kX − . 

A Markov chain { }kX  is entirely characterized by the data 
• the original legislation ( )iυ ν= ; [ ]0:i P X iν = =  for all i E∈  
• and the transition matrix ( ),i jπ π= ; [ ]0:i P X iν = =  for all ,i j E∈  
supposedly independent of time k (homogeneous Markov chain). 

Knowing the transition probabilities that exist between two succesive times is enough 
to globally characterize a Markov chain. 

Proposal 
υ  is a probability on E, and π  a Markov matrix E 
The probability distribution of the Markov chain { }kX  of υ  original legislation 

and π  transition matrix is given by  
[ ]

0 0 1 10 0 , ,, ,
k kk k i i i i iP X i X i υ π π
−

= = =   for any time k, and any suite 0 , , ki i E∈  
In this model the suite is not observed directly after { }kX , but observations are 

available { }kY  with values in a finite space O (if symbolic) or d
  (digital case), col-

lected through a channel without memory, that is to say, conditionally to { }kX  states. 
i. the observations { }kY  are mutually independent, and 
ii. each observation { }kY  depends only on the { }kX  at the same time 
This property is expressed as follows:  
[ ] [ ]0 0 0 0 0d , , d | , , d |n

n n n n k k k kkP Y y Y y X i X i P Y y X i
=

∈ ∈ = = = ∈ =∏   for any result, 

0 , , ki i E∈ , and every sequence 0 , , d
ny y ∈   

Example 
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Assume that the observations { }kY  are connected with states { }kX  follows 
( )k k kY h X V= +  where the sequence { }kV  is a Gaussian white noise dimension, with 

zero mean and covariance matrix R reversible, independent of the Markov chain { }kX  
function h defined on E with values in d

  is characterized by the data of a finite fam-
ily ( )ih h=  vectors of d

 , and was 

[ ]
( )

( ) ( )11 1d | exp d
2det 2π

k k h iP Y y X i y h R y h y
R

− ∈ = = − − ∗ − 
 

 

conditionally to { }0 0 , , n nX i X i= = , random vectors 0 , , nY Y  are mutually inde-
pendent, and each kY  is a Gaussian random vector of dimension d, medium 

ki
h  and 

R covariance matrix so that no memory channel property is verified. 
A hidden Markov model ( ){ },k kX Y  is fully characterized by the particular 
The original legislation ( )iυ ν= ; [ ]0:i P X iν = =  for all i E∈  
The transition matrix ( ),i jπ π= ; [ ], 1: |i j k kP X j X iπ −= = =  for all ,i j E∈  ande-

mission densities ( )ig g= ; ( ) [ ]d : d |i k kg y y P Y y X i= ∈ =  for all i E∈  for any and 
all dj∈ . 

So just a local data (transition probabilities between two successive times, and densi-
ties of issue at a time) comprehensively characterizes a hidden Markov model, example: 
for K = 3, it comes: 

2

0.9 0.90 0.05 0.05 5 1
0.1 , 0.10 0.80 0.10 , 1 , 5
0 0.05 0.15 0.80 10 10

v hπ σ
−       

       = = = =       
              

 

Proposal: The probability distribution of the hidden Markov model ( ){ },k kX Y  
initial υ  law of π  transition matrix, and g emission densities, is given by 
[ ] ( ) ( )

0 0 1 1 00 0 0 0 , , 0 0; ; ; d ; ; d d d
k k kk k k k i i i i i i i k kP X i X i Y y Y y g y g y y yν π π
−

= = ∈ ∈ =    
for all time k following 0 , , ki i E∈ , and every sequence 0 , , d

ky y ∈   is denoted by 
( ); ;M gυ π= , the parameters characteristic of the model, and we focus on three issues: 

Problem No. 1: Evaluate the model: it comes to efficiently compute the probability 
distribution of the following observations ( )0 ; ; nY Y  (or likelihood function) 
according to the parameters of the model M. The answer to this problem is provided by 
the forward Baum equation. 

Problem No. 2: Identify the model: given a series of observations ( )0 ; ; nY Y , this is 
to calculate the maximum likelihood estimator for the unknown parameters of the 
model M. The answer to this problem is provided by the re-estimation formulas of 
Baum-Welch, defining an iterative algorithm to maximize the likelihood function. 

Problem No. 3: Estimate the condition of the system: given a sequence of obser- 
vations ( )0 ; ; nY Y , it is to estimated recursively the state nX  (filtering Song), or a 
good estimate nX  intermediate state for 0, ,k n=   (smoothing Song), or an overall 
estimate of the sequence of states ( )0 ; ; nX X , for a given model M. the response to 
first two problems is provided by the forward and backward equations Baum, which 
calculate the conditional probability distribution of kX  state given observations 
( )0 ; ; nY Y . 
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The answer to the last problem is provided by a dynamic programming algorithm, 
the Viterbi algorithm, which maximizes the conditional probability distribution of the 
sequence of states ( )0 ; ; nX X  given observations ( )0 ; ; nY Y . 

4.2. Equations Forward/Backward Baum 

We first present a first method (basic but inefficient) to calculate the probability dis- 
tribution of observations ( )0 ; ; nY Y . 

Proposal: The probability distribution of observations ( )0 ; ; nY Y  is given (in the 
digital case) by 
[ ] ( ) ( )

0 0 1 1 00 0 , , 0 0d ; ; d d d
k k kn n i i i i i i i k kP Y y Y y g y g y y yν π π
−

∈ ∈ =     for any sequence 

0 , , d
ky y ∈  . 

Note that elementary method provides a first expression for the conditional probabi- 
lity distribution of the sequence of states ( )0 ; ; nX X  given observations ( )0 ; ; nY Y  
(in digital case): 

[ ] ( ) ( )
( ) ( )

0 0 1 1 0

0 0 1 1 00

, 0
0 0 0

, 0, ,

, , | , , n n n

n n nn

i i i i i i i n
n n n

j j j j j j j nj j E

v g Y g Y
P X i X i Y Y

v g Y g Y
π π

π π
−

−∈

= = =
∑









 



 

and the likelihood of the model (obtained using the following observations ( )0 ; ; nY Y  
in place of dummy variables): 

( ) ( )
0 0 1 1 0

0

, 0
, ,

n n n
n

n i i i i i i i n
i i E

L v g Y g Yπ π
−

∈

= ∑


  

we deduce the following identities: 

[ ] ( ) ( )
0 0 1 1 00 0 0 , 0, , | , ,

n n nn n n n i i i i i i i nP X i X i Y Y L v g Y g Yπ π
−

= = =  . 

Note the number of operations required to calculate the probability distribution of 
observations ( )0 ; ; nY Y  from this basic method is significant for each possible path 
( )0 ; ; ni i  of the Markov chain, you must compute the product of ( )2 1n +  words, 
and there is 1nE +  different possible paths the total number of elementary operations 
(additions and multiplications) thus made is of the order of ( ) 12 1 nn E ++  the number 
is growing exponentially with the number n of observations. we define the forward 

( )k
k kp p=  (seen as a row vector) by [ ]0| , ,i

k k k kp P X i Y Y L= =   for all i E∈ . 
Note the forward variable used to calculate the conditional probability distribution of  

the present state kX  given observations ( )0 ; ; nY Y : [ ]0
1| , ,k k k

k

iP X i Y Y p
L

= =   

for all i E∈ . (In this sense, kp  is a distribution of non-normalized probability), and 
the normalization constant i

k i E kL p
∈

= ∑  is interpreted as the likelihood of the model 
given observations ( )0 ; ; nY Y . 

Theorem: The sequence { }kp  satisfies the following recurrence equation: 
( )1 ,

i
k i j j ki E

j
kp p g Yπ−∈

 =  ∑  for all j E∈  with the initial condition ( )1 0
i
k i jp g Yν− =  

for any i E∈ . 
Note this statement result component-by-component can also be made for the 

variable forward view as a row vector ( )1k k kp p G Yπ−=  and ( )0 0p G Yυ= . 
Note the recursive calculation of the variable forward np  involves only the product 



H. Konan et al. 
 

605 

matrix/vector, and to calculate more efficiently the probability distribution of obser- 
vations ( )0 ; ; nY Y  simply ( )2 1E E +  elementary operations (additions and multi- 
plications) to move from time k to time ( )1k +  the total number of elementary 
operations to be performed is thus of the order of: ( ) ( )2 1 2 1n E E E+ + −  this 
number grows only linearly with the number n of observations. 

Digital implementation: Instead of first solving the equation for the forward 
non-standardized version of the conditional distribution, defined at any time k as 

[ ]0| , ,k k
i
k kp P X i Y Y L= =   for all i E∈  and then deduct the normalization constant 

(likelihood) and the normalized version of the conditional distribution (filter) 

i
k ki EL p

∈
= ∑  and [ ]0| , ,

i
i k
k k kj

kj E

p P X i Y Y
p

p
∈

= = =
∑

  

It is more efficient, on a digital point of view, spread directly log-likelihood and filter. 
Proposal: Following { }kp  Verie the following recurrent equation: 

( ),
1j j

k k i j j ki E
k

p p g Y
c

π
∈

 =  ∑  for all j E∈  with the initial condition 

( )0 0
0

1i
i jp g Y

c
ν=  for any i E∈ . 

where the normalization constants are defined by ( )1 ,,
i

k k i j j ki j Ec p g Yπ−∈
= ∑  and 

( )0 0i ji Ec g Yν
∈

= ∑ . 
Note this result statement component-by-component may also be formulated for the  

normalized forward variable seen as a row vector 1
1 kY

k k
k

p p G
c

π−=  and 0
0

0

1 Yp G
c
υ=  

where the normalization constants are defined by 1
kY

k kc p gπ−=  and 0
0

Yc gυ= . 
Note: Following { }log kL  truth the following recurrent equation:  

1log log logk k kL L c−= +  with the initial condition 0 0log logL c=  and iterating log 

0
log logn

k kk
L c

=
= ∑ . For all intermediate time k, less than the final instant n, is defined 
[ ]0| , ,i

k k n nq P X i Y Y L= =   for all i E∈ . 
Note: That variable allows to calculate the conditional probability distribution of the  

present state kX  knowing all comments ( )0 ; ; nY Y , [ ]0
1| , , i

k n k
n

P X i Y Y q
L

= =   

for all i E∈  with the normalization constant i
n ki EL q

∈
= ∑ . 

Note: Fix the state at time k allows a break between the past up to time ( )1k −  and 
the future from time ( )1k + . This justifies the introduction of the variable backward 

( )i
k kv v=  (seen as a column vector) and defined as: 

( ) ( )
1 1 1, , 1, , k n n k nk i n

i
k i i i i i k i ni i Ev g Y g Yπ π

+ − ++ +∈
= ∑



  for any i E∈  

and in particular ( )1 ,
i
n i j j nj Ev g Yπ− ∈

= ∑  for all i E∈  with this definition, is obtained 
i i i
k k kq p v=  for all i E∈ . 
Note: Conditionally ( )kX i=  the X_ suite 1 2; ;k kX X+ +   to come hidden states is 

a Markov chain, from initial law ,iπ   (line i the π  matrix), that is to say that 
[ ]1 ,|k k i jP X j X i π+ = = =  for all j E∈  and π  transition matrix it follows that the 

backward variable can be interpreted as the likelihood of the model derived from the 
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kX i=  state at time k given observations ( )1, ,k nY Y+  . 
Theorem: 
After { }kv  Verie recurrent retrograde following equation: 

( )1 ,
i j
k i j j k kj Ev g Y vπ− ∈

= ∑  for all i E∈  with the initial condition: 1i
nv =  for all 

i E∈ . 
Note: This result statement component-by-component can also be formulated for 

the backward view variable as a column vector ( )1k k kv G Y vπ− =  and 1nv ≡ . 
Proposal: the forward and backward equations are dual to one another: 

0 0
i i i i i

k k n ni E i E i Ep v p v p L
∈ ∈ ∈

= = =∑ ∑ ∑  not dependent of the time in question 
Proposal: For the distribution of conditional probability of transition ( )1, ,k nX X−   

at an intermediate time given observations ( )0 , , nY Y  until the final moment is given 
by: 

[ ] ( )1 0 1 ,
1, | , , i j

k k n k i j j k k
n

P X i X j Y Y p g Y v
L

π− −= = =  for all ,i j E∈  

By summing for all j E∈  and using the equation backward, or by summing for all i 
∈ E and using the forward equation, we find the following results in terms of product 
component-by-component variables forward and backward. 

Corollary: the conditional probability distribution of the present state kX  knowing  

all comments ( )0 , , nY Y  is given by [ ]0
1| , , i

k n k
n

P X i Y Y q
L

= =  with the definition  

i i i
k k kq p v=  for all i E∈ . 
Note: Verie one that constant Standards 

1 , 1 ,
,

k kY Yi j i j j j
k i j j k k i j j k k k n

i j E j E i E j E
p b v p b v p v Lπ π− −

∈ ∈ ∈ ∈

 
= = = 

 
∑ ∑ ∑ ∑  

and i i i
k k k ni E i Eq p v L

∈ ∈
= =∑ ∑  

do not depend on the time in question, and are interpreted as the likelihood of the 
model given observations ( )0 , , nY Y . instead of first solve the backward and forward 
equation equation separately, and to successively deduct the non-normalized version of 
the conditional distribution, defined at any instant k as  

[ ]0| , ,i i i
k k k k n nq p v P X i Y Y L= = =   for all i E∈  

then the normalized version of the conditional distribution (smoother) 

[ ]0| , ,
i i i i i

i k k k k k
k k nj j j j j

k k k k kj E j E j E

q p v p vq P X i Y Y
q p v p v

∈ ∈ ∈

= = = = =
∑ ∑ ∑

 . 

It is more efficient on a digital point of view, spread directly log-likelihood and filter,  

then spread the variable defned at any time k as 
i

i k
k j j

k kj E

vv
p v

∈

=
∑

 for any i E∈ . 

Note: That with normalization of the backward variable, the conditional probability 
distribution of kX  state given observations ( )0 , , nY Y  is expressed as 
[ ]0| , , i i i

k n k k kP X i Y Y p v q= = =  for all i E∈ . 
Proposal: Following { }kv  Verie recurrent retrograde following equation: 
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( )1 ,
1i j

k i j j k kj E
k

v g Y v
c

π− ∈
= ∑  for all i E∈ , with the initial condition: 1i

kv =  for all  

i E∈  where the normalization constants are those already defined for the normali- 
zation of the variable forward. 

Note: This result statement component-by-component can also be formulated for  

backward standardized variable viewed as a column vector ( )1
1

k k k
k

v G Y v
c
π− =  and  

1nv ≡  where the normalization constants are those already defined for the normaliza-
tion of the variable forward. 

Note: It is noted that 1
1 1 1

1 1i j i i jk
k k k k k

n n k

Lp v p p v
L L c

−
− − −= =  for all ,i j E∈  

And postponing this identity in the expressions obtained above, we Verie that the 
conditional probability distribution of the transition ( )1, ,k kX X−   given observations 
( )0 , , nY Y  is expressed as 

[ ] ( )1 0 1 ,
1, | , , i j i

k k n k i j j k k k
k

P X i X j Y Y p g Y v q
c

π− −= = = =  for ,i j E∈ . 

4.3. Viterbi Algorithm 

Forward and backward variables used to calculate the conditional probability distribu-
tion of the state this nX , or nX  state at an intermediate moment, given observations  

( )0 , , nY Y  defined by [ ]0
1| , , i

n n n
n

P X i Y Y p
L

= =  for all i E∈ , and  

[ ]0
1| , , i

k n k
n

P X i Y Y q
L

= =  for any i E∈  respectively, where the normalization con- 

stant i i i i
n n k k ki E i E i EL p p v q

∈ ∈ ∈
= = =∑ ∑ ∑  does not depend on the time in question, 

and interprets as the likelihood of the model given observations ( )0 , , nY Y . it is not 
necessary to calculate the conditional average, but can be used however the estimator of 
maximum a posteriori, which minimizes the likelihood of the estimation error given 
observations ( )0 , , nY Y  and defined for the present state  

[ ]0arg max | , , arg maxLMAP i
N i E n n i E nX P X i Y Y p∈ ∈= = =  and for the state to an inter- 

mediate time by [ ]0arg max | , , arg maxLMAP i
k i E k n i E kX P X i Y Y q∈ ∈= = =  it may hap- 

pen that the sequence ( )0 , ,LMAP LMAP
nX X  generated is inconsistent with the model, in 

the following sense: it can happen that is obtained 1
LMAP
kX i− =  and LMAP

kX j=  for two 
successive times, while , 0i jπ =  for the same pair ( ),i j , which meant that the transi-
tion from state i to state j is just impossible for the model for this reason, rather it uses 
another estimator, called trajectoriel maximum a posteriori estimator, defined by

( ) [ ]
00 , , 0 0 0, , arg max , , | , ,

n

LMAP LMAP
n i i E n n nX X P X i X i Y Y∈= = =



   . 
And minimizes the probability of the estimation error of the sequence of hidden 

states given observations ( )0 , , nY Y  it is of course not possible to perform this max-
imization exhaustive manner, listing all 1nE +  possible trajectories: the efficient calcu-
lation of this estimator is provided by a dynamic programming algorithm called Viterbi 
algorithm. 
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4.4. Re-Estimation Formulas Baum-Welch 

So far, the focus was on the estimation of a hidden condition or because of successive 
hidden states, from a series of observations and for a given model. The goal here is to 
identifier the model, that is to say, to estimate the parameters of the model characteris-
tics, from a series of observations, and the approach taken is that of estimation maxi-
mum likelihood. 

In the digital case, we look at the case of the Gaussian emission densities characte-
rized by the data of finite ( )ih h=  d  vectors and of finite Family ( )iR R=  ma-
trices invertible covariance, that is to say: 

( ) ( )
( )

( ) ( )11 1, , exp
2det 2π

i i i i i
i

ig y g h R y y h R y h
R

−= = − − ∗ − 
 
 

 

The likelihood function of the model ( ); ; ;v h Rπ=M  admits expression 

( ) ( )
0 0 1 1 0

0

, 0
, ,

n n n
n

n i i i i i i i n
i i E

L v g Y g Yπ π
−

∈

= ∑


  

obtained with the basic method, and we will study an iterative algorithm to maximize 

nL  likelihood function with respect to the parameters ( ); ; ;v h Rπ  model of either 
( ); ; ;v h Rπ′ ′ ′ ′ ′=M  another model, for which the likelihood function takes the value 

( ) ( )
0 0 1 1 0

0

, 0
, ,

n n n
n

n i i i i i i i n
i i E

L v g Y g Yπ π
−

∈

′ ′ ′ ′ ′ ′= ∑


  

the (log) likelihood ratio between the M  and the ′M  is reduced by 

( ) ( )
( ) ( )

0 0 1 1 0

0 0 1 1 0

, 0
0

, 0

log | , ,n n n

n n n

X X X X X X X n
n n

X X X X X X X n

v g Y g Y
Q E Y Y

v g Y g Y
π π
π π

−

−

′=
′ ′ ′ ′

 
 
  ′











 

which vanishes when the model M  coincides with the model ′M . 
Maximize nQ  compared with parameters ( ); ; ;v h Rπ  of the model M  thus 

ensures that the likelihood of the model which achieved maximum nQ  will be greater 
than the likelihood nL′  current model ′M  re-formulas Baum-Welch -Estimated 
allow explicitly find the parameters of the new model based on parameters ( ); ; ;v h Rπ  
of the current model ′M  by repeating this procedure, we construct a sequence of 
increasing likelihood models, and ideally this sequence converges to a model that 
reaches the maximum likelihood function. 

Theorem 
In the digital case with densities of Gaussian issue, the iterative algorithm for esti- 

mating the maximum likelihood of the model parameters from the observations 
( )0 , , nY Y , is given by explicit formulas re-estimate 

0 0
i i

i vpv ′ ′=  and 
( )11

, ,
1 11

1n i j
k j k kk

k
i j i j n i i

k kk

p g Y v
c

p v
π π

−=

− −=

′ ′ ′
′

′=
′ ′

∑

∑
 and 

0

0

n i i
k k kk

i n i i
k kk

Y p v
h

p v
=

=

′ ′
=

′ ′
∑
∑

 and 
( ) ( )0

0

n i i
k i k i k kk

i n i i
k kk

Y h Y h p v
R

p v
=

=

′ ′− − ∗
=

′ ′
∑

∑
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for all ,i j E∈  where the two sequences { }kp′  and { }kv′  are the standard equations 
of forward and backward solutions respectively for values ( ); ; ;v h Rπ′ ′ ′ ′  parameters. 

Note: Concretely, if ( )1 1 1 1 1; ; ;s s s s sM v h Rπ− − − − −=  denotes the current model in step 
( )1s −  of the algorithm, then for values ( ) ( )1 1 1 1; ; ; ; ; ;s s s sv h R v h Rπ π− − − −′ ′ ′ ′ =  the para- 
meters are calculated standardized solutions { }kp′  and { }kv′  of equations forward 
and backward respectively the parameters ( ) ( ); ; ; ; ; ;s s s sv h R v h Rπ π=  is calculated 
using the formulas to re-estimate what defines the new model ( ); ; ;s s s s sM v h Rπ=  to s 
next step of the algorithm. 

5. Implementation 

Our model is based on acoustic signal parameters. These parameters are obtained by 
calculating cepstral coefficients according to a Mel scale (MFCC Mel Frequency Cep-
stral Coefficients). Statistical realization of acoustic parameters of each phoneme is 
represented by a Hidden Markov model. Each phoneme is typically represented by 2 or 
3 states, and multigaussienne density (GMM: Gaussian Mixture Model) is associated 
with each state. GMM densities with a large number of components designed to ad-
dress multiple sources of variability that are affecting the speech signals (sex and age of 
the speaker, accent, noise). 

For example: With the following data: Number of States (K = 2); π = [0.95 0.05; 0.05 
0.95]; h = [−1 1]; σ2 = [3 3]; υ = [0.5 0.5]; we have the Figure 6 below. 

A robust speech recognition system combines accuracy of identification with the 
ability to filter noise and adapt to other acoustical conditions such as speech and em-
phasis of the speaker. The design of a robust speech recognition algorithm is a complex 
task which requires detailed knowledge of signal processing and statistical modeling. 
Most speech recognition systems are classified as isolated or continuous. The isolated 
 

 
Figure 6. Graphic representation of the Hidden Markov Model. 
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word recognition requires a short pause between each spoken word, while the speech 
recognition does not continue. Speech recognition systems can be classified as a de-
pendent or speaker-independent. Speaker dependent system recognizes only the word 
of the voice of a particular speaker, while an independent speaker system can recognize 
any voice. 

The implementation presented here uses features integrated into MATLAB and re-
lated products to develop the recognition algorithm. There are two main steps in the 
recognition of isolated words: 
• a learning phase and 
• a test phase. 

The learning phase teaches the system by building its dictionary, an acoustic model 
for each word that the system has to recognize. In our example, the dictionary includes 
the numbers “zero” to “nine” in “Baoule” language. The test phase uses acoustic models 
of these numbers to recognize isolated words using a classification algorithm. We start 
with the the speech signal acquisition, and then we end with its analysis. 

5.1. Speech Signal Acquisition 

During the learning phase, it is necessary to record the repeated statements of each di-
git in the dictionary. For example, we repeat the word “nnou” (which means five in 
“Baoule” language) many times with a pause between each statement. That word will be 
saved in the file 'cinq.wav'. Using the following MATLAB code with a sound card stan-
dard PC, we capture ten seconds of speech from a microphone to 8000 samples per 
second. We obtained y that is a matrix of 8000 rows and one column. This approach 
works well for training data. 
 

Fs = 8000; Duration = 10; y = wavrecord(Duration*Fs, Fs); 

5.2. Acquired Speech Signal Analysis 

We first develop a word-detection algorithm that separates each word of ambient noise. 
We then obtain an acoustic model that provides a strong representation of each word in 
the stage of learning. Finally, we select an appropriate classification algorithm for test-
ing. 

5.2.1. The Development of a Word-Detection Algorithm 
The word-detection algorithm continuously reads 160 samples frames from the data of 
“speech”. To detect single digits, we use a combination of the signal energy and have 
zero crossing for each speech frame. 

The signal energy works well to detect sound signals, while the zero-crossing num-
bers work well for detecting non-voice signals. The calculation of these measures is 
simple using mathematical operators and MATLAB basic logic. To avoid identifying 
the ambient noise of speech, we assume that each individual word will last at least 25 
milliseconds. In Figure 7 below, we plot the speech signal “five” and the power of short 
duration and zero crossing measurement. 
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Figure 7. Speech signal “five” and the power of short duration and zero 
crossing measurement. 

 
cinq=wavread('cinq.wav'); N = 300; Px = stpower(cinq, N); 

Zx = stzerocross(cinq, N); plot([Px*1e-5 Zx cinq]) 

5.2.2. Development of the Acoustic Model 
A good acoustic model should be derived from the word of features that allow the sys-
tem to distinguish different words in the dictionary. We know that different sounds are 
produced by varying the shape of the human vocal tract, and these different sounds can 
each have different frequencies. To investigate the frequency characteristics, we ex-
amine the density estimates Spectral Power (CSP) various spoken digits. Since the hu-
man vocal tract can be modeled as a filter on all poles, we use the parametric spectral 
estimation technique Yule-Walker of the window Signal Processing Toolbox to calcu-
late the DSP. After importing a statement of a single digit in the variable “word” we use 
the MATLAB code below to view the DSP estimate: here there is the speech signal that 
we have acquired (Figure 8). 
 

order = 12; nfft = 512; Fs = 8000; pyulear(cinq, order, nfft, Fs) 

 
Because the Yule-Walker algorithm adapts a linear prediction filter model autore-

gression to the signal, you must supply an order of this filter. We select an arbitrary 
value of 12, which is typical for voice applications. 

Figure 9 shows the PSD estimate of three different expressions of the words “one” 
and “two”. We can see the tops of the PSD remain consistent for a particular number, 
but differ from one figure to another. This means that we can draw the acoustic models 
in our system from the spectral characteristics. 

A set of spectral characteristics commonly used in voice applications because of its 
robustness is Mel Frequency Cepstral Coefficients (MFCC). MFCC give a measure of  
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Figure 8. Estimate of the PSD (Yule Walker) the word “five”. 
 

 
(a) 

 
(b) 

Figure 9. (a) Estimating the PSD (Yule Walker) in three different expressions of the word “one.”; 
(b) estimating the PSD (Yule Walker) in three different expressions of the word “two”. 
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the energy in overlapping boxes frequency of a deformed spectrum by (Mel) Frequency 
scale 1. 

In the short term, the floor can be considered as stationary, MFCC characteristics of 
the vectors are calculated for each speech frame detected. Using many statements of a 
number and by combining all of the feature vectors, we can estimate a multidimension-
al probability density function (PDF) vectors to a specific figure. Repeating this process 
for each digit, the acoustic model is obtained for each digit. During the test phase, we 
extract the MFCC vectors figure test and use a probabilistic measure to determine the 
number of the source with the maximum likelihood. 

Figure 10 shows the distribution of the first dimension of MFCC feature vectors ex- 
 

 
(a) 

 
(b) 

Figure 10. (a) The distribution of the first dimension of MFCC feature vectors for the digit 
“one.”; (b) Overlay estimated Gaussian components (red) and all Gaussian mixture model (green) 
for distribution in (4a). 
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tracted from the training data for the digit “one.” We could use dfittool in Statistics-
Toolbox adapt to a PDF, but the distribution seems quite arbitrary, and standard dis-
tributions do not provide a good fit. 

One solution is to adjust a mixture of Gaussian model (GMM), a sum of weighted 
Gaussian (Figure 10(b)). The total density of Gaussian mixture is set by the weight of 
the mixture, the mean vectors and covariance matrices from all densities of the com-
ponents. For the recognition of isolated digits, each digit is represented by the parame-
ters of the GMM. 

To estimate the parameters of a GMM for a set of MFCC feature vectors extracted 
from the figure when learning, we use an expectation maximization (EM) iterative al-
gorithm for maximum likelihood (ML) estimation. Given some MFCC training data in 
MFCC train data variable (equal to five here), we use the GMM distribution Statistics 
Toolbox function for estimating GMM parameters. This function is all that is needed to 
perform the EM iterative calculations. 
 

%Number of Gaussian component densities 
M = 8; model = gmdistribution.fit(cinq, M); 

5.2.3. Selecting a Classification Algorithm 
After estimating a GMM for each digit, we have a dictionary for use in the testing phase. 
Given some test speech, we extracted again MFCC feature vectors of each frame of the 
detected word. The goal is to find the model numbers of the maximum a posteriori 
probability for all the long delivery tests, which reduces to maximize the value of 
log-likelihood. 

Given a GMM model (equal to model here) model numbers and some feature vectors 
tests test data (equal to five here), the log-likelihood value is easily calculated using the 
post office in Statistics Toolbox: [P, log_like] = later (model, five); we repeat this calcu-
lation using the model of each digit. The test speech is classified as revenues at the 
MGM produce the maximum log-likelihood. 

6. Conclusions 

In this article we presented an overview of HMM: their applications and conventional 
algorithms used in the literature, the generation probability calculation algorithms in a 
sequence by an HMM, the path search algorithm optimum, and the drive algorithms. 

The speech signal is a complex form drowned in the noise. Its learning is part of 
complex intelligent activity [10]. By learning a starting model, we will build gradually 
an effective model for each of the phonemes of the “Baoule” language. 

Note finally that HMMs have established themselves as the reference model for solv-
ing certain types of problems in many application areas, whether in speech recognition, 
modeling of biological sequences or for the extraction of information from textual data. 
However other formalisms such as neural networks can be used to improve the model-
ing. Our future work will focus on the modeling of the linguistic aspect of the “Baoule” 
language. 
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ANNEXES 

function [valeur,ante,dens] = Viterbi(X,A,p,m,sigma2,K,T) 
begin 
 % densite d'emission 
 dens = ones(T,K);  
 dens =  
exp(-0.5*(X'*ones(1,K)-ones(T,1)*m).^2./(ones(T,1)*sigma2))./sqrt(ones(T,1)*sigma2); 
 % fonction valeur 
 valeur = ones(T,K); 
 valeur(1,:) = p.*dens(1,:); 
 for t=2:T 
  [c,I] = max((ones(K,1)*valeur(t-1,:)).*A,[],2); 
  valeur(t,:) = c'.*dens(t,:); 
  valeur(t,:) = valeur(t,:)/max(valeur(t,:)); 
  ante(t,:) = I; 
 end 
end 
 
function [alpha,beta,dens,ll] = ForwardBackward(X,A,p,m,sigma2,K,T) 
% densite d'emission 
dens = ones(T,K);  
dens =  
exp(-0.5*(X'*ones(1,K)-ones(T,1)*m).^2./(ones(T,1)*sigma2))./sqrt(ones(T,1)*sigma2); 
% variable forward 
alpha = ones(T,K); 
alpha(1,:) = p.*dens(1,:); 
c(1) = sum(alpha(1,:)); 
alpha(1,:) = alpha(1,:)/c(1); 
for t=2:T 
 alpha(t,:) = alpha(t-1,:)*A; 
 alpha(t,:) = alpha(t,:).*dens(t,:); 
 c(t) = sum(alpha(t,:)); 
 alpha(t,:) = alpha(t,:)/c(t); 
end 
ll = cumsum(log(c)); 
% variable backward 
beta = ones(K,T); 
for t=T-1:-1:1 
 beta(:,t) = beta(:,t+1).*(dens(t+1,:))'; 
 beta(:,t) = A*beta(:,t); 
 beta(:,t) = beta(:,t)/(alpha(t,:)*beta(:,t)); 
end 
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function [X,Y] = gen(A,p,m,sigma2,T) 
begin 
 sigma = sqrt(sigma2); 
 Y(1) = multinomiale(p); 
 for t=2:T 
  q = A(Y(t-1),:); 
  Y(t) = multinomiale(q); 
 end 
 w = randn(1,T); 
 for t=1:T 
  moyenne = m(Y(t)); 
  ecart_type = sigma(Y(t)); 
  X(t) = moyenne+ecart_type*w(t); 
 end 
end 
 
 
function Px = stpower(x,N) 
begin 
 M = length(x); 
 Px = zeros(M,1); 
 Px(1:N) = x(1:N)'*x(1:N)/N; 
 for m=(N+1):M 
  Px(m) = Px(m-1) + (x(m)^2 - x(m-N)^2)/N; 
 end 
end 
 
function Zx = stzerocross(x,N) 
begin 
 M = length(x); 
 Zx = zeros(M,1); 
 Zx(1:N+1) = sum(abs(sign(x(2:N+1)) - sign(x(1:N))))/(2*N); 
 for (m=(N+2):M) 
  Zx(m) = Zx(m-1) + (abs(sign(x(m)) - sign(x(m-1))) ... 
  - abs(sign(x(m-N)) - sign(x(m-N-1))))/(2*N); 
 end 
end 
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