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ABSTRACT 
In this paper, we propose a restricted, adaptive threshold approach for the segmentation of images of the glottis acquired 
from high speed video-endoscopy (HSV). The approach involves first, identifying a region of interest (ROI) that en-
closes the vocal-fold motion extent for each image frame as estimated by the different image sequences. This procedure 
is then followed by threshold segmentation restricted within the identified ROI for each image frame of the original 
image sequences, or referred to as sub-image sequences. The threshold value is adapted for each sub-image frame and 
determined by respective minimum gray-scale value that typically corresponds to a spatial location within the glottis. 
The proposed approach is practical and highly efficient for segmenting a vast amount of image frames since simple 
threshold method is adapted. Results obtained from the segmentation of representative clinical image sequences are 
presented to verify the proposed method. 
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1. Introduction 
Laryngeal imaging based analysis of vocal fold motion 
has been proved valuable for both diagnosing voice dis-
orders and understanding the mechanism of voice pro-
duction. High speed digital imaging (HSDI), or high 
speed video-endoscopy (HSV), has now become a clini-
cal reality for imaging the vibrating vocal folds. The 
HSDI systems record images of the vibrating vocal folds 
at a typical rate of 2000 frames/sec, which is fast enough 
to resolve a specific, sustained phonatory vocal fold vi-
bration. In the literature [1-9], glottal area waveform 
(GAW), along with other spatiotemporal waveforms of 
the glottis, has been successfully used to analyze the 
vocal fold vibration which may correlate with voice con-
dition. The credibility of the analysis strongly depends on 
an accurate extraction of the GAW from images of the 
glottis. In order to obtain the GAW, the glottis, or the 
vocal fold opening region, needs to be segmented and the 
area calculated on a frame by frame basis. Clearly, it is 
crucial for us to develop effective and highly efficient 
segmentation algorithms for this purpose. 

Image segmentation is fundamental to the field of im-
age understanding and computer vision [10-13] and to 
establish an efficient segmentation algorithm is still 
challenging because of lacking in a universal segmenta-
tion algorithm for all image segmentation tasks. 

The purpose of image segmentation is to divide an 
image into regions that are meaningful to some higher 
level processes. In this research, the meaningful region is 
the glottis, the air space between the pair of vocal folds. 
In the literature some algorithms for glottis segmentation 
have been reported, which include region growing algo-
rithm [5,14,15] and active contour algorithm [16-20]. 
However, there are some limitations in these approaches, 
making them impractical for applications in the analysis 
of HSV image data sets. The region growing algorithm 
depends much on selection of the seed point that requires 
prior knowledge about the location of glottis [10]. On the 
other hand the active contour algorithm is extremely time 
consuming and susceptible to noises [11]. 

In a clinical setting, the HSV system is capable of 
capturing images of the vibrating vocal folds at a rate of 
at least 2000 frames per second. During an examination, 
a patient is instructed to phonate a sustained vowel pho-
nation with a typical recording time of 2 seconds. In oth-
er words, each HSV recording contains 4000 image 
frames that need to be processed for further analysis and 
interpretation of the vocal fold dynamic behaviors [4]. As 
a result, it is essential to develop effective and efficient 
methods to segment the glottis rapidly and accurately. 
Since the time duration for each HSV recording is short, 
it is reasonable to assume that tremors of the hand of the 
clinician and of subject’s neck and head are negligible. 
Additionally, following assumptions should hold: *Corresponding author. 
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• The illumination is constant during the recording, 
• The camera position is fixed during the recording. 

While the motion of the vocal folds causes changes in 
the gray level in some region, the gray level intensity 
within other (motionless) regions remains almost un-
changed. In order to successfully segment the glottis by 
threshold method, it is necessary to achieve well behaved 
histogram distributions. Since the motionless region is 
not of interest, it should first be removed. For this pur-
pose, motion cue is used to obtain a sub-image, in which 
the size is adaptive to the glottis opening/closure status. 
As a result, the size of each sub-image varies so as to 
only contain a minimal but complete region of interest. 
In this way, the original image data is greatly reduced to 
facilitate faster segmentation and thus the simplest thre-
shold method can be more efficiently and successfully 
adapted to segment the glottis. 

In this work, we propose a two-step segmentation 
scheme based on the vocal fold motion analysis and 
adaptive thresholding as detailed in the following Me-
thod section. 

2. Method 
In this paper, the adaptive thresholding segmentation 
approach is based on an evaluation of the motion using 
difference image at corresponding spatial locations in the 
image sequence that highlights the region enclosing the 
vocal-fold motion extent. In addition, the images are 
segmented by adaptive thresholding, which is obtained in 
a restricted region of the original image, or termed 
sub-image. The threshold value varies for each image 
and is determined based on the grayscale minimum pixel 
in the sub-images, which typically corresponds to a loca-
tion within the glottis. 

We designed the following scheme for the segmenta-
tion task as illustrated in Figure 1: 

1) Manually select an image frame from a HSDI re-
cording where the vocal fold opening region is the smal-
lest, as the reference image (RI). 

2) Obtain the binary difference image (DI) based on 
the RI. 

3) Use the median filter to eliminate the isolated points 
labeled one in the DI. 

4) Obtain the sub-image which has a variable size for  

each image frame based on the DI. 
5) Select the threshold value based on the lowest pixel 

value in each sub image frame and segment the sub-im- 
age. 

2.1. Introduction to Image Segmentation and 
Motion Analysis 

As illustrated in Figure 2, each image from a laryngeal 
image recording should be segmented into two regions: 
the vocal fold opening region (glottis), which is the ob-
ject, and the remaining region, which is considered as the 
background. In general, the image segmentation tech-
niques can be categorized into three classes [11]: 1) cha-
racteristic feature thresholding or clustering; 2) edge de-
tection; and 3) region exaction. Among them, threshold-
ing method is the simplest and most efficient. 

Thresholding is the transformation of an input image 
( , )f i j  (a gray level image) to an output (segmented) 

image ( , )g i j  (binary image), 
1 ( , )

( , )
0 ( , )

for f i j T
g i j

for f i j T
≥

=  <
       (1) 

where T  is the threshold value, ( , ) 1g i j =  for image 
elements of objects; and ( , ) 0g i j =  for image elements 
of the background (or vice versa). From Equation (1), it 
is clear that correct threshold selection is crucial for suc-
cessful segmentation. 

Motion is a powerful cue used by humans and many 
animals to exact objects of interest from a background of 
irrelevant detail [21]. Their applications of the motion 
cue in segmentation can be in both spatial and frequency 
domains. In this work, we exploit the basic spatial tech-
niques since our applications focus on motion analysis in 
the spatial domain. 

2.2. Glottis Area Segmentation 
The different image is typically obtained by motion 
analysis in the spatial domain as defined by a binary im-
age: 

1 20 ( , ) ( , )
( , )

1
if f i j f i j

d i j
otherwise

ε − ≤
= 


  (2) 

where, ( , ) 1d i j =  represents image areas enclosing mo-
tion, while ( , ) 0d i j =  represents image areas with no or  
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Figure 1. The scheme for the two-step segmentation. 
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Figure 2. (a) An image frame from the HSDI recording, and 
(b) the grey-level intensity profile along the mid-line of the 
vocal fold. 
 
little motion. 1f  and 2f  are two consecutive gray level 
image frames within the original image sequences, and 
ε  is a small positive number. 

Here, we define the difference image (DI), a binary 
image, slightly differently as described below: 

11 ( , , ) ( , )
( , , )

0
if f x y t RI x y T

DI x y t
otherwise

− >
= 


      (3) 

where 1T  is a positive constant. The optimal value of 
1T  is determined based on experimenting with different 

datasets. The parameter t refers to the corresponding im-
age frame at the recording time of t. Similarly, 

( , , ) 1DI x y t =  represents the vocal fold motion enclo-
sure in and image frame at time t, and ( , , ) 0DI x y t =  
represents the background area within an image frame at 
time t. ( , )RI x y  is the selected reference image frame 
that is used to compare with any input image. As men-
tioned earlier, an image frame having minimum glottis 
area is manually selected as the RI. 

In each frame of the DI sequences, there might be pix-
els that are far from the glottis, mislabeled as ‘1’. The 
main reasons for this mislabeling are as follows: 

1) Illumination is not constant during the image re-
cording; 

2) Vocal folds are not rigid. As a result, some regions 
near the vocal folds undergo moderate motion as the 
vocal folds vibrate. 

In order to accurately obtain the sub-image and ensure 
it encloses entire region of the glottis, we apply a median 
filter to the DI for noise removal. 

Median filtering is a non-linear smoothing method that 
is widely used to reduce the blurring of the edges [10]. 
This smoothing technique has been shown effective in 
eliminating spike noises. The key operation in the me-
dian filtering involves replacing the brightness of an in-
dividual pixel in the image by the median of the bright-
ness values at several pixels in its neighborhood. The use 
of the median value can therefore reduce the effect of 
individual noise spike and smooth the image. 

In the sub-image sequences, each image frame ideally 
contains a minimal region representing entire enclosure 
of the vocal fold motion extent. After the median filter-
ing operation, the binary DI sequences are constructed 
and based on which we can determine the ROI that will 
be used for subsequent restricted, adaptive threshold 
segmentation processes applied to the sub-image se-
quences. 

Further, we propose to use a variable threshold value 
for segmenting each sub-image, since it is prior know-
ledge that the darkest pixel point with minimum gray 
level intensity should be within the glottis, and in prin-
ciple all pixels within the glottis should have lower val-
ues compared to areas outside the glottis in the 
sub-image. We thus obtain the threshold value based on 
the grayscale minimum value. 

The algorithm is designed as follows, 
1) Find the grayscale minimum (L) of each sub-image 

frame, 
2) Obtain the threshold value 2 2L cT = + , 
3) Repeat above steps frame by frame. 
Where, 2c  is a constant, the determination of 2c  is 

described in the following section. 
After segmenting the sub-image sequences using the 

respective threshold values, we will obtain a binary seg-
mented image sequences. 

2.3. Parameters Determination 
In this work, we use Matlab as a platform to conduct all 
analyses. In the proposed segmentation method, we need 
to determine the following parameters: 

1) Size of the median filter convolution mask, [m,n], 
2) Threshold value 1T , and constant 2c . 
Different parameters can lead to different segmenta-

tion results. The method used for determining these pa-
rameters is based on trial and error. The parameters used 
in following analyses are 1T  = 0.10, 2c  = 0.15, and 
[m,n] is selected as [4,4]. 
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3. Discussion and Conclusion 
3.1. Discussion 
Among threshold selection methods from gray-level his-
tograms, Otsu method is widely used in many applica-
tions [22]. It is a nonparametric and unsupervised method 
for automatic threshold selection and image segmenta-
tion. An optimal threshold is selected by the discriminate 
criterion, namely, so as to maximize the separability of 
the resultant classes in gray levels. Figure 3 shows an 
example of using Otsu method to segment the glottis 
from two representative HSDI frames (upper row). The 
segmentation results are shown in the lower row of Fig-
ure 3. It is clearly visualized that our method generated 
better segmentation results than those from Otsu method 
as shown in the middle row of Figure 3. 

In Figure 4, the selected ROI, or the sub-image area, 
is shown for three consecutive original image frames 
(#10, 11, and 12). The size for each sub-image is shown 
to vary with the extent of the vocal fold motion, and each 
sub-image region encloses the entire glottis area. 

In Figure 5, the left column displays four original 
frames within the obtained DI sequences. The right col-
umn shows the same frames after median filtering where 
 

 

 
Figure 3. Comparison of the results of segmentation; the 
upper row shows two input images, the middle row shows 
the segmented images using our two-step approach, and the 
lower row shows the segmented images using Otsu method. 
 

 

 
Figure 4. Sub-image frames showing the defined rectangu-
lar ROI. 

 

 

 

 
Figure 5. The left column shows four difference images; and 
the right column shows the results after applying a 4×4 
median filter. 
 
all pixels mislabeled “1” were effectively removed by the 
median filter. Finally, a series of segmentation results are 
shown in Figure 6, where both the sub-image region 
(rectangular ROI) and the accurately delineated glottis 
contour are outlined. 

A comparison between the results of segmentation ob-
tained from randomly selected three consecutive HSDI 
frames using Otsu and our method is shown in Figure 7. 
The top row shows the segmentation results obtained in 
the full image frame by Otsu method, and the lower row 
shows the results obtained from our method. It is clear 
that our first step to obtain the sub-image is critical for 
achieving robust and accurate segmentation results. 

3.2. Conclusion 
We developed a new approach for restricted, adaptive 
segmentation of images of the glottis that are acquired 
from the HSV system. By defining a sub-image set based 
on vocal fold motion cue, the subsequent threshold 
process is efficiently restricted to a ROI so that the ef-
fects of background are minimized, leading to a robust 
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Figure 6. Serial segmentation results: the rectangle marks 
the defined ROI within which a restricted thresholding is 
performed to delineate the glottis (outlined). 
 

 
 

Figure 7. Results of segmentation from direct thresholding 
(top row) and from our algorithm (lower row). 
 
and accurate segmentation outcome. From the segmenta-
tion results obtained from several clinical HSDI data sets 
using the proposed method, we can conclude that our 
method is effective and practical for applications in clin-
ical settings. 
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