New Current Mode Lossy Integrator Employing CDDITA

Kuldeep Panwar¹, Dinesh Prasad¹*, Mayank Srivastava², Zainab Haseeb¹

¹Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, India
²Department of Electronics and Communication Engineering, NIT, Jamshedpur, India
Email: *dprasad@jmi.ac.in

Abstract

This work presents a novel current-mode (CM) lossless integrator that uses one current differencing differential input transconductance amplifier (CDDITA) and one grounded capacitor. The configuration based on single active element has several advantages from the aspect of monolithic integration, few are: reduced power consumption, chip miniaturization. Employment of grounded capacitor is also beneficial for monolithic integration. Specifying some of the key features of integrator proposed are: 1) purely resistor-less, 2) electronically tunable, 3) current output available at the port having high impedance, and 4) excellent performance under non-ideal conditions. So, a resistor-less current mode lossy integrator with electronic control employing single CDDITA has been proposed in this paper. The verification of workability of the proposed current mode integrator is well explained by the help of SPICE simulations using TSMC CMOS 0.18 µm technology node.

Keywords

Current Differencing Differential Input Transconductance Amplifier, Lossy Integrator, Electronic Tunability, Grounded Capacitor

1. Introduction

Active RC Integrator is an extremely versatile circuit element that is employed in development and synthesis of numerous analog signal processing as well as generation circuits that include active filters, quadrature oscillators, waveform generators and many more. Various voltage or current mode integrator circuits based on traditional and modern active components has been proposed in literature. An OP-AMP based integrator was proposed in [1]. Some current conveyor (CCII) based integrator were proposed in [2] [3] [4] [5] [6]. Differential
voltage current conveyor (DVCC) was also proposed in literature \[7\]. Some integrator circuits employing modern active elements like current differential buffered amplifier (CDBA) \[8\], multiplication mode current conveyor (MMCC) \[9\], current controlled current differential buffered amplifier (CCCDBA) \[10\], differential difference current conveyor (DDCC) \[11\], current differential transconductance amplifier (CDTA) \[12\], current follower transconductance amplifier (CFTA) \[13\], CCCCTA \[14\] and current feedback operational amplifier (CFOA) \[15\] have been proposed in the literature available till date.

But the circuit configurations available with us possess few disadvantages like:
1) they uses greater than 1 active element,
2) greater than 1 passive element,
3) floating capacitors are used which increases chip area,
4) no electronic tenability,
5) matching constraint required,
6) poor non ideal performance,
7) exclusive current output at very high impedance terminal is unavailability (in case of CM integrator).

Hence, the goal of this manuscript is to remove disadvantages mentioned above, hence it possess following advantages:

1) Only one CDDITA is used;
2) Just one capacitor is used;
3) Realization is purely free of resistor;
4) Grounded capacitor used, reduces chip area;
5) Gain is electronically tunable;
6) Better performance in non ideal case;
7) Current output signal at high impedance port is available.

CDDITA is new generation ABB and its idea was proposed in \[16\]. It is an extension of CDTA which has been a popular ABB in last decade. The electrical symbol of CDDITA is shown in Figure 1. It has two virtually grounded low input impedance terminals P and N, two high impedance intermediate terminals Z and V and two high impedance output terminals X+ and X−.

The behavioral model of CDDITA is shown in Figure 2, which illustrates that input stage is a current differencing unit and the output stage is an OTA.

The voltage current relationships between different ports of CDDITA can be given by following equation set:

\[
\begin{align*}
V_P &= V_N = 0 & (1) \\
I_Z &= (I_p - I_N) & (2) \\
I_{X+} &= g_m (V_Z - V_f) & (3) \\
I_{X-} &= -g_m (V_Z - V_f) & (4)
\end{align*}
\]

The CMOS realization of CDDITA has been shown in Figure 3.

The applications of CDDITA in analog signal processing/signal generation have been proposed in \[17\] \[18\].

2. Proposed Current-Mode Integrator

The circuit of lossy integrator proposed is shown in Figure 4.
Through proper analysis of circuit following expression is yielded the for output current;

\[
\frac{I_{out}}{I_m} = \frac{1}{1 + \frac{sC}{g_m}}
\] (5)

From Equation (5), it becomes clear that the gain of proposed integrator can be tuned electronically by \(g_m\), which is adjusted by bias currents of CDDITA. Output current “\(I_{out}\)” is explicitly available at high impedance “X−” port is shown.
in Figure 3. Hence, there is no additional need of follower to use this output.

3. Non-Ideal Analysis and Sensitivity Calculations

Under non-ideal condition the CDDITA is defined by following equations of VDTA modified as

\[I_\alpha = (\alpha_p I_p - \alpha_n I_n) \]
\[I_{x+} = \beta_m V_m (V_z - V_r) \]
\[I_{x-} = -\beta_m V_m (V_z - V_r) \]

where “\(\beta_+ \)” and “\(\beta_- \)” are the trans-conductance error gains and “\(\alpha_p \)” and “\(\alpha_n \)” are errors in current transfer. These values are just slightly less than that of unity.

The current output transfer function of the presented paper under the influence of ideal conditions is given as

\[\frac{I_{out}}{I_{in}} = \frac{1}{\alpha_p \beta_+ + \beta_- g_m sC} \]

It is clear from Equation (9) that even; the proposed configuration has an ability to simulate an ideal CM integrator under the non-ideal conditions, with adjustable tunable gain. So, the nature of presented circuit remains unaffected in the non-ideal conditions.

4. Simulation Results

The presented circuit is verifying by simulating it by employing CMOS CDDITA (shown in Figure 3) with \(\pm 3 \) V DC supply voltage. All the biasing currents of CDDITA are chosen as 100 \(\mu \)A and the value of capacitor “C” is selected as 0.1 nF. To study the input output relation a rectangular input current signal (shown in Figure 5) of \(\pm 0.5 \) mA is used. The output current \((I_{out}) \) is shown in Figure 6.

Figure 5. Input rectangular current pulse of amplitude \(\pm 0.5 \) mA and duration 4\(\mu \)s (Iinput).
5. Conclusion

A CDDITA based current mode lossy integrator circuit that uses single CDDITA and grounded capacitor has been presented in this manuscript. The proposed circuit has following features: no requirement of any resistor, electronically controllable gain and explicit current mode (CM) output at a high impedance port that is suitable for cascading and no requirement of component matching constraint. The designed circuit configuration shows good non-ideal behavior and even in that conditions the circuit can simulate a lossless CM integrator. The analysis has been successfully verified by PSPICE simulation using TSMC CMOS of 0.18 μm process parameters. For simulation purpose CMOS CDDITA has been used with biasing current of 100 μA and supply voltage of ±3 V DC.

Acknowledgements

This research is supported by the “Young Faculty Research Fellowship and Research/Contingency Grant” to Jamia Millia Islamia, under “Visvesvaraya PhD Scheme for Electronics and IT” in 2015-16.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

Figure 6. Output triangular current pulse (Ioutput).

Nomenclature

V_P: Voltage at “P” terminal
V_N: Voltage at “N” terminal
V_Z: Voltage at “Z” terminal
V_V: Voltage at “V” terminal
I_P: Current at “P” terminal
I_N: Current at “N” terminal
I_Z: Current at “Z” terminal
I_{in}: Input current
I_{out}: Output current
g_m: Transconductance of CDDITA
α, β: Current gain errors