
Circuits and Systems, 2014, 5, 274-291
Published Online November 2014 in SciRes. http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2014.511029

How to cite this paper: Mishra, B., Kochery, M., Wilson, P. and Wilcock, R. (2014) A Novel Signal Processing Coprocessor for
n-Dimensional Geometric Algebra Applications. Circuits and Systems, 5, 274-291.
http://dx.doi.org/10.4236/cs.2014.511029

A Novel Signal Processing Coprocessor for
n-Dimensional Geometric Algebra
Applications
Biswajit Mishra1, Mittu Kochery2, Peter Wilson3, Reuben Wilcock3
1VLSI & Embedded Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology
(DAIICT), Gandhinagar, India
2Advanced RISC Machines Ltd. (ARM), Cambridge, UK
3School of Electronics and Computer Science, University of Southampton, Southampton, UK
Email: biswajit_mishra@daiict.ac.in, mittu.kocherry@arm.com, prw@ecs.soton.ac.uk, rw3@ecs.soton.ac.uk

Received 26 August 2014; revised 25 September 2014; accepted 8 October 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper provides an implementation of a novel signal processing co-processor using a Geome-
tric Algebra technique tailored for fast and complex geometric calculations in multiple dimensions.
This is the first hardware implementation of Geometric Algebra to specifically address the issue of
scalability to multiple (1 - 8) dimensions. This paper presents a detailed description of the imple-
mentation, with a particular focus on the techniques of optimization used to improve performance.
Results are presented which demonstrate at least 3x performance improvements compared to
previously published work.

Keywords
Geometric Algebra, Clifford Algebra, FPGA, GA Co-Processor

1. Introduction
Geometric Algebra (GA) is a relatively new area of mathematics which finds applications in many different
fields of research particularly in computer graphics and robotics. Traditional matrix-based methods of defining
geometrical objects using vectors to characterize constructions are described in [1] [2]. A key aspect highlighted
in these methods is the concept that geometric subspaces could be subject to direct computation if they were
considered as basic computational elements. GA has the potential for this, as it unifies the geometric subspaces
with well-defined products that have a direct geometric significance [3]-[7]. One of the issues for typical re-

http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2014.511029
http://dx.doi.org/10.4236/cs.2014.511029
http://www.scirp.org/
mailto:biswajit_mishra@daiict.ac.in
mailto:mittu.kocherry@arm.com
mailto:prw@ecs.soton.ac.uk
mailto:rw3@ecs.soton.ac.uk
http://creativecommons.org/licenses/by/4.0/

B. Mishra et al.

275

source intensive applications such as computer graphics has been the efficiency with which solutions can be ob-
tained. There has therefore been a strong interest in the area of developing high performance hardware engines
that can accelerate the computations in the GA framework including [8] [9]-[16]. Unfortunately all these im-
plementations are dimensionally specific rather than taking a general purpose and scalable n-dimensional ap-
proach. There has recently been increasing interest in reconfigurable GA systems which are essential in a general-
purpose GA engine to allow for multiple dimensions and different types of object to be analyzed [2]-[7] [9]
[12]-[16]. As a result, there has been a strong motivation to extend the fixed architectures previously published
and develop a modular n-dimensional GA co-processor on either an FPGA or ASIC platform.

In this paper, we present an alternative design of a Geometric Algebra co-processor and its implementation on
a Field Programmable Gate Array (FPGA). To the best of the authors knowledge only four GA designs in hard-
ware exist in the literature [8] [10] [14] [16] and the proposed design is the first implementation of a modular n-
dimensional optimized GA architecture in hardware.

This paper is organized as follows. In Section 2, the fundamental concepts in GA are discussed. In Section 3
the top level GA co-processor architecture is introduced with an extended discussion in Section 4 for the GA
coprocessor design. The key building blocks for the GA co-processor in blade logic, register file, and the mem-
ory write sequencer are discussed in this section. The simulation, synthesis results and comparison to the state of
the art are discussed in Section 5. Finally in Section 6, we conclude our findings.

2. Geometric Algebra
2.1. Basics Relations
Geometric Algebra (GA) is a coordinate-free approach to geometry based on the algebras of Grassman [17] and
Clifford [18]. It introduces the concept of 2, 3 and higher dimensional subspaces, similar to the concept of vectors or
1-dimensional subspaces. It is possible to add, subtract, multiply and divide subspaces of different dimensions, result-
ing in powerful expressions that can express any geometric relations as described in [7] and [17]-[21].

2.2. Blades
The concept of a blade is fundamental to all objects defined within a GA framework. Let the orthonormal basis
vectors be 1 2,e e in 2-D GA and these can be decomposed into a linear space spanned by the following ele-
ments: 1 2 1 21, , ,e e e e∧ . The individual element of this linear subspace is called a blade. Furthermore, the grade of
the blade refers to the dimension for the space the blade spans.

The blade signifies the subspace i.e. scalar, vector or bivector. Hence the linear subspace consists of a scalar
(1) a 0 blade element, vectors ()1 2,e e which are 1 blade elements, a bivector ()1 2e e∧ is a 2 blade element,
which has 0, 1 and 2 grades and represents 0, 1 and 2 dimensional subspaces respectively. The total number of
basis blades for a n space with k blades is given by (), 2nn k =∑ . These elements of the nCl linear sub-
space are called homogeneous elements and are given in Table 1.

2.3. Bivector and Trivector
In GA, the outer product is also known as the wedge product denoted by a b∧ in a 2-dimensional subspace, an
oriented area called a bivector. If b were extended along a the result would be another bivector with the same
area but opposite orientation as shown in Figure 1.

The outer product works in all dimensions. If a 2-dimensional subspace a b∧ is extended along another
dimensional subspace c the resultant a b c∧ ∧ is a 3-dimensional subspace or the trivector (shown in Fig-
ure 2) and a directed volume element. In a 3-dimensional Euclidian space 3R , there is one basis trivector

1 2 3 123e e e e∧ ∧ = .

2.4. Geometric Product and Multivector
In GA it is possible to add different grade vectors to form a multivector combining different grade vectors in a
single product. This is possible due to the fundamental building block in GA which is called the geometric
product given by (1) which consists of the dot product and the outer product of vectors a and b. The geometric
product gives information about the magnitude and orientation of the vector.

B. Mishra et al.

276

Table 1. Elements of nCl geometric algebra.

nCl Basis blade Total

0Cl 1 1

1Cl 11,e 2

2Cl 1 2 121, , ,e e e 4

3Cl 1 2 3 12 23 13 1231, , , , , , ,e e e e e e e 8

a

b

a
b

a bb a∧ ∧

Figure 1. Bivector orientations.

Figure 2. Graphical representations of a trivector.

ab a b a b= ⋅ + ∧ (1)

For the orthonormal basis vectors defined by ie and je for the nR space the rule as given in Equation (2)
encapsulates the full algebra.

if

1 if
j i

i j

e e i j
e e

i j

− ≠=
=

 (2)

For 1e and 2e the following holds good:

1 2 1 1 2 2

1 2 2 1 1 1 2 2

0, 1, 1
, 0, 0

e e e e e e
e e e e e e e e
⋅ = ⋅ = ⋅ =
∧ = − ∧ ∧ = ∧ =

 (3)

Generalizing, the geometric product of basis vectors ie and je is:

() ()()2
1i j i j i j i i j j i i j je e e e e e e e e e e e e e= = − = − = − (4)

The element i je e∧ is called the pseudoscalar which is the highest grade element and is denoted by a sym-
bol i or I . The 2-D GA relationships for the orthonormal basis vectors are given in Table 2.

2.5. Hardware Implementation of GA
Previous work that has implemented GA in hardware has taken a variety of approaches. The design in [10] [22]
is a behavioral implementation of a GA core on a commercially available FPGA (Xilinx XC4085XLA) which
interfaces to a PCI card with its own memory. A RAM Access Controller is used to transfer data between the
main board memory and the FPGA memory. It also allows the Central Control Unit (CCU) to fetch instructions,
previous results and to feed the appropriate evaluation pipelines of the ALU with basis blade pairs. It allows the

B. Mishra et al.

277

Table 2. Geometric algebra product within 2D.

 1 1e 2e 12e

1 1 1e 2e 12e

1e 1e 1 12e 2e

2e 2e 12e− 1 1e−

12e 12e 2e− 1e 1−

ALU to write evaluation results to the appropriate addresses of the on-board RAM on completion of an opera-
tion.

Due to resource limitations on the hardware only a single basis blade pipeline was implemented for geometric
products. The FPGA implementation ran at 20 MHz and in real terms, was found to be much slower than soft-
ware packages like Gaigen [12] [23] running on typical PC platforms (such as a typical desktop 1.5 GHz ma-
chine). The performance differences between software versions of GA and Linear Algebra in solving geometric
problems is given in [12] and hardware versions of GA are discussed in [10] [11] [15] [16] [22]. In [10], the
hardware was running at a slower clock rate than the software version of the algorithm, which was running on
state of the art microprocessors, and therefore to compare the results they needed to be scaled and normalized
first. In this normalized comparison, the hardware was found to be of comparable performance and about 1.5×
faster than the software implementation of Gaigen on a CPU.

In [11], a GA that supports 4D GA operations is designed and implemented on an FPGA. The design consists
of a CCU (Central Control Unit), RAM controller, RAM and ALU block with a PCI interface very similar to the
design of [10]. It utilizes huge resources by taking up 24 16-bit multipliers and 16 32-bit adders. In [15] [16], the
authors discuss the design and implementation of an embedded co-processor with support for 3D to 5D Clifford
algebra. It also describes a multicore approach for GA operation support to be comparable to conventional ar-
chitectures. The implementation takes advantage of embedded multiplier cores within the FPGA, 24 multipliers
for 3D and 64 multipliers for 4D and 5D co-processor implementation. In [8] [24] [25], a modular Geometric
Algebra Micro Architecture (GAMA) co-processor design is proposed. This math co-processor has standard in-
structions that could be extendible and interfaced to a standard processor and implements partial instruction-
level parallelism. It evaluates the Geometric product, Inner and Outer product and also simple addition, multip-
lication and division of multivectors. The design uses two pipelined floating-point multipliers, three pipelined
floating-point adders and a controller consisting of a main controller and a pipeline controller.

In the next section of this paper, we will present the proposed architecture that is scalable to n (up to a maxi-
mum of 8) dimensions.

3. GA Co-Processor Architecture
Before discussing the architecture some basic GA definitions need to be made. If a and b is considered to be the
multivectors in the 2Cl space:

0 1 1 2 2 3 12

0 1 1 2 2 3 12

a a a e a e a e
b b b e b e b e
= + + +

= + + +
 (5)

The geometric product is given by:

() ()
() ()
0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2 1

1 3 0 2 2 0 3 1 2 0 3 1 2 2 1 3 0 1 2

ab a b a b a b a b a b a b a b a b e

a b a b a b a b e a b a b a b a b e e

= + + − + + − +

+ + + − + + − +
 (6)

Then if all the coefficients of a and b are non-zero, the simplest implementation for GA based computations
for each multiplication between basis blades results in a separate multiplier hardwired to the appropriate multi-
vector elements. Following the multiplication, an adder collects the output whose multiplications result in the
same blade. In nCl , 22 n multipliers are needed and 1

02 2 nn i
i
−

=∑ adders are required. For example in 3D vector
space 64 multipliers and 56 adders are required.

B. Mishra et al.

278

3.1. Top Level Architecture
The top level module for the GA co-processor contains instances of GA Core, Memory, Memory Write Se-
quencer and the Register File. In addition it contains the logic for the state machine that makes the GA co-pro-
cessor function correctly and also contains the logic for converting between 40-bit and 16-bit data.

Figure 3 shows the internal structure of the GA module with various sub-modules and logic.
In the following subsections we discuss the register file, memory and memory sequencer and a detailed dis-

cussion on the GA Coprocessor will be provided in the following section.

3.2. Register File
The register file is dual-ported with separate read and write selects. In case of the bypass mode, data can be di-
rectly written from the sequencer or multiplier to the register file. Each register in the register file comprises of
41 bits. The structure of a single register is shown in Figure 4. The coefficient part of the multivector is fixed at
32 bits while the blade part is fixed at 8 bits (a maximum of 40 bits to accommodate 8D vector space).

The number of registers ()3 2n× in the register file depends on the dimension of the vector space ()n . The
internal structure of the register file is shown in Figure 5. At reset or clear all the registers and counters in the

MUL ADD

REG
FILE

1
e1
e2

e12

1
e1
e2

e12

1
e1
e2

e12

A1
A2
A3
A4

B1
B2
B3
B4
R1
R2
R3
R4

Start Address
of Multivector1

Start Address
of Multivector2

Start Address
of Result

GA CORE

Memory

Figure 3. Memory mapping of GA co-processor.

VALID BLADE COEFFICIENT
40 39 31 0

Figure 4. 40 bit register.

V B C enable(N-1)REG(N-1)load(N-1)

V B C enable(2)REG(2)load(2)

V B C enable(1)
REG(1)load(1)

V B C enable(0)REG(0)load(0)

(en_match=0) and (Wstate=0)

Data_out

Write

WSelect

Data_in

0

Figure 5. Read and write in register file.

B. Mishra et al.

279

register file are cleared. The 41st bit of every register is the register valid bit (V) andit is set to “1” or “0” to in-
dicate that the data it holds is valid or invalid respectively.

When the register file receives an active Write signal, WSelect is compared with bits 39 to 32 of every register
which represents the blade information (B). If this matches for a register then its corresponding equal signal be-
comes high. This is then used as the load signal to write to the register. If none of the registers match, then the
data is written to the register pointed to by the counter. The counter is then incremented by one. Whenever data
is written to a register, its valid bit is set to 1 indicating that the register holds valid data.

For reading from the register file, RSelect is again compared with bits 39 to 32 of every register. If this
matches for a register, then its corresponding “en” signal becomes high. This is then used to enable that regis-
ter’s tristate using the signal enable and the contents of that register are put on the Data_out bus. If none of the
registers match, then zeroes are driven on the Data_out bus except in the memory write phase, when the bus is
in a high impedance state.

3.3. Memory
The memory can be located inside or outside of the GA co-processor. In the proposed design the memory is lo-
cated within the GA co-processor and each memory location is 40 bits wide which allows maximum data band-
width to be obtained during processing.

The proposed memory model can be scaled using the generic parameter AddressWidth and the DataWidth that
is set according to the dimension of the vector space. For example, in an 8D vector space at least 3 × 256 = 768
memory locations are required to store the two input multivectors and the resultant multivector and hence the
address width is 10 bits.

3.4. Memory Write Sequencer
A Memory Write Sequencer is required to read data from the register file and write it to memory. After the
processing phase the resultant multivector will be available in the register file. This is transferred to memory in
the Memory Write phase.

In GA, often certain applications [9] [25] require a subset of multivector elements. For example, as shown in
Table 3, if the elements present are 1, e2, e13, e123, it could be stored as contiguous blocks (non hardwired) or
non contiguous blocks (hardwired). In the proposed design, zero registers occur as a single contiguous block
while in the hardwired version, they occur in several blocks. The non-hardwired version avoids non-contiguous
blocks of zero registers.

For example, in the hardwired version as shown in Table 3, 8 cycles are required to write its contents to
memory in 3D GA that has 23 = 8 elements. On the other hand, to write the contents of the non-hardwired regis-
ter file only 4 cycles are required. This is possible because the non-hardwired register file uses an extra bit, the
41st bit or register valid bit which can be checked by the Memory Write Sequencer. The savings in terms of
clock cycles becomes noticeable while writing back the contents of the resultant registers to the memory and

Table 3. Hardwired and non-hardwired memory write sequencer.

Non Hardwired Hardwired

Basis Vectors Valid Bit Basis Vectors Valid Bit

1 1 1 1

e2 1 - 0

e13 1 e2 1

e123 1 - 0

- 0 - 0

- 0 - 0

- 0 e13 1

- 0 e123 1

B. Mishra et al.

280

becomes more apparent for higher order vector processing. This will be discussed in detail in the experimental
results section of this paper.

4. GA Core: Detailed Description
While the top level architecture of the basic n-dimensional GA co-processor has now been defined, in order to
maximize the performance benefits it is essential to optimize each key element in the design. This section now
describes each of the modules within the Geometric Algebra Co-processor in detail. Pipelining the multiplier
and adder is crucial to achieve parallelization in the hardware.

The proposed GA co-processor core (shown in Figure 6) contains the sequencer, multiplier and the adder.
The core contains the registers which cause the Valid signal and the blade information to ripple through the
pipeline. It also contains the logic for generating the Stall signal, the blade logic and the Process_End signal
logic.

The signals MC1, MC2, MB1, MB2 and Valid are registered as CoeffA, CoeffB (C1 and C2), BladeA, BladeB
and Valid respectively as shown in Figure 6. BladeA and BladeB travels through the blade logic. Depending on
the value of Cfg_Bits, the signals Coeff, Blade and Valid goes either to the multiplier, adder or the register file.

4.1. Multiplier and Adder Pipelining
In the proposed design, the fixed point multiplier and adder are pipelined to improve the instruction throughput.
Arbitrarily, the multiplier pipeline is 5 stages and the adder pipeline is 6 stages. However, the use of pipelined
processing elements adds to the processing time and introduces the problem of data hazards.

Data hazards occur when the pipeline changes the order of read/write accesses to operands. For example, in
the proposed design Read after Write (RAW) hazard can occur i.e. the register file is modified and read soon af-
ter—the first instruction may not have finished writing to the register file, while the second instruction may use
incorrect data.

Consider that two instructions 1I and 2I operate on the same blade as shown in Figure 7. In the next cycle
of operation, 1I moves to stage 6 of the adder and 2I moves to Stage 1. But the operand read from the regis-
ter file for instruction 2I is incorrect because it does not see the latest value which will only happen when 1I
writes to the register file. This hazard can only be fixed by holding instruction 2I and stalling everything be-
fore it until 1I writes to the register file. Therefore, to avoid data hazards, pipeline stalling is required which
will be discussed in detail in the subsection describing stall (match) logic.

4.2. Multiplier
The design uses a standard fixed point signed 5-stage multiplier that takes two 32-bit input operands A and band
returns a 32-bit product. The Most Significant Bit (MSB) in signed arithmetic indicates the sign.

REGISTER

REGISTER

BLADE
LOGIC

REGISTER

MULTIPLIER

BM
3

BM
4

BM
5

VM
1

VM
2

VM
3

VM
4

VM
5

ADDER

BA
2

BA
3

BA
4

BA
5

BA
6

VA
2

VA
3

VA
4

VA
5

VA
6

BA
1

VA
1

MUX

MUX

MUX

MUX

MUX

MUX

MUX

SE
Q

U
EN

CE
R

Stall

MATCH LOGIC

BM
1

BM
2

MC1

MB1

MC2

MB2

Blade

Valid

Address

Data

Out_data

WSelect

Write

RSelect

In_data

Wselect_t

Write_t

Figure 6. Top level architecture of the GA core.

B. Mishra et al.

281

In normal operation, CoeffA and CoeffB become the inputs A and B of the multiplier respectively. Registered
values of Blade and Valid enter the multiplier blade pipelines which are 5 stages. Together they form the multip-
lier valid pipeline. Data in every stage of the multiplier has its blade and valid bit in the corresponding stage of
the blade and valid pipeline. As shown in Figure 6, the 8-bit signals in the multiplier blade pipeline are called
BM(1), BM(2), BM(3), BM(4) and BM(5). The signals in the valid pipeline are called VM(1), VM(2), VM(3),
VM(4) and VM(5).

4.3. Adder
As shown in Figure 8, the 6 stage adder takes two 32-bit input operands A and B, and returns a 32-bit Result.
The sign of the result is the sign of the operand with the larger magnitude. Depending on the magnitude and sign,
the operands go directly or through a 2’s complement unit.

Similar to the multiplier, the 6-stage adder blade pipeline and a 6-stage adder valid pipeline exist for the adder.
The 8-bit signals in the adder blade pipeline are called BA(1), BA(2), BA(3), BA(4), BA(5) and WSelect_t. The
signals in the adder valid pipeline are called VA(1), VA(2), VA(3), VA(4), VA(5) and Write_t. As can be seen in
Figure 6, BM(5) and VM(5) are fed directly to the adder blade pipeline and the adder valid pipeline respectively.
In normal operation WSelect_t becomes WSelect and Write_t becomes Write. The result of addition goes to the
register file through the bus Out_data.

4.4. Sequencer
The sequencer reads data from the memory and feeds it to the multiplier, adder or directly to the register file
depending on the mode of operation. As shown in Figure 9, AD(xi) stands for the address of the data xi in mem-
ory. To mitigate the effects of wrong data the stall signal is used. It causes all the counters and registers to hold
their value. A high on Stall means that the data from the sequencer has not been registered by the core, which
could be the adder or multiplier or register file depending on the mode of operation.

That means the address which was sent to the memory just before the stall occurred has to be sent again for a
fetch. Depending on when the stall occurs, different scenarios can occur. For example, in one scenario as shown
in Figure 9, AD(b3) is put on the Address bus to be fetched. The data b3 is not registered in the following cycle
as the stall signal is high. AD(b3) therefore has to be fetched and put on the Address bus again so that data b3
can be registered in the subsequent cycle.

REGISTER
FILE

1 2 3 4 5 6

6 stage Pipelined Adder

Write

Read

I2

I1

Figure 7. Read after write hazard.

RE
GI

ST
ER

S

RE
GI

ST
ER

S

RE
GI

ST
ER

S

RE
GI

ST
ER

S

RE
GI

ST
ER

S

RE
GI

ST
ER

S

[30:0]
[30:0]

[31]
[31]

>

=

2's Comp

2's Comp

A

B

431 2
CA

CB

SN

+
Result

65

Select Logic
for MUXes A[31]

B[31]
Figure 8. Top level architecture of the adder.

B. Mishra et al.

282

4.5. Blade Logic
The blade logic which explains the blade relationships within the algebra is central to the architecture and is
discussed in the following.

4.5.1. Computation of Basis Blade Vector and Sign
The summary of blade index relationships has already been explained in Table 2. For example, to multiply
with the resultant blade index is . Similarly if we multiply with then the resultant basis blade
index is . This can be implemented by a multiplication table which is an approach followed by most soft-
ware implementations. But the calculation of the blade part becomes more efficient when implemented in
hardware.

Furthermore, the sign due to the blade index arises due to the invertible nature of the geometric operation. The
sign is calculated from two evaluations, one arising from the swapping of the blade elements and the other due
to the signature of the blades. For example, the sign due to swapping the blade index multiplication of with

 gives whereas with and results in . The resulting circuit is realized as a cascade of
XOR and AND gates (Figure 10).

4.5.2. Signature Sign Logic
The XOR gates account for the swapping of the blade elements and the AND gates for the blades. The signature
for which the GA is defined also contributes to the sign element. For example in certain cases [13] in it is
possible that some or none of the algebra elements square to and is implemented as shown in Figure 11.

Figure 9. Sequencer operation.

Figure 10. Vector and sign for blade logic.

B. Mishra et al.

283

If the algebra is defined such that , then signature register is set as “1”. This contributes to the
overall negative sign due to the XOR operation with the other outputs from the AND gates. The final sign com-
putation due to swapping, signature and magnitude multiplication is obtained by XOR-ing the sign bits (Figure
11).

4.6. Stall Match Logic
The stalls in the architecture originate from the GA core and are required to avoid Read after Write (RAW) data
hazards in the adder. The stall signals is the same as the match signal (as shown in Figure 12). There are 6
match signals for the 6 stages of the adder: match_d1, match_d2, match_d3, match_d4, match_d5 and match_d6.
If any one of these goes high, then match goes high.

At reset, all the registers in the adder blade pipeline and adder valid pipeline are set to zero. This means that
all data contained in the adder pipeline are invalid. The first valid data in the adder pipeline will be the first one
with VM(5) set to high. If none of the blades in the adder pipeline match BM(5), then the signal match remains
low. If the first valid blade is “00000000”, then it will match all the blade adder signals i.e. BA(1) to WSelect_t.

Therefore, the match logic for each stage of the adder needs to be further qualified with its corresponding va-
lid bits i.e. signals VA(1) to Write_t. That means only if there is valid data in BM(5) and a valid data in the adder
with the same blade, the stall signal will be made high. The stall freezes the multiplier pipeline and the value of

Figure 11. Signature sign logic.

Figure 12. Stall or match logic.

B. Mishra et al.

284

Product, BM(5) and VM(5) will be held. When the stall is high, the GA core forces “00000000” into the adder
blade pipeline and “0” into the adder valid pipeline. Therefore, the data which enters into the adder when the
stall is high are all invalid. When the data which would have caused the hazard has been written to the register
file, the stall signal goes low and allows the multiplier to push new data into the adder.

Figure 13 shows an example of pipeline stalls. Initially, the adder blade pipeline is assumed to have 6 distinct

BA(2) BA(3) BA(4) BA(5) WSelect_t

b2b3b4b5b6b7

BA(1)

VA(1) VA(2) VA(2) VA(4) VA(5) Write_t

b3

BM(5)

VM(5)

01111 11

match

BA(2) BA(3) BA(4) BA(5) WSelect_t

b3b4b5b6b7b0

BA(1)

VA(1) VA(2) VA(2) VA(4) VA(5) Write_t

b3

BM(5)

VM(5)

11110 11

match

BA(2) BA(3) BA(4) BA(5) WSelect_t

b4b5b6b7b0b0

BA(1)

VA(1) VA(2) VA(2) VA(4) VA(5) Write_t

b3

BM(5)

VM(5)

11100 11

match

BA(2) BA(3) BA(4) BA(5) WSelect_t

b5b6b7b0b0b3

BA(1)

VA(1) VA(2) VA(2) VA(4) VA(5) Write_t

b8

BM(5)

VM(5)

11001 11

match

BA(2) BA(3) BA(4) BA(5) WSelect_t

b1b2b3b4b5b6

BA(1)

VA(1) VA(2) VA(2) VA(4) VA(5) Write_t

b7

BM(5)

VM(5)

11111 01

match
match_d4 match_d5 match_d6match_d3match_d2match_d1

pipeline at t = 0

after 1 cycle

after 2 cycles

after 3 cycles

after 4 cycles
Figure 13. Stall cycles.

B. Mishra et al.

285

blades b1 to b6. The adder valid pipeline indicates that the data in the adder corresponding to blade b2 is invalid.
Also BM(5) contains blade of value b7 which is valid. Since b7 does not match any of the blades in the blade
pipeline, the match signal remains low. In the next cycle, the data corresponding to blade b1 will be written to
the register file. The rest of the data, blades and valid bits move forward through the pipeline. Now the value in
BM(5) is b3 which is valid. As data of blade b3 is already being processed in the adder pipeline and it is in stage
5, the match_d5 signal goes high, which in turn generates a stall. The stall freezes all the pipelines before the
adder and so the data, blade and valid bit will be held at the output of the multiplier. This can be seen in the fol-
lowing cycle as the value of BM(5) and VM(5) remain the same.

Although the pipelines before the adder have frozen, the adder pipeline continues forward. A value of
“00000000” which is represented by b0 is fed into the adder blade pipeline. The corresponding valid bit for this
is set to zero indicating that this data is invalid and is used as a filler to fill up the pipeline. Now the data corres-
ponding to b3 which was in Stage 5 is in stage 6, so match_d6 becomes high generating another stall. In the next
cycle another invalid data of blade b0 is fed in so now b3 is written to the register file and match remains low. In
the following cycle, the new data with blade b3 is fed into the adder pipeline. It uses the correct, updated value
of b3 from the register file. So, in this example a two cycle stall is required to avoid the data hazard.

4.7. GA Co-Processor Operation
The block labeled “LOGIC” on Figure 14 multiplexes the addresses, data and memory enable signals on to
read/write ports of the memory depending on the state of the state machine. This module contains the state ma-
chine (shown in Figure 15) required for the GA coprocessor to function. At reset, the GA co-processor will be
in the idle state. When the Start signal goes high, the state machine moves to the clearall state. In this state the
signal Clear goes high that is used to clear all the counters and registers before starting an operation in the GA
co-processor. In addition to the Clear signal, the signal CReset also becomes high. CReset is used to reset the
counter in the Register File. This state is put initially because the GA co-processor can always hold the values
from the last operation as it remains in the idle state. The clearall state is 1 cycle long and the state machine then
moves into the load state.

During the load state, data is loaded into the memory. Once the coefficients of multivector 1 and 2 (C1 and
C2) are loaded in memory (specified by A1 and A2), the Load_End signal goes high. This causes the state machine

Conversion
Logic

Write
WSelect
RSelect

RSelect

Write

W
Select

Out_data

Data_in

Data_out

In_data

temp1

tem
p2

countercounter

Data_reg

State
Machine

Logic

WAddr WData
Wen

Memory

RD_DATA

RD_EN
RD_ADDR

WR_DATA
WR_ADDR

WR_EN

Data

Address

temp2[40]

PStateProcess_End Clear

C1 C2 A1 A2Cfg_Bits

WState

Clear CReset

Clear
WState

A3
Result_
Count

Load_End
Dump_End

Start
C3

Dump_Data Load_Data
Load_Address

Load_En

C1 C2 A1 A2 Cfg_Bits

Result_CountA3

GA Core

MemoryWrite
Sequencer Register

File

LO
G

IC

Figure 14. Top level architecture of the GA co-processor.

B. Mishra et al.

286

idle

memorydump

Start=1
Dump_End=1

clearall

writeback

writesetupprocessing

load

Load_End=1

Process_End=1

counter>C3temp2(40)=1 or

Figure 15. State machine.

to move to the processing state. In the processing state, the GA co-processor operates (specified by Cfg_Bits) on
the data loaded in memory. A high on Process_End signal indicates the end of processing and the state machine
moves to the writesetup state. In the writesetup state, CReset is asserted thus clearing the counter in Register File.
In writeback state that follows the writesetup state, the Memory Write Sequencer writes the resultant multivector
to memory.

There are two ways by which the state machine can move to the next state from writeback state. One is by
looking for a “0”, the 41st bit of a register that indicates that there is no more valid data in the Register File. The
second way of moving to memory write setup state is to check if the counter in the Register File exceeds the
value specified by C3, a register value that stores the number of elements of the vector space. The first condition
reduces the effective cycles by writing only the non-zero coefficients to memory while the second condition
saves cycles by fixing an upper limit on the number of registers to be written to memory by looking at the di-
mension of the vector space in which the operation is performed. After the writeback state, the state machine
moves to the memorydump state. In the memorydump state, the addresses on the Load_Addressare loaded and
the Load_En signal is asserted.

The data read from the memory is driven on the Dump_Data bus after converting the 40-bit data into 16 bits.
For converting the data from the 16-bit to the 40-bit, two 16-bit registers are required.

4.8. Process End Logic
The signal Process_End indicates the end of the processing phase. This signal informs the state machine in the
GA module that the processing has been completed and the GA co-processor can move on to the next state. If
the end_of_read signal is high and all the data in the pipeline is invalid, then we can be sure that the last valid
data fed into the pipeline from the sequencer has been written to register file, and the processing is complete.

There are 12 levels of registers in the pipeline between the output of sequencer and the register file. So if the
signals Valid, VM(1) to VM(5), VA(1) to VA(5), Write_t and end_of_read are zero, Process_End can go high. If
the multiplier or the adder in the design is to be replaced with versions with different number of stages then the
multiplier blade pipeline, the multiplier valid pipeline, the adder blade pipeline and the adder valid pipeline
should also be changed to match the number of stages in their respective units. The Process_End logic should
also be changed to reflect the change in the number of pipeline stages.

5. Experimental Testing and Results
5.1. Experimental Results
This section describes the experimental verification results. To demonstrate the performance of the proposed de-

B. Mishra et al.

287

sign we implemented the design in VHDL and targeted it to a FPGA platform. The first experiment was exe-
cuted to compare the processing cycles and overhead required for the geometric operations in different dimen-
sions and results shown in Table 4. This table shows the ideal cycles required for the geometric product between
two multivectors with coefficients of all blades non-zero, the number of cycles required for loading the multi-
vectors into memory, the number of cycles required for processing the multivectors, the number of cycles re-
quired to write the resultant multivector back to memory, the effective number of cycles and the extra cycles
required for each dimension when compared to the ideal. The effective number of cycles is the sum of the load,
processing and memory write cycles.

The extra cycles account for the stalls and also the cycles introduced by the sequencer. The number of cycles
for the ideal case varies as 22n where n is the dimension of the vector space. To load n data elements into mem-
ory, 3n + 1 cycles are required where +1 is for the one cycle overhead for the load operation. To write n data
elements of the resultant multivector to memory, n + 2 cycles are required where +2 cycles overhead is required,
one of which is used to reset the counter in the Register File. As can be seen from Table 4, the extra cycles do
not increase proportionally as the dimension is increased. For the smaller dimensions, more extra cycles are seen
because there are fewer basis blades in the smaller dimensions and as a result more stalls occur. In the higher
dimensions, a large number of basis blades imply that there are fewer cases of data hazards occurring in the ad-
der pipeline which means fewer stalls.

For example, let us consider the number of cycles in each case for 3D vector space (row 4 in Table 4). The
number of elements in each multivector is 8 so for the geometric product, ideally only 8 × 8 = 64 cycles are re-
quired. As discussed earlier, to load the two multivectors, 48 + 1 = 49 cycles are required and the number of
cycles required for processing are 94. The memory write takes 8 + 2 = 10 cycles assuming that all 8 coefficients
in the resultant multivector are non-zero. The effective cycles are therefore 49 + 94 + 10 = 153. When compared
to the ideal, 153 − 64 = 89 extra cycles are required. Additional cycles are required for the resultant multivector
data in the memory to be brought out on the 16-bit wide output bus. The sum of the effective cycles and the ad-
ditional cycles required to output the result is called actual effective cycles. For example, in 3D vector space, an
additional 3 × 8 = 24 cycles are required making the actual effective cycles to 153 + 24 = 177. The actual effec-
tive cycles in each dimension are shown in Table 4.

The second experiment was performed to target the proposed design on an FPGA platform. To verify these
results from simulations, a3D-GA co-processor was implemented on a Xilinx Virtex-II FPGA. The logic gene-
rates the Clock, n Reset and Start signal. The Start signal is active low signal which means a “0” on Start would
make the state machine move from idle to clearall. This is necessary because Start is mapped to the user push
button switch on the FPGA which generates an active low signal. The state machine in the GA module is modi-
fied as follows. The memory dump state is removed and a new state called complete is added. The signal Finish
goes high when the state machine is in the complete state.

The synthesis result for dimensions 1 to 3 shows the usage of dual-ported select RAM memories and for
higher dimensions it uses block select RAM memories. Furthermore, the design in the 8th dimension cannot be
supported on this FPGA. For dimensions 1 to 6, there exists a critical path from the stall logic in GA core to the
sequencer and then to memory. It is also observed that the design frequency decreases when it is scaled from 1D

Table 4. Processing cycles for ga coprocessor.

Dimension Ideal Load Processing Memory Write Effective Extra Result Dump Actual Effective

1 4 13 26 4 43 39 6 49

2 16 25 46 6 77 61 12 89

3 64 49 94 10 153 89 24 177

4 256 97 292 18 407 151 48 455

5 1024 193 1076 34 1303 279 96 1399

6 4096 385 4180 66 4631 535 192 4823

7 16,384 769 16,532 130 17,431 1047 384 17,815

8 65,536 1537 65,812 258 67,607 2071 768 68,375

B. Mishra et al.

288

to 6D. This is because the address widths and counter widths get scaled and as a result morelogic is required. To
compare the performance of our proposed core to the state of the art, the frequency of operation is chosen at the
lower bound i.e. 65 MHz. Table 5 shows the comparison of recent works on GA Coprocessor architecture im-
plemented on hardware (custom IC, FPGA) platforms. The proposed GA Coprocessor offers a cycle count of
177, 455 and 1399 for 3D, 4D and 5D respectively. In comparison to [10], where the hardware resources are the
same i.e. one multiplier and one adder the performance improvement is significant.

When calculating the GA operations the GOPS (Equation (7)) is particularly important because the designer is
then able to determine whether the timing constraint put by the clock cycles and GOPS provided by that partic-
ular implementation is relevant.

1 1GOPS
noofcycles clkperiod latency

= =
×

 (7)

where no of cycles is the number of processing clock cycles (column 4, Table 4) to calculate the geometric
product. Based on the definitions Table 5 gives a comparison for different dimensions, GA processor perfor-
mance in MHz, clock cycles, and Geometric Operations per Second (GOPS). This also provides a comparison to
the GA coprocessor in [10] [11] [14]-[16]. We can see the Geometric Operations per Second column provides a
3 - 4 times improvement over this architecture. Also the proposed architecture is comparable or has a lower
GOPS when compared to [11] [14]-[16]. This can be explained as following. In these designs more hardware
resources have been used. For example, in [11], 24 multipliers and 16 adders have been used for 4D GA imple-
mentation. Similar is the case with [14] where 140 operators (74 DSP48Es) are used respectively. The 74
DSP48Es are basically multiply and add units. In [15] [16], the GOPS for 3D, 4D and 5D are 892.8, 246 and
84.7 respectively is achieved by using embedded multiplier cores that speed up the GA operations. The embedd-
ed core uses 24 multipliers in 3D and 64 multipliers in 4D and 5D implementations. As can be seen from Table
5, the GOPS metric is dependent on the frequency of operation and hardware resources. If more hardware re-
sources are available, then clearly the cycle time and hence the frequency can be improved. However for a scal-
able architecture these vendor specific solutions are not a preferred approach. Moreover, to be consistent across
all the various implementations and platforms, the GOPS was normalized (6th Column in Table 5). The norma-
lized GOPS (absolute values) is obtained by dividing the actual GOPS with the hardware resources used in that
particular design. For example, for design in [10] the 112.52 GOPS is divided by 2, as the design has used one
adder and one multiplier. (An otherwise normalization treating 1 multiplier and 1 adder as a single hardware re-
source results in same conclusion). When the result is normalized for [15] [16] with the hardware resources used,
it can be seen that instead of the higher GOPs; 37.2 GOPS is obtained for 3D and 3.8 and 1.3 GOPS is obtained

Table 5. Comparison with the state of the art.

Reference Frequency
(MHz)

HW
Resources

No of
Processing Cycles

GOPS
(In Thousands)

GOPS
(In Thousands, Normalized‡)

Perwass et al. [10] 20.0 1 M, 1A (2) 1761, 5442, 20443 112.521, 36.752, 9.793 56.26, 18.37, 4.89

Mishra & Wilson [24] 68.0 2 M, 3A (5) 841,2242,7043 809.61, 303.72, 96.623 161.92, 60.74, 19.32

Gentile et al. [11] 20.0 24 M, 16A (40) 562 357.15 8.9

Lange et al. [14] 170.0 74† 3663 464.5 6.28

Franchini et al. [15] 50 24 M 561 892.8 37.2

Franchini et al. [16] 100 64 M
4052 246.9 3.8

11803 84.7 1.3

This Work 65.0 1 M, 1A (2)

1771 367.2 183.6

4552 142.8 71.4

13993 46.4 23.2
1GA in 3D; 2GA in 4D; 3GA in 5D; M = Multiplier, A = Adder; †Number of DSP48Es in Xilinx (These are Multiply and Add Units); ‡Normalized to
Hardware resources used (GOPS/Hardware).

B. Mishra et al.

289

for 4D and 5D respectively. As can be seen from Table 5, the proposed architecture has therefore the best GOPS
compared to other implementations. Moreover, the proposed architecture achieves a smaller area, modular and is
superior to the closest FPGA implementation by a factor of 3X to 5X in 3D to 5D implementations.

5.2. Further Optimizations
In the current design the resultant multivector is first written from the register file to the memory and then later
it is transferred to the output port from the memory. This is clearly not required as the result could be transferred
from register file to the output memory directly. In that case the states writesetup and writeback can be removed
from the state machine and the new state registerdump replaces memorydump. In the registerdump state the
contents of the register file is put out on the output bus. As the output bus has a smaller bandwidth (i.e. 16 bits as
compared to 41 bits in the register file), 3 times the clock cycles will be required. Then the actual effective
cycles for the design can be obtained by subtracting the cycles for memory write phase and accounting for the
cycles required for transferring the contents of the register file directly to the output bus. For example, in 3D the
actual effective cycles could be 167 (177-10). Instruction-level parallelism exists when instructions in a se-
quence are independent and thus can be executed in parallel by overlapping [26] to get performance improve-
ment. Due to resource conflict this kind of parallelism is limited in this design. Only when the operation is in
Result Dump phase, the memory is free and so the memory load or processing phase of the subsequent operation
can be overlapped.

It was observed that for higher frequency of operation the timing critical paths should be broken. The timing
critical path in the register file arising from the match logic can be broken at the cost of more resources in the
register file. For example, in the 8th dimension, if there are another 2 set of comparators in the register file, then
part of the match signal can be generated one stage earlier. This means that 4 × 256 = 1024 8-bit comparators
are required in the register file. As the logic is split between two stages, the number of levels of logic between
each stage can be reduced resulting in an increase of frequency.

For improving the effective number of cycles for operation, more than one GA Core, each with its multiplier,
adder and independent register files can be used. In such a case, a common sequencer feeds data to the different
cores. The complexity in this multiple GA Core design lies in the sequencer which should sequence data such
that each pipeline works efficiently without many stalls. The sequencer has to intelligently feed data into the
different GA Core pipelines to eliminate dependencies. This would also mean the use of buffering and additional
memory.

Furthermore, the GA co-processor is envisaged to interface with a standard processor. This can be achieved in
two ways, either by mapping the GA co-processor into the physical memory and giving it a real address on the
address bus (memory mapped I/O) or by mapping it into a special area of input/output memory (isolated I/O)
[27]. When it is mapped to memory, it can be accessed by writing or reading to the physical memory. Isolated
I/O is isolated from the system and is accessed by ports using special machine instructions. Depending on the
control signals, the processor reads or writes to the memory directly or to the GA co-processor through the iso-
lated memory. In such a case, the GA co-processor requires a wrapper to interface with the standard core. This
GA wrapper receives the operation instruction and control signals from the standard core that contains registers
which need to be set up before any operation on the GA co-processor.

The VHDL code is provided for general download and use in the repository [28].

6. Conclusions
An alternative design of a Geometric Algebra co-processor was successfully created. The design was success-
fully synthesized and functionally tested on an FPGA. We present a comparison of different FPGA and ASIC
platforms in terms of performance and modularity of the architecture. On the FPGA, we developed a custom
implementation for GA Geometric Product, which can be easily extended to other products within GA. We have
introduced a modular architecture of the GA core linearly dependent on the dimension register file which can
support up to an 8 dimensional GA can support up to an 8 dimensional GA, with a normalized performance that
is better than previously reported results.

The GA implementation consists of a pipeline arithmetic blocks to compute the geometric-product and sup-
port for several parallel pipelines to obtain high throughput. Performance results for a single core show that us-
ing an FPGA results in a superior performance when compared to the state of the art platforms. Furthermore, the

B. Mishra et al.

290

FPGA architecture was able to provide a flexible platform that could handle a variety of GA products without
performance degradation, particularly being able to use multiple dimensions in a single implementation. Finally,
the GA platform provides the opportunity to expand the GA instruction sets and also accommodate multiple
cores, increasing the computational capacity, making an even more compelling GA platform for various applica-
tions.

References
[1] Dorst, L. and Mann, S. (2002) Geometric Algebra: A Computational Framework for Geometrical Applications (I).

IEEE Computer Graphics and Applications, 22, 24-31. http://dx.doi.org/10.1109/MCG.2002.999785
[2] Mann, S. and Dorst, L. (2002) Geometric Algebra: A Computational Framework for Geometrical Applications (II).

IEEE Computer Graphics and Applications, 22, 58-67. http://dx.doi.org/10.1109/MCG.2002.1016699
[3] Lasenby, J., Gamage, S., Ringer, M. and Doran, C. (2001) Geometric Algebra: Application Studies. Geometric Alge-

bra—New Foundations, New Insights. SIGGRAPH 2001, New Orleans.
[4] Lasenby, J., Gamage, S. and Ringer, M. (2000) Modelling Motion: Tracking, Analysis and Inverse Kinematics. AFPAC’00:

Proceedings of the 2nd International Workshop on Algebraic Frames for the Perception—Action Cycle. Springer-Ver-
lag, London, 104-114.

[5] Lasenby, J., Fitzgerald, W.J., Lasenby, A.N. and Doran, C.J.L. (1998) New Geometric Methods for Computer Vision:
An Application to Structure and Motion Estimation. International Journal of Computer Vision, 26, 191-213.
http://dx.doi.org/10.1023/A:1007901028047

[6] Lasenby, J. and Stevenson, A. (2000) Using Geometric Algebra for Optical Motion Capture. In: Bayro-Corrochano, E.
and Sobcyzk, G., Eds., Applied Clifford Algebras in Computer Science and Engineering, Birkhauser, Boston, 147-169.

[7] Hestenes, D. (1986) New Foundations for Classical Mechanics. D. Reidel Publishing Company, Dordrecht, xi + 644 p.
http://dx.doi.org/10.1007/978-94-009-4802-0

[8] Mishra, B. and Wilson, P. (2005) VLSI Implementation of a Geometric Algebra Micro Architecture. Proceeding of
ICCA 2005. ICCA, Toulouse.

[9] Hildenbrand, D. (2005) Geometric Computing in Computer Graphics Using Conformal Geometric Algebra. Computers
and Graphics, 29, 795-803. http://dx.doi.org/10.1016/j.cag.2005.08.028

[10] Perwass, C., Gebken, C. and Sommer, G. (2003) Implementation of a Clifford Algebra Co-Processor Design on a Field
Programmable Gate Array. In: Ablamowicz, R., Ed., Clifford Algebras: Application to Mathematics, Physics, and En-
gineering, ser. Progress in Mathematical Physics, 6th International Conference on Clifford Algebras and Applications,
Cookeville, TN. Birkhäuser, Boston, 561-575.

[11] Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S. and Vullo, V. (2005) CliffoSor: A Parallel Embedded
Architecture for Geometric Algebra and Computer Graphics. 7th International Workshop on Computer Architecture
for Machine Perception, CAMP’05, Palermo, 4-6 July 2005, 90-95.

[12] Fontijne, D. and Dorst, L. (2003) Modeling 3D Euclidean Geometry. IEEE Computer Graphics and Applications, 23,
68-78. http://dx.doi.org/10.1109/MCG.2003.1185582

[13] Hildenbrand, D., Fontijne, D., Perwass, C. and Dorst, L. (2005) Geometric Algebra and Its Application to Computer
Graphics. 25th Annual Conference of the European Association for Computer Graphics, Grenoble, 30 August-3 Sep-
tember 2005.

[14] Lange, H., Stock, F., Koch, A. and Hildenbrand, D. (2009) Acceleration and Energy Efficiency of a Geometric Algebra
Computation Using Reconfigurable Computers and GPUs. 17th IEEE Symposium on Field Programmable Custom Com-
puting Machines, FCCM’09, Napa, 5-7 April 2009, 255-258.

[15] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2009) An Embedded, FPGA-Based Computer Gra-
phics Coprocessor with Native Geometric Algebra Support. Integration, the VLSI Journal, 42, 346-355.
http://dx.doi.org/10.1016/j.vlsi.2008.09.010

[16] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2013) Design and Implementation of an Embed-
ded Coprocessor with Native Support for 5D, Quadruple-Based Clifford Algebra. IEEE Transactions on Computers,
62, 2366-2381. http://dx.doi.org/10.1109/TC.2012.225

[17] Grassmann, H. (1877) Der ort der Hamilton’schen quaternionen in der aushdehnungslehre. Mathematische Annalen, 12,
375-386.

[18] Clifford, W.K. (1878) Applications of Grassmann’s Extensive Algebra. American Journal of Mathematics, 1, 350-358.
http://dx.doi.org/10.2307/2369379

[19] Hestenes, D. and Sobczyk, G. (1992) Clifford Algebra to Geometric Calculus. Kluwer Academic Publishers, Dor-

http://dx.doi.org/10.1109/MCG.2002.999785
http://dx.doi.org/10.1109/MCG.2002.1016699
http://dx.doi.org/10.1023/A:1007901028047
http://dx.doi.org/10.1007/978-94-009-4802-0
http://dx.doi.org/10.1016/j.cag.2005.08.028
http://dx.doi.org/10.1109/MCG.2003.1185582
http://dx.doi.org/10.1016/j.vlsi.2008.09.010
http://dx.doi.org/10.1109/TC.2012.225
http://dx.doi.org/10.2307/2369379

B. Mishra et al.

291

drecht.
[20] Hestenes, D., Li, H. and Rockwood, A. (2001) A Unified Algebraic framework for Classical Geometry. In: Sommer,

G., Ed., Geometric Computing with Clifford Algebras, Springer, Berlin.
[21] Li, H., Hestenes, D. and Rockwood, A. (2001) Generalized Homogenous Coordinates for Computational Geometry. In:

Sommer, G., Ed., Geometric Computing with Clifford Algebras, Springer, Berlin.
[22] Gebken, C. (2003) Diploma Thesis, Implementierung eines Koprozessors fur Geometrische Algebra auf einem FPGA.

Master’s Thesis, Christian-Albrechts-University Kiel, Kiel.
[23] Fontijne, D. (2011) Gaigen Manual. http://www.sourceforge.net/projects/gaigen
[24] Mishra, B. and Wilson, P. (2005) Hardware Implementation of a Geometric Algebra Processor Core. Proceedings of

ACA 2005. IMACS, International Conference on Advancement of Computer Algebra, Nara, 31 July-3 August 2005,
1-5.

[25] Mishra, B. and Wilson, P. (2006) Color Edge Detection Hardware Based on Geometric Algebra. 3rd European Confe-
rence on Visual Media Production CVMP 2006, IET, London, 115-121.

[26] Stallings, W. (2003) Computer Organization and Architecture: Designing for Performance. 6th Edition, Pearson Edu-
cation, Upper Saddle River.

[27] Buchanan, W. (1999) PC Interfacing, Communications and Windows Programming. Addison-Wesley, Boston.
[28] VHDL Code for GAMA. http://www.ecs.soton.ac.uk/prw/gama.zip

http://www.sourceforge.net/projects/gaigen
http://www.ecs.soton.ac.uk/prw/gama.zip

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	A Novel Signal Processing Coprocessor for n-Dimensional Geometric Algebra Applications
	Abstract
	Keywords
	1. Introduction
	2. Geometric Algebra
	2.1. Basics Relations
	2.2. Blades
	2.3. Bivector and Trivector
	2.4. Geometric Product and Multivector
	2.5. Hardware Implementation of GA

	3. GA Co-Processor Architecture
	3.1. Top Level Architecture
	3.2. Register File
	3.3. Memory
	3.4. Memory Write Sequencer

	4. GA Core: Detailed Description
	4.1. Multiplier and Adder Pipelining
	4.2. Multiplier
	4.3. Adder
	4.4. Sequencer
	4.5. Blade Logic
	4.5.1. Computation of Basis Blade Vector and Sign
	4.5.2. Signature Sign Logic

	4.6. Stall Match Logic
	4.7. GA Co-Processor Operation
	4.8. Process End Logic

	5. Experimental Testing and Results
	5.1. Experimental Results
	5.2. Further Optimizations

	6. Conclusions
	References

