
Circuits and Systems, 2012, 3, 192-199
http://dx.doi.org/10.4236/cs.2012.32026 Published Online April 2012 (http://www.SciRP.org/journal/cs)

Transient and Permanent Fault Injection in VHDL
Description of Digital Circuits

Parag K. Lala
Department of Electrical Engineering, Texas A&M University, Texarkana, USA

Email: Parag.Lala@tamut.edu

Received January 25, 2012; revised March 7, 2012; accepted March 16, 2012

ABSTRACT

The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing
highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline
testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper pre-
sents a technique for transient and permanent fault injection at the VHDL level description of both combinational and
sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single
fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability
of a digital system before it is actually implemented.

Keywords: On-Line Fault Detection; VHDL; Transient Faults; Fault Injection; LFSR

1. Introduction

Modern digital systems are typically specified in a high
level language such as VHDL. The actual implementa-
tion of the system is then performed using this specifica-
tion. Several important criteria of a system to be de-
signed e.g. testability, power consumption, need to be
evaluated. The capability to ascertain the testability of a
system at the VHDL level before it is implemented, al-
lows design modifications to achieve the desired goal. A
fault injection system provides the capability of intro-
ducing a fault at any desired location into the VHDL
model of a circuit [1]. The injection technique allows
faults to be injected at varying levels of VHDL hierarchy
and hence help in evaluating the performance of a test-
able system.

In general, faults are grouped into two categories:
permanent and temporary. Permanent faults that exist in
logic circuits are normally identified during offline test-
ing by the manufacturer of ICs, temporary faults on the
other hand are of major concern after an IC chip is used
in a particular application. Temporary faults can be one
of two types: intermittent and transient [2]. Some work
has been reported on the development of VHDL model
for intermittent faults [3,4], however not much has been
reported on transient (soft) fault injection in VHDL-
based circuit descriptions [5,6]. The ability to simulate
the occurrence of a transient fault in the VHDL descrip-
tion of a circuit is extremely important if the circuit has
built-in on-line fault detection capability. In addition the

ability to insert permanent faults on single bits or a data
word must also be taken into consideration. These fea-
tures enable the performance of a circuit or a system un-
der faulty conditions to be effectively evaluated before it
is implemented.

Fault injection is crucial in an online testable system.
It enables a designer to test whether the functional circuit
and the checker within the system are operating as speci-
fied. Faults in an online testable system are assumed to
be mainly single bit faults where a single bit is flipped
from a logic 1 to a 0 or vice-versa. They can be both
transient and permanent in nature. For (offline) testable
systems fault injection helps in evaluating the testability
of the entire system before the system is actually imple-
mented. Any internal signal can be accessed at the
VHDL level for the purposes of injecting faults, thus
ensuring greater controllability and observability of the
system.

The fault injection system proposed in this paper will
be contained within the instruction VHDL of a system.
This maintains the system as platform independent, able
to simulate on any VHDL simulation software without
extensive knowledge of simulation VHDL, which is a
very tedious approach. Delong et al. [7] proposed a tech-
nique to accomplish the same goal, offering a different
approach to fault injection. Other approaches such as the
one offered by Parrotta et al. [8] or the one offered by
Vargas et al. [9] involve injection techniques that must
be used within simulation VHDL. Other papers ap-

Copyright © 2012 SciRes. CS

P. K. LALA 193

proached fault injection differently by using methodolo-
gies based on scan paths [10], using outside logic sources
to inject faults into VHDL descriptions [11], or by modi-
fying existing circuit architecture [12-14]. Incorporating
an injection technique in a VHDL description instead of
the simulation code is more easily handled and is port-
able between design packages. A realistic fault injection
system must have the capability to access most signals
within a VHDL description including the inputs and
outputs of the description; this is crucial for both on- and
off-line testing.

The organization of the paper is follows. Section 2
discusses the general concept of the proposed fault injec-
tion system, and how each of the constituent blocks of
the system is implemented in VHDL code. Section 3
illustrates the application of the fault injection system
using several examples. Section 4 shows how permanent
and transient faults are injected into a system specified in
VHDL language. Section 5 is the conclusion.

2. Fault Injection in VHDL Description

A user-friendly fault injection system must evolve from a
basic set of specifications. It must allow designers the
ability to verify an online testable system, and therefore
support injection of transient faults. Furthermore, it needs
to have the capability to observe how a circuit behaves in
the presence of a fault in an offline testing environment.

The transient fault injection feature proposed in this
paper does not just randomly insert faults on its own into
the system. It allows predetermination of a rate at which
faults are inserted into a data word or data bit; as far as
the authors are aware of this feature is not available in
any system studied to date. During transient fault injec-
tion, random bits in a data word are selected by the sys-
tem fault insertion. This is a key component of the pro-
posed injection system that enables the designer to simu-
late faults at more realistic intervals on varying bits in a
data word without having to modify the VHDL descrip-
tion every time a fault is inserted in the system. If there is
a single input bit or a signal that is directed to the system,
a transient fault will always occur on that bit at the inter-
val chosen by the user. This allows the user to focus
solely on a single bit when transient fault insertion is
desired. If a larger data word is sent to the injection sys-
tem, it will choose on which bit the fault be injected. This
is especially useful in on and offline testing by focusing
in on a specific bit or inserting faults randomly across a
data word.

The proposed fault injection system is comprised of
five blocks with three levels of hierarchy as shown in
Figure 1. To invoke the system one component instan-
tiation block is necessary for each data word where faults
are to be inserted.

2.1. LFSR Blocks

A major feature of the fault injection system is the ability
to insert faults at desired intervals. To accomplish this
task the injection system uses pseudo-random sequences.
Pseudo-random sequences of maximal length are gener-
ated using LFSR’s. The two 16-bit LFSR’s run in parallel
constantly generating pseudo-random sequences. Based
on the percentage of time that is chosen to insert a fault, a
certain number of bits in the two LFSR’s are compared
by the fault injection logic block. If that number of bits
matches, then a fault is inserted into the system. The data
flow through the system that accomplishes this is shown
in Figure 2.

Figure 3 presents resulted from a program that was
written to simulate two 16-bit LFSR’s running in parallel
and certain numbers of bits being matched. A 4-bit con-
trol code (Ctrl) which is processed by the Control Logic
block determines how many bits need to be matched in
the two LFSR’s to control the percentage at which faults
are injected. The initial seed to each of the LFSR’s must

D
at

a
O

ut

D
at

a
In

Control
Logic

1-Hot Encoded
Shift Register

16 bit LFSR 16 bit LFSR

Fault
Injection

Logic

Data-In

Data-In

Yes

Figure 1. Block diagram of fault injection system.

16-bit LFSR 16-bit LFSR

No. of Bits
Match?

No Fault
Insertion

Fault
Insertion

Data Out

One-Hot
Encoded SR

Figure 2. Basic flow chart of data through system during
transient fault injection.

Copyright © 2012 SciRes. CS

P. K. LALA 194

Fault
Insertion

StuckAtBit

StuckAtValue
DataIn

D
at

aO
ut

Figure 3. Percentage on the left is the percent of time a fault
is inserted in the system.

be different in order to produce two different pseudo-
random binary sequences.

Certain easy to use control settings are employed in
order to insert a stuck-at-0 or stuck-at-1 fault at a loca-
tion selected by the user. Bits can be targeted easily with
permanent injection by means of the StuckAtBit and
StuckAtValue in the injection block. StuckatBit is the
location of the permanent fault and StuckAtValue is the
logic value of the stuck-at fault. The flow for data that
will have permanent injection of a fault is shown in Fig-
ure 4.

The easiest way to accomplish control of the system is
with a simple generic port map in VHDL that is used for
the fault injection logic block in the system. A control
code that is 4 bits wide is used in the highest level block,
the control logic module, in order to let the user to
change the rates of fault injection.

2.2. Fault Injection Logic Block and One-Hot
Encoded Shift Register

The Fault Injection Logic block is the heart of the injec-
tion system that bears the work of incorporating data
from the two LFSR’s and also the One-Hot Encoded shift
register. The block monitors the control inputs to the
circuit to evaluate whether it needs to perform transient
or permanent fault injection in the data that is sent to it.
The control code which initializes permanent fault injec-
tion is “1111”. If “1111” is sent to the injection system,
the fault injection logic inserts a stuck-at fault at the lo-
cation that is specified by the user (StuckAtBit) to the
value (StuckAtValue) that is specified by the user. Oth-
erwise, injection is determined to be of the transient na-
ture. It must be made clear that the system operates dif-
ferently when this “1111” is passed to it in the form of a
control code. That code is the only one that uses StuckAt-
Bit and StuckAtValue.

Other control codes are for transient injection and
range from “0001”  50% injection to “1110”  <
0.01% injection. A control code of “0000” is 0% fault

Figure 4. Data flow for permanent fault injection.

injection while a control code of “1111” is 100% fault
injection. The control code is used to control the point in
time at which the fault is injected. By incrementing this
control code by “1” for each code, fault injection is
dropped by 1/2 from the previous rate.

In order to determine the bit on which a fault will be
inserted during transient fault injection, a one-hot en-
coded shift register is used. Every clock cycle, a logic
“1” is shifted through a data word that is the length of the
data word sent to the injection system. The purpose of
the “1” is to determine on which bit the fault will be in-
jected. When the control logic has seen that a fault is to
be injected, it views the data output word of the one-hot
encoded shift register. On the bit which is a “1” the con-
trol logic flips the bit in the data word.

The Fault Injection Logic block constantly monitors
the output of both of the LFSR’s, determining whether a
fault is to be injected or not. It also determines on which
bit a fault will occur if more than one bit is sent to the
injection system. The Fault Injection Logic block sends
to the Control block the same data word that was passed
into the system or a faulty data word based on whether a
fault has been calculated to occur.

2.3. Control Logic for Fault Insertion

The Control logic allows the user to change rates of fault
insertion during operation. It does this by operating in
parallel 15 different Fault Injection Logic blocks. The
output of a certain Fault Injection Logic block is directed
to the output of the injection system by multiplexing the
16 total different signals to the output of the injection
block based on the 4-bit wide control code, as discussed
in the previous section. If the fault injection system is not
activated, the data that is sent into the system is directed
out. But if the system is active, then a fault is inserted on
the data word coming into the system and directed to the
data out word.

2.4. Component Instantiation

In behavioral or structural design approach within VHDL,
the component instantiation is the same. With predomi-
nately behavioral design approaches being used in sys-
tem design especially in describing complex state ma-
chines, it is not possible to predict the structure of the

Copyright © 2012 SciRes. CS

P. K. LALA 195

circuit generated by the synthesis tool. Therefore, a ge-
neric instantiation block as shown in Figure 5 is em-
ployed in the proposed fault injection technique.

In Figure 5 DataLength is the length of the primary
input or internal signal on which a fault will be injected.
It is just a positive integer that is needed in order for the
fault injection system to operate, and should be the same
as the number of bits that are contained in a signal or
primary input that is being fed to the system for fault
injection. For example, for a single bit that is sent to the
system for injection, DataLength is 1. For a 4-bit wide
word whereby faults will be inserted, DataLength is 4.
DataIn is the signal or primary input from the VHDL
block that is calling this instantiation for which a fault
will be inserted. DataOut corresponds to the output of the
block that may contain a fault. Faults injected by the
system are placed on the data coming from DataIn and
seen on DataOut. DataIn and DataOut must be of the
same width and must be DataLength bits long. Ctrl codes
are 4 bits wide and range from “0000” to “1111”. “0000”
corresponds to no fault injection and “1111” corresponds
to permanent fault injection. Clk is a system clock that is
needed to be turned on for both transient and permanent
fault injection. The Reset signal resets all flip flops in the
system and must be enabled for at least one clock cycle
at the beginning of a simulation followed by the load
signal one to two clock cycles later. Match is simply an
output signal denoting a fault has occurred and enable
allows the system to inject faults onto incoming data.
StuckAtBit and StuckAtValue are only useful when per-
manent fault injection in the system with a control code
of “1111”. StuckAtBit is the bit on which a permanent
fault is injected, and StuckAtValue is the logic value (0
or 1) that the bit selected by StuckAtBit is set to.

2.5. Injection Block Placement

The proposed fault injection system is able to inject
faults into both combinational and sequential parts of
VHDL descriptions and into behavioral or structural
VHDL coding. With predominately behavioral design

inserter: faultblock
 generic map(DataLength => 4,
 StuckAtBit => 1)

port map (DataIn => DataIn,
 DataOut => DataOut,
 ctrl => ctrl,
 clk => clk,
 reset => reset,
 StuckAtValue => ‘0’,
 load => load,
 match => match,
 enable => faultenable);

Figure 5. Generic fault injection system instantiation in
VHDL.

approaches being used in system design especially in
describing complex state machines, it is not possible to
predict the structure of the circuit generated by the syn-
thesis tool. Since in most cases only the behavioral de-
scription of a sequential circuit is available, the ability to
inject faults in the VHDL description of the sequential
circuit is imperative in order to have the capability to
assess the controllability and observability of the even-
tual circuit resulting from the VHDL description.

The fault injection block is not meant to be able to in-
ject faults on every signal within a VHDL description,
but to reach as many low-level VHDL blocks containing
primary inputs and outputs, internal signals therein as
possible.

3. Fault Injection System in Practice

The application of the proposed fault injection system is
illustrated through several examples. The VHDL coding
and compilation in the following examples utilized the
Xilinx Foundation 5.1.03i, and the simulation was per-
formed in ModelSim XE II 5.6a. In order to write VHDL
in the in the Xilinx Foundation, a specific FPGA had to
be chosen; the FPGA XC2V500-4FG456C was selected
for this purpose.

3.1. Transient Fault Injection in Online Testable
Systems

To illustrate the use of fault injection in an on-line test-
able circuit, the fault injection block must be inserted
into a VHDL block that is meant to be self-checking. A
self-checking circuit can determine whether a fault has
propagated to an output data word or not. Thus, a coding
system must be employed to accomplish the self-check-
ing aspect of the circuit and a checker that accepts coded
data. For this example, a 2-out-of-4 code is used for the
method of data encoding. In other words, for every 4-bit
word of data that is going through the system, 2 bits in
each word are 1s and the other two are 0s. The fault in-
jection block is placed as shown in Figure 6. Subse-
quently, data is fed from the fault injection block to the
2-out-of-4 code checker which is shown in Figure 7.
When Z1 Z2 = 01 or 10, the circuit under test is fault-free,
where as Z1 Z2 = 00 or 11 indicates the presence of a
fault.

The 2-out-of-4 Code Generator circuit is assumed to
have 3 inputs (I1, I2, I3) and a 2-out-of-4 code as the
output (O1, O2, O3, O4). The sum of products notation
for the example circuit is:

O1 =  (0, 3, 5, 6)
O2 =  (1, 3, 4, 6)
O3 =  (2, 4, 5, 7)
O4 =  (0, 1, 2, 7)
The VHDL code for the circuit is shown below:

Copyright © 2012 SciRes. CS

P. K. LALA 196

 2-out-of-4
Code Circuit

Fault
Injection

Block

2-out-of-4
Code Checker

Figure 6. Placement of fault injection block in VHDL code.

Figure 7. 2-out-of-4 checker [9].

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library work;
use work.lfsr_pkg.all;

entity test1 is
 Port (DataOut: out std_logic_vector(3 downto 0);
 clk,reset,load,faultenable : in std_logic;
 ctrl : in std_logic_vector(3 downto 0);
 CircuitIn : out std_logic_vector(2 downto 0);
 match : out std_logic;
 fault : out std_logic;
 Z1,Z2 : out std_logic);
end test1;

architecture Behavioral of test1 is
 signal i : std_logic_vector(2 downto 0);
 signal DataIn : std_logic_vector(3 downto 0);
 signal subdata : std_logic_vector(3 downto 0);
begin

-- The LFSR serves the function of feeding inputs to the
-- circuit so it will not have to be done manually in the
-- simulator

LFSR1: LFSR_GENERIC
 generic map (Width => 3)
 port map (clock => clk,
 reset => reset,
 load => load,
 seed => “101”,
 parallel out => i);
 CircuitIn <= i;

-- DataIn(3) = O1, DataIn(2) = O2, DataIn(1) = O3,

DataIn(0) = O4
 DataIn(3) <= (NOT i(0) AND (i(1) XNOR i(2))) OR
(i(0) AND (i(1) XOR i(2)));
 DataIn(2) <= i(0) XOR i(2);
 DataIn(1) <= (NOT i(2) AND (i(0) XOR i(1))) OR
(i(0) AND i(2));
 DataIn(0) <= (NOT i(0) AND NOT i(1)) OR (i(1)
AND (i(0) XNOR i(2)));

-- Fault insertion block instantiation
inserter: faultblock
generic map(DataLength => 4,
 StuckAtBit => 0)
-- The value for StuckAtBit does not matter in this case
-- because a transient fault is going to be injected, thus
-- letting the injection system handle when and where the
-- fault occurs
-- The 4 indicates the length of the data word for which a
-- fault shall be injected
port map (DataIn => DataIn,
 DataOut => subdata,
 StuckAtValue => ‘0’,
-- StuckAtValue does not matter in this case because
-- once again, the system in transient injection is han-
dling
-- the location and what the fault will be
 ctrl => ctrl,
-- Set ctrl anywhere between “0001” and “1110” for
-- transient fault injection
-- If ctrl is used as an input to the circuit, it can be
changed
-- during operation or it can be set manually within the
-- injection block (ctrl => “0001”)
 clk => clk,
 reset => reset,
 load => load,
 enable => faultenable);

 DataOut <= subdata;

-- 2 out of 4 checker
Z1 <= (subdata(0) OR subdata(1)) AND (subdata(2) OR
subdata(3));
Z2 <= (subdata(0) AND subdata(1)) OR (subdata(2)
AND subdata(3));
end Behavioral;

Figure 8 shows the simulation results of the 2-out-of-4
encoder operating at 100 MHz without fault injection
occurring. The circuit inputs are generated by a 3-bit
linear feedback shift register (LFSR) and are fed directly
to the circuitry described above in O1, O2, O3, & O4.
The resulting 2-out-of-4 code words are verified by the
code checker as shown in Z1 and Z2.

Figure 9 shows simulation results with the fault inject-

Copyright © 2012 SciRes. CS

P. K. LALA

 CS

197

Figure 8. Example circuit for online testing without fault injection.

Figure 9. Example circuit for online testing with transient fault injection.

tion block turned on; the control code is set at 0001 i.e.
the rate of fault appearance is 50%. As can be seen in the
diagram for certain input combinations Z1 and Z2 are
either 00 or 11. After a few clock cycles, fault insertion
stops briefly to allow normal operation. This makes Z1
and Z2 to become 01 or 10. Towards the end of the dia-
gram Z1 and Z2 become 11 and then 00 indicating the
presence of a fault in the data word. This can be verified
by observing the “dataout” word which is producing a
non-code word.

 inserter: faultblock

generic map(DataLength => 4,

 StuckAtBit => 0)

-- StuckAtBit being set to 0 makes the system

-- insert a stuck-at fault on bit 0 in the data word

port map (DataIn => DataIn,

 DataOut => subdata,

 ctrl => ctrl,

-- For permanent fault injection in simulation set

-- ctrl to “1111”

 clk => clk,

 reset => reset,

 load => load,

 match => match,

 StuckAtValue => '1',

-- The stuck-at fault that will occur will be a

-- stuck-at-1

 enable => faultenable);

3.2. Permanent Fault Injection in an Off-Line
Testing Environment

To further illustrate the functionality of the system, an
example showing permanent injection of a single stuck-at
fault is provided. The test pattern generator in this case is
a 3-bit LFSR. The control code is set at 1111.

There is no on-line checker in this case, the outputs
need to be observed to ascertain the effect of the stuck-
at-1 fault being introduced on the 0-bit in the data word.
The fault injection block is shown in Figure 10.

Figure 10. Fault injection block for offline testing example.

machines, it is not possible to predict the structure of the
circuit generated by the synthesis tool. Since in most
cases only the behavioral description of a sequential cir-
cuit is available, the ability to inject faults in the VHDL
description of the sequential circuit is imperative in order
to have the capability to assess the controllability and
observability of the eventual circuit resulting from the
VHDL description. The fault injection block is not meant
to be able to inject faults on every signal within a VHDL
description, but to reach as many low-level VHDL blocks
containing primary inputs and outputs, internal signals
therein as possible

Figure 11 shows the simulation results in the absence
of a fault. The expected outputs can be observed on the
Datout line. From the simulation results in Figure 12, it
can be concluded that the circuit is operating with a
stuck-at-1 fault on bit 0 in the data word, as indicated in
the specifications of the injection block in Figure 10. It
should be noted that that the fault injection block of Fig-
ure 10 can insert either a transient or a permanent fault
simply by changing the control code even during normal
operation. However, the location of the permanent cannot
be changed during operation.

If Z1, Z2 = “01” or “10”
 Circuit is behaving normally

4. Transient and Permanent Fault Injection
in a Sequential Circuit

If Z1, Z2 = “00” or “11”
 Circuit is operating with a fault

The fault insertion technique proposed in [5] considered
combinational logic circuits only With predominately
behavioral design approaches currently being used in
system design especially in describing complex state

For sequential circuits, the states must be set outside a
process statement in order f r the injection system to o

Copyright © 2012 SciRes.

P. K. LALA 198

Figure 11. Example circuit for offline testing without fault injection.

Figure 12. Example circuit for offline testing with permanent fault injection.

 ARCHITECTURE Behavior OF upcount IS

SIGNAL Count:

 STD_LOGIC_VECTOR(3 DOWNTO

BEGIN

-- Q is the state of the machine and is a BU

 PROCESS(Clock,Resetn)

 BEGIN

 IF Resetn = ‘0’ THEN

Count <= “0000”;

 ELSIF (Clock’ EVENT AND Clock =

 IF E = ‘1’ THEN

 Count <= subdata + 1;

 ELSE Count <= subdata;

 END IF;

 END IF;

 END PROCESS;

-- Fault insertion block instantiation

-- The set of registers, Q or subdata, is set af

-- block even in normal operation for this circ

inserter: faultblock

generic map(DataLength => 4,

 StuckAtBit => 1)

-- When permanent injection is chosen by me

-- ctrl = “1111”, bit 1 will have a permanent s

-- fault that is StuckAtValue, in this case ‘0’

port map (DataIn => Count,

 DataOut => subdata,

 ctrl => “1111”,

 clk => clk,

 reset => reset,

 StuckAtValue => ‘1’,

 load => load,

 match => match,

enable => faultenable);

 Q <= subdata;

END Behavior;

 enable => faultenable);

 Q <= subdata;

END Behavior;

 0);

FFER

 ‘1’) THEN

ter the process

uit.

ans of

tuck-at

Figure 13. Up-counter with injection system in place.

operate. The process statement may however contain a
signal representing the state of the machine. The signal
that identifies the new state of the machine is used in the
DataIn assignment in the injection block. The new state
of the machine is on DataOut. The new state may or may
not contain an injected fault. The component instantia-
tion for the system cannot be implemented within a
process statement. An example sequential circuit that
includes a fault injection block is shown in Figure 13.
Figure 14 shows the simulation results of the sequential
circuit described in Figure 13 operating under normal
conditions. Figure 15 shows the circuit operation with a
50% fault injection rate. As can be seen in the diagram
the counter is going through erroneous state transitions.
Figure 16 shows the circuit operation with permanent
fault injection for a stuck-at-1 on bit 0 of the counter
registers. It should be clear from the diagram that the
circuit states are erroneous.

5. Conclusion

A fault injection technique that enables designers the
access to a VHDL package to insert a fault on any signal
within the block of a VHDL code, has been presented. It
allows the injection of transient faults randomly across a
data word, and allows the insertion of a permanent fault
at any chosen point in a data word. A number of exam-
ples are provided to illustrate the use of the proposed
fault injection system in on- and off-line testing envi-
ronments for both combinational and sequential circuits.
A major advantage of the proposed approach is that the
fault insertion process is significantly simpler than other
currently available approaches. Since the fault insertion
block is included in a package, much like a library in
other forms of programming, only a simple call at the
beginning of the VHDL description and a component
instantiation is needed to activate the insertion mecha-
nism.

6. Acknowledgements

This work was supported in part by the National Science

Copyright © 2012 SciRes. CS

P. K. LALA 199

Figure 14. Sequential Circuit (Counter) operating normally.

Figure 15. Sequential Circuit (Counter) operating with 50% fault injection.

Figure 16. Sequential Circuit (Counter) operating with stuck-at-1 on bit 0.

Foundation, USA under Grant 0925080.

REFERENCES

[1] A. Benso and P. Prinetto, “Fault Injection Techniques and
Tools for Embedded Systems Reliability Evaluation,”
Kluwer Academic Publishers, Holland, 2003.

[2] P. K. Lala, “Self-Checking and Fault Tolerant Digital
Design,” Morgan Kaufmann Publishers, Waltham, 2001.

[3] J. Gracia, L. Saiz, J. C. Baraza, D. Gil and P. Gil, “Anal-
ysis of the Influence of Intermittent Faults in a Microcon-
troller,” 11th IEEE International Workshop on Design
and Diagnostics of Electronic Circuits and Systems, Bra-
tislava, 16-18 April 2008, pp. 80-85.

[4] L. J. Saiz, J. Gracia, J. C. Baraza, D. Gil and P. J. Gil,
“Applying Fault Injection to Study the Effects of Inter-
mittent Faults,” 7th European Dependable Computing
Conference, Kaunas, 7-9 May 2008, pp. 67-69.

[5] S. R. Seward and P. K. Lala, “Fault Injection for Verify-
ing Testability at the VHDL Level,” Proceedings of In-
ternational Test Conference, Baltimore, 30 September-2
October, 2003, pp. 131-137.

[6] W. Sheng, L. Xiao and Z. Mao, “An Automated Fault
Injection Technique Based on VHDL Syntax Analysis
and Stratified Sampling,” 4th IEEE International Sympo-
sium on Electronic Design, Test and Applications (Delta),
Hong Kong, 23-25 January 2008, pp. 587-591.

[7] T. A. Delong, B. W. Johnson and J. A. Profeta III, “A
Fault Injection Technique for VHDL Behavioral-Level
Models,” IEEE Design & Test of Computers, Vol. 13, No.
4, 1996, pp. 24-33. doi:10.1109/54.544533

[8] B. Parrotta, M. Rebaudengo, M. S. Reorda and M. Vi-

olante, “New Techniques for Accelerating Fault Injection
in VHDL Descriptions,” Proceedings of 6th IEEE Online
Testing Workshop, Palma de Mallorca, 3-5 July 2000, pp.
61-66. doi:10.1109/OLT.2000.856613

[9] F. Vargas, A, Amory and R. Velazco, “Estimating Circuit
Fault-Tolerance by Means of Transient-Fault Injection in
VHDL,” Proceedings of 6th IEEE Online Testing Work-
shop, Palma de Mallorca, 3-5 July 2000, pp. 67-72.
doi:10.1109/OLT.2000.856614

[10] N. Z. Basturkmen, S. M. Reddy and I. Pomeranz, “A Low
Power Pseudo-Random BIST Technique,” Proceedings of
IEEE International Conference on Computer Design:
VLSI in Computers and Processors, Freiberg, 16-18 Sep-
tember 2002, pp. 468-473.

[11] A. Manzone and D. De Costantini, “Fault Tolerant Inser-
tion and Verification: A Case Study,” Proceedings of
IEEE Memory Technology Design and Testing Workshop,
Isle of Bendor, 10-12 July 2002, pp. 44-48.

[12] R. J. Hayne and B. W. Johnson, “Behavioral Fault Modeling
in a VHDL Synthesis Environment,” Proceed- ings of
VLSI Test Symposium, Dana Point, 25-29 April 1999, pp.
333-340.

[13] D. G. Mavis and P. H. Eaton, “SEU and SET Mitigation
Techniques for FPGA Circuit and Configuration Bit Sto-
rage Design,” Proceedings of Military and Aerospace
Applications of Programmable Devices and Technologies
Confenerce, Laurel, 10-12 September 2000, pp. 1-15.

[14] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda
and A. Violante, “Exploiting FPGA for Accelerating Fault
Injection Experiments,” Proceedings of IEEE Online
Testing Workshop, Taormina, 9-11 July 2001, pp. 9-13.
doi:10.1109/OLT.2001.937810

Copyright © 2012 SciRes. CS

http://dx.doi.org/10.1109/54.544533
http://dx.doi.org/10.1109/OLT.2000.856613
http://dx.doi.org/10.1109/OLT.2000.856614
http://dx.doi.org/10.1109/OLT.2001.937810

