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Abstract 
In recent years, opportunities for using cloud services as computing resources 
have increased and there is a concern that private information may be leaked 
when processes data. The data processing while maintaining confidentiality is 
called secret computation. Cryptosystems can add and multiply plaintext 
through the manipulation of ciphertexts of homomorphic cryptosystems, but 
most of them have restrictions on the number of multiplications that can be 
performed. Among the different types of cryptosystems, fully homomorphic 
encryption can perform arbitrary homomorphic addition and multiplication, 
but it takes a long time to eliminate the limitation on the number of homo-
morphic operations and to carry out homomorphic multiplication. Therefore, 
in this paper, we propose an arithmetic processing method that can perform 
an arbitrary number of homomorphic addition and multiplication operations 
based on ElGamal cryptosystem. The results of experiments comparing with 
the proposed method with HElib in which the BGV scheme of fully homo-
morphic encryption is implemented showed that, although the processing 
time for homomorphic addition per ciphertext increased by about 35%, the 
processing time for homomorphic multiplication was reduced to about 1.8%, 
and the processing time to calculate the statistic (variance) had approximately 
a 15% reduction. 
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1. Introduction 

With the recent development of cloud services, there has been a growing trend 
of outsourcing computational tasks. This gives rise to the important security is-
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sue of protecting privacy, since personal information is being transferred. To 
solve the problem, homomorphic cryptosystems capable of computing plaintext 
by the manipulation of ciphertexts have attracted attention. 

Homomorphic cryptosystems include additive homomorphic encryption that 
can perform only homomorphic additions such as Paillier encryption and 
lifted-ElGamal encryption, and multiplicative homomorphic encryption that can 
perform only homomorphic multiplications such as RSA encryption and El-
Gamal encryption [1] [2] [3]. In addition, homomorphic cryptosystems that can 
perform both homomorphic addition and homomorphic multiplication are 
called fully homomorphic encryption (FHE) [4]. FHE has high convenience, but 
there is a problem that its processing speed is very slow. 

Therefore, in this paper, we propose a system capable of both homomorphic 
addition and homomorphic multiplication based on the ElGamal cryptosystem 
by unifying the random number part normally included in ElGamal ciphertext 
with all ciphertexts. However, this situation raises concerns about a decline in 
security compared to the ordinary ElGamal cryptosystem. Hence, in the state 
other than homomorphic computation, it is in the form of ordinary ElGamal 
ciphertext. To accomplish this, we replace the value of r  included in ElGamal 
ciphertext into constants or random numbers. 

The rest of the paper is organized as follows. Homomorphic Cryptosystem is 
introduced in Section 2. In Section 3, ElGamal Cryptosystem is introduced. In 
Section 4, Fully Homomorphic Encryption is introduced. We propose an arith-
metic processing method that can perform an arbitrary number of homomor-
phic addition and multiplication operations based on ElGamal cryptosystem in 
Section 5. Section 6 shows results of two experiments. Sections 7 - 9 draw dis-
cussion, future work, and conclusions. 

2. Homomorphic Cryptosystem  

A homomorphic cryptosystem can perform the addition and multiplication of 
plaintext by the manipulation of ciphertexts. When ciphertext ( )1Enc m , 

( )2Enc m  for plaintext 1 2,m m  are given, ( )1 2Enc m m�  can be obtained with-
out plaintext or a secret key, where �  is a binary operator such as addition or 
multiplication.  

3. ElGamal Cryptosystem   

The ElGamal cryptosystem is a public key cryptosystem based on the premise 
that a discrete logarithm problem of a group with a large order is difficult. El-
Gamal cryptosystem consists of three components: the key generator, the en-
cryption algorithm, and the decryption algorithm. 

Key generation 
Generate a cyclic group G of order q which is a large prime number. Select a 

generator g of G and a random integer x from { }0, , 1q −� . Compute h as fol-
lows.  
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( )modxh g q≡  

The public key is ( ), , ,G q g h  and the secret key is x. 
Encryption 
To encrypt a message m G∈ , we randomly select { }0, , 1r q∈ −�  and 

compute 2
1 2,c c G∈  as follows.  

( )1 modrc g q≡  

( )2 modxrc mg q≡  

The ciphertext is ( )1 2,c c . 
Decryption 
To decrypt a ciphertext ( ) 2

1 2,c c G∈ , we compute m G∈  as follows.  

( )2

1

mod
xr

x xr

c mg m q
c g

= =  

The plaintext is m. 

4. Previous Rsearch   
Fully Homomorphic Encryption 

FHE is capable of arbitrary operations such as the addition and multiplication of 
plaintext by the manipulation of ciphertexts. When plaintext is encrypted, it 
adds constant noise according to security parameters. This noise increases with 
each homomorphic operation, and if the noise becomes too large, it becomes 
impossible to decrypt the ciphertext into the original plaintext. In particular, 
when homomorphic multiplication is performed, noise increases greatly. There-
fore, developers created somewhat homomorphic encryption (SHE), which re-
stricts the number of homomorphic multiplications. Then, in 2009, Gentry pro-
posed Bootstrap as a method to reduce ciphertext noise in SHE. This makes it 
possible to take restrictions on SHE and implement FHE. However, Bootstrap is 
not practical from the viewpoint of processing speed because it greatly increases 
the number of calculations. 

Since then, studies such as a method called packing for encrypting plural 
plaintexts into one ciphertext and a scheme for reducing noise of ciphertext 
without using Bootstrap are progressing [5] [6]. These have greatly improved the 
performance, but there is still a problem with processing speed. 

Bootstrap 
Bootstrap reduces noise accumulated in ciphertext by homomorphic opera-

tion. FHE makes the decipherability difficult to realize by adding noise to the 
ciphertext as the basis for security. This noise increases with each iteration of 
homomorphic operation, and if it exceeds a certain threshold value it can not 
decode correctly. 

Bootstrap encrypts ciphertexts in which noise is stored again and performs 
decryption processing using the encrypted secret key. As a result of this decod-
ing, a new ciphertext is accumulated in which only the noise required for de-
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coding is stored. With this approach, Gentry realized the configuration of FHE.  

5. Proposed Method   
5.1. Overview 

In this paper, we propose a method capable of both homomorphic addition and 
homomorphic multiplication based on the ElGamal cryptosystem. In the pro-
posed method, the random number part normally included in ElGamal cipher-
text is unified with all ciphertexts. This allows for both homomorphic addition 
and homomorphic multiplication. However, since this situation raises concerns 
about a decline in security compared to the ordinary ElGamal cryptosystem, in 
the state other than homomorphic computation, it is in the form of ordinary 
ElGamal ciphertext. Hereafter, the form of the ciphertext at the time of homo-
morphic operation is called “an arithmetic form”, and the form of the ciphertext 
in other case is called “a stored form”. 

5.2. System Configuration 

We propose a delegating computation model in which encrypted data are 
transmitted from the user to the cloud, and the cloud performs arithmetic 
processing on those encrypted data. 

It is assumed that the cloud includes a calculation server and a transformation 
server. The calculation server performs arithmetic operations such as statistical 
processing in the encrypted state, and the transformation server replaces the 
value of r included in ElGamal ciphertext into constants or random numbers 
(Figure 1). Also, it is assumed that the user and the transformation server can 
safely share the secret key. 

Figure 1 shows the system’s processing flow. First, the user transmits ElGamal 
ciphertexts that are stored form, to the calculation server, and the calculation 
server stores the data. Upon receiving the calculation request from the user, the 
calculation server exchanges data with the transformation server to convert the 
stored form of the ElGamal ciphertexts into the arithmetic form of the ElGamal 
ciphertexts. Then, the calculation server performs processing according to the 
calculation request by homomorphic operations, and obtains the calculation re-
sults of the encrypted state. Then, the calculation server exchanges data with the 
transformation server to converts the arithmetic form of the ElGamal ciphertexts 
into the stored form of the Elgamal ciphertexts. Finally, the stored form of the 
encrypted operation result is transmitted to the user, and the user decrypts it 
using a secret key to obtain the calculation result. If multiple processing contents 
are included in the calculation request, the same procedure is repeated (Figure 
2). 

We assume the roles of the user, the calculation server, the transformation 
server, the constraints imposed, and the functions as follows.   

User   
• Know the plaintext  
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Figure 1. System configuration. 
 

 
Figure 2. Process flow of the calculation request. 

 
• Encrypt the plaintext and send the encrypted data to the calculation server  
• Have a secret key  

Calculation Server   
• Can not get the plaintext  
• When encrypted data are transmitted to the transformation server, they are 

multiplied by a random number  
• Do not collaborate with the transformation server  
• Do not have a secret key  

Transformation Server   
• Can not get the plaintext  
• When plaintext are transmitted to the calculation server, it is multiplied by a 

random number  
• Do not collaborate with the calculation server  
• Have a secret key  

5.3. Homomorphism 

In the arithmetic form of ciphertext, we unify the value of r included in ElGamal 
ciphertext by all ciphertexts. As a result, the arithmetic form of the ciphertext sa-
tisfies both additive homomorphism and multiplicative homomorphism. 

Given ciphertexts ( ) ( )1 11 12 1, ,r xrc c c g m g= = , ( ) ( )2 21 22 2, ,r xrc c c g m g= =  
where 1 2,m m G∈ .  

Additive Homomorphism 
Compute ciphertext for 1 2m m+  as follows.  

( )12 22 1 2 1 2
xr xr xrc c m g m g m m g+ = + = +  

Then, using 11 21
rc c g= = , output ( )( )1 2,r xrg m m g+ .  

Multiplicative Homomorphism 
Compute ciphertext for 1 2m m∗  as follows.  
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( ) 2
12 22 1 2 1 2

xr xr xrc c m g m g m m g= ∗ =  

Then, compute 2
11 21

rc c g=  and output ( )( )2 2
1 2,r xrg m m g .  

5.4. Conversion Processing of Ciphertext 

We show the method of mutual conversion between the arithmetic and the 
stored forms of ciphertext.   

Conversion from Stored to Arithmetic Form 
Given ( ) ( )1 2, ,i ir xr

i i ic c g m g=  where ,q ii m G∈ ∈ , ir  is a random num-
ber: 

1) The calculation server generates a random number i Gα ∈  and sends 
( )1 2,i i ic cα  to the transformation server.  

2) The transformation server decrypts the received ciphertexts:  

2

1

i

i

xr
i i i i

i ix xr
i

c m g
m

c g
α α

α= =  

3) The transformation server generates ciphertexts from i imα  and random 
number r G∈  and send them to the calculation server. r is generated while 
encrypting 1 1mα , and the same r is used for encryption of ( )2,3,i im iα = � . 
Also, when multiple processing contents are included in the calculation request, 
a different r is used for each processing content:  

( ) ( )1 2, ,r xr
i i i ic c g m gα′ ′ =  

4) The calculation server removes the random number iα  from the received 
ciphertexts and computes ( ),r xr

ig m g .  
Conversion from Arithmetic to Stored Form 
Given ( ) ( )1 2, ,r xr

i i ic c g m g=  where ,q ii m G∈ ∈ , r is a constant number:  
1) The calculation server generates a random number i Gβ ∈  and sends 

( )1 2,i i ic cβ  to the transformation server.  
2) The transformation server decrypts the received ciphertexts:  

2

1

xr
i i i i

i ix xr
i

c m g
m

c g
β β

β= =  

3) The transformation server generates ciphertexts from i imβ  and random 
number ir G∈  and sends them to the calculation server:  

( ) ( )1 2, ,i ir xr
i i i ic c g m gβ′′ ′′ =  

4) The calculation server removes the random number iβ  from the received 
ciphertexts and computes ( ),i ir xr

ig m g . 

6. Experiment  
6.1. Overview 

In this experiment, as the performance evaluation of the proposed method, sta-
tistical processing using homomorphic computation is performed and its 
processing time is measured. As a comparison target, HElib on which the BGV 
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scheme of FHE is implemented was used. HElib is an open source library pub-
lished by IBM and available in C ++. Also, implementation of the proposed me-
thod was done in C. 

Experiment 1 
We measure the processing time of homomorphic addition and homomor-

phic multiplication. We also measured the processing time of mutual conversion 
of the ciphertext between stored and arithmetic forms.  

Experiment 2 
We computed the variance of 1000 - 10,000 data items and measured the 

processing time. We converted the stored form to arithmetic form, performed 
statistical processing, and converted the arithmetic form to a stored form. Then, 
we measured the time taken for this series of flows.  

6.2. Experiment Environment 

The experimental environment was as follows.   
• OS: Ubuntu 18.04.1 LTS  
• CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz  
• Memory: 4 GB  
• Compiler: gcc 7.3.0, g++ 7.3.0  
• Library: NTL-11.0.0, GMP-5.0.4  
• Security: 1024 bit  

6.3. Dataset 

As an experimental data set, we used the “Adult” labeled dataset provided by 
UCI. This data set contains 32,561 data items divided by 14 attributes such as 
age, gender, race, etc. In the experiment, we used the age attribute. 

6.4. Results 

Experiment 1 
We measured the processing time for homomorphic addition and homomor-

phic multiplication (see Table 1). In homomorphic addition and homomorphic 
multiplication of HElib, it is not the processing time required for homomorphic 
operation between packed ciphertexts. It is the processing time of homomorphic 
operation per ciphertext calculated by dividing the processing time by the num-
ber of slots. 

Experiment 2 
We measured the processing time taken to calculate the variance by homo-

morphic operations. Table 2 and Figure 3 show the transition of the processing 
time when the number of data items changes from 1000 to 10,000 in increments 
of 1000. 

7. Discussion  

Experiment 1 
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Table 1. Processing time (homomorphic addition, homomorphic multiplication, and 
conversion). 

Homomorphic Content Proposed Method (μsec) HElib (μsec) 

Homomorphic Addition 0.4834 0.3579 

Homomorphic Multiplication 1.0774 61.2303 

Conversion to stored form 28.9767 × 

Conversion to arithmetic form 73.7447 × 

 
Table 2. Processing time (variance). 

Number of Data Proposed Method (sec) HElib (sec) 

1000 0.1071 5.7759 

2000 0.2164 5.8716 

3000 0.3234 5.8882 

4000 0.4315 6.0660 

5000 0.5336 6.3134 

6000 0.6557 6.4208 

7000 0.7514 6.6371 

8000 0.8538 6.8953 

9000 0.9630 7.0232 

10,000 1.0736 7.3504 

 

 
Figure 3. Transition of the processing time (variance). 

 
We measured the processing time for homomorphic addition and homomor-

phic multiplication and conversion. In the processing time of homomorphic ad-
dition, the proposed method required about 135% processing time compared 
with HElib, but the homomorphic multiplication reduced the processing time to 
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about 1.8%.  
Experiment 2 
We measured variance was obtained using 1000 - 10,000 data items and we 

measured the processing time. In Figure 2, the respective approximate straight 
lines are obtained, where the value of the vertical axis is y and the value of the 
horizontal axis is x, HElib is represented by 0.176 5.455y x= + , and the pro-
posed method is represented by 0.107 0.002y x= + .  

8. Future Work  

We need to improve the security of the proposed method in which we convert 
from a stored form to an arithmetic form before the homomorphic operation. In 
arithmetic form, the value of r included in the ElGamal ciphertext ( ),r xrg mg  
is unified in all ciphertexts. Therefore, when ElGamal ciphertexts  

( ) ( )1 11 12 1, ,r xrc c c g m g= = , ( ) ( )2 21 22 2, ,r xrc c c g m g= =  where 1 2,m m G∈ , are 
given, they satisfy the following.  

22 2

12 1

c m
c m

=  

Since the ratio of the plaintext can be obtained from the ratio of the cipher-
texts, if any plaintext is deprived in any way, all the plaintexts will leak out. 
However, when converting to a stored form again and converting it to an arith-
metic form from it, the value of r is unified in all ciphertexts, but it can be 
changed to a value different from the value of r before conversion. 

9. Conclusion 

In this paper, we propose the acceleration of homomorphic arithmetic processing 
based on the ElGamal cryptosystem and present experiments, evaluation, and 
discussion. The results of experiments comparing the proposed method with 
HElib showed that, although the processing time for homomorphic addition per 
ciphertext increased by about 35%, the processing time for homomorphic mul-
tiplication was reduced to about 1.8%, and the processing time to calculate the 
statistic (variance) had approximately a 15% reduction. 
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