
Communication and Network, 2010, 2, 79-85
doi:10.4236/cn.2010.21013 Published Online February 2010 (http://www.scirp.org/journal/cn)

Copyright © 2010 SciRes CN

79

Live Video Services Using Fast
Broadcasting Scheme

Satish Chand
Computer Engineering Division, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India

E-mail: schand86@hotmail.com
Received November 17, 2009; accepted December 29, 2009

Abstract: The Fast Broadcasting scheme is one of the simplest schemes that provide video services. In this
scheme, the video is divided into equal-sized segments depending upon the bandwidth allocated by the video
server. If the video length is not known, then this scheme cannot be applied as the number of video segments
cannot be determined. In a live video wherein the video size is unknown, especially the ending time of the
live broadcast, e.g., cricket match, this scheme cannot be applied. In this paper, we propose a model that
helps the Fast Broadcasting scheme to support live video broadcasting. The basic architecture of the system
consists of a live system with one video channel that broadcasts the live video and a video server that broad-
casts the already broadcast live video to users.

Keywords: fast broadcasting scheme, live video channel, channel transition

1. Introduction

Video-on-Demand (VOD) services are one of the impor-
tant classes that has several potential applications, such
as entertainment, advertisement, distance education, etc.
In spite of vast usability, these applications could not
gain much attention because the earlier network tech-
nologies were not sufficient enough to support high data
rate and same was with the storage technologies. These
technologies have been developed significantly and are
further being enhanced. New applications are also being
explored that again put high demand on these resources.
Therefore, efficient utilization of the resources especially
the bandwidth is must. Several schemes exist in literature,
but all are meant for the stored videos. These schemes
require the video length to construct its segments. If the
video length is not known in advance, which is generally
the case for live videos, these schemes can be applied. To
develop a broadcasting scheme for live videos is the mo-
tivation of this work. In this paper, we propose a mecha-
nism that helps the Fast Broadcasting scheme to support
the live video services. The Fast Broadcasting scheme is
one of the simplest schemes that provides the video ser-
vices. For broadcasting a video, there is a need to have a
video server to transmit the video data. Designing a
video server has many issues, e.g., efficient system de-
sign [1–3], storage management [4–7], broadcasting
techniques. The broadcasting techniques are very impor-
tant as they help utilizing the bandwidth efficiently.
Some of the important broadcasting techniques are dis-
cussed in [8–9].

The basic model in this paper consists of a system (we
call it as a live system) with a video channel that is called
as the live channel. This system is active for the duration
of the live video and broadcasts the live video data only
once using its channel. There is another system that
stores the video data from the live channel in its buffer
and then broadcasts. This system simultaneously stores
the new data from the live channel into its buffer and
broadcasts the already stored data by using its channels.
This process continues for the duration of the live video
transmission. When the live video is over, the data is
broadcast by the video server only. If the live video
broadcast is still there and the video server has no free
channel to broadcast the newly downloaded data, then
the last channel of the video server is made free by trans-
ferring its data to other channels and the last channel can
broadcast the newly downloaded data. This mechanism is
called the channel transition mechanism. The important
issue in channel transition is that the current as well as
future users should get continuous data delivery. In lit-
erature, there does not seem to appear any work that dis-
cusses live video broadcasting. It is perhaps that the
broadcasting schemes existing in literature require the
video in terms of prespecified number of segments de-
pending on the allocated bandwidth. To determine the
number of video segments of a live video is not possible
because the video length is not known. In this paper, we
develop a mechanism so that the Fast Broadcasting
scheme can support the live videos. The remaining of the
paper is organized as follows. Section 2 reviews the pre-
vious work. Section 3 proposes a system model to sup-

S. CHAND

Copyright © 2010 SciRes CN

80

port the live video transmission. The main concept in this
paper is channel transition, which is of two types inter-
mediate and final channel transition. In intermediate
channel transition the live video is not over, whereas in
the final channel transition the live video is over. Section
4 presents the results and finally Section 5 concludes the
paper.

2. Previous Work

The broadcasting schemes are an important class of pro-
tocols supporting the video-on-demand services. Some
schemes use a segment as the basic data unit for trans-
mission and a video channel a basic transmission unit.
Some schemes further divide the segments into subseg-
ments and the video channels into subchannels. A sub-
channel transmits all the subsegments of a particular sin-
gle segment. Taking subsegment as a basic data unit and
subchannel as a basic transmission unit reduce the re-
sources requirement. This however increases the com-
plexity. Some of the important broadcasting schemes
include harmonic scheme [11], geometrico-harmonic
scheme with continuous delivery [12], Pyramid Broad-
casting scheme [13], Fast Broadcasting scheme [14]. The
harmonic and geometrico-harmonic schemes have their
basic data and transmission units as subsegments and
subchannels, respectively. The pyramid and Fast Broad-
casting schemes employ the segments and video chan-
nels as their basic data and transmission units, respec-
tively. A video channel is a logical channel that has
bandwidth equal to the consumption rate of the video.
The Fast Broadcasting scheme is one of the simplest
schemes for providing the video services. In this scheme,
the bandwidth is equally-divided into channels, each
having bandwidth equal to the video viewing rate. The
video is also uniformly divided into segments. The first
video channel transmits the first segment, repeatedly, and
the second video channel transmits the second & third
segments, alternately and periodically. The ith video
channel transmits 2i-1 segments from 12iS  to 2 1iS  ,

sequentially and periodically. The segment size deter-
mines the user’s waiting time. The video transmission
time is also divided into fixed time units, called time
slots. In a time slot, a segment can be exactly viewed at
the viewing rate. The number of segments of the video of
length D for allocating K video channels is 2K-1. Figure
1 shows transmission of the video segments over four
video channels, denoted by C1, C2, C3, and C4, in the Fast
Broadcasting scheme.

3. Live Fast Broadcasting Scheme

In live video broadcasting, the video size is not known in
the beginning and hence its number of segments cannot
be determined. The Fast Broadcasting scheme needs the
number of segments in advance, so this scheme cannot

Figure 1. Data transmission in Fast Broadcasting scheme

be applied. In order to use this scheme for live video
transmission, we make a simple modification in its ar
chitecture. We transmit N number of segments using K
video channels, which are related by

2 2KN   (1)

The basic system model for supporting the live videos
consists of a system, called the live system. This system
broadcasts the live video by using its video channel (live
channel). There is another system; we call it as the video
server. The video server downloads the data from the live
channel into its buffer in terms of fixed time durations,
which are time slots. The data stored in a time slot is
referred to as a video segment. The video server per-
forms two activities. It stores new segments from the live
channel into its buffer and simultaneously broadcasts the
already stored segments. This server supports the video
data to any user request, which misses the initial portion
of the live video. A user request received after the live
video has been started gets future data from the live
channel and the initial missing data from the video server.
The video server is always tuned to the live channel for
new segments to store into its buffer. The stored seg-
ments are broadcast by the video server according to the
following broadcasting procedure.

3.1 Broadcasting Procedure

The number of video segments for allocating K video
channels is 2K - 2. Denote the video segments by Si
(i=1,2,..,N). The first video channel transmits the first
segment S1, repeatedly, and the second video channel
transmits the segments S2 and S3, alternately and repeat-
edly. The ith video channel transmits the segments 12iS  ,

12 1iS   , 12 2iS   , …, 2 1iS  , sequentially and periodi-
cally, provided this ith channel is not the last video

S. CHAND

Copyright © 2010 SciRes CN

81

channel. The last video channel, i.e., Kth video channel

transmits the segments 12KS  , 12 1KS   , 12 2KS   , …,
2 2KS  , sequentially and periodically.
The video server is always connected to the live chan-

nel for downloading the new segments. When a segment
has been downloaded, the video server broadcasts that
segment by using its channels along with other segments.
This process continues till there is a free channel with the
video server and the live video transmission is going on.
Since the bandwidth allocated to the video by the video
server is of fixed amount, this will get exhausted at some
point of time. In that case, the video server would not be
able to broadcast the newly downloaded segments. One
solution to this problem is to increase the bandwidth,
which may not always be possible. A better solution is to
make the last channel free by transferring its segments to
other video channels so that this video channel can
broadcast the new segments. This process is called
channel transition. The important issue while doing a
channel transition is that all (present or future) user re-
quests must get timely video data delivery. There are two
types of channel transition: intermediate channel transi-
tion in which the live video is not over and the final
channel transition in which the live video is over. We
first discuss the intermediate channel transition.

3.2 Intermediate Channel Transition

The intermediate channel transition is performed when
the video server is downloading new segments from the
live system, but it does not have a free channel to broad-
cast them. We transmit (2K-2) segments using K channels,
not (2K -1) as required in the Fast Broadcasting scheme.

This is done because the capacity of the last channel is
equal to total capacity of all other channels. Here the
‘capacity’ of a channel refers to the maximum number of
segments transmitted by that channel. While transferring
segments of the last video channel to other channels to
make it free, we simply need to double the segments’
size. If S1, S2,…,Sk,… are the old segments, then the new
segments, denoted by S1

1, S
1
2,…, are given by S

1
1 = S1

+ S2, S
1
2 = S3 + S4,…, S1

k = S2k-1 + S2k,…, and so forth.
After a channel transition the segment size (i.e., new
waiting time) becomes twice of the old one (old waiting
time). To avoid the increase in the waiting time, we
should delay the channel transition as much as possible,
which can be delayed till all channels have their capacity
full. It is not difficult to show that by delaying a channel
transition maximally, all user requests (before and after
the channel transition) get the video data in time.

Figure 2 shows the first channel transition at thick
black line for allocating four video channels to the video
by the video server. The gray-colored channel signifies
the live channel and remaining are the video server’s
channels. The problem of data availability may be for a
request that begins viewing the video just before the
channel transition. This request, denoted by R13 in Figure
2, begins downloading the data from the time slot TS14.
This request R13 downloads the segments S15 onward
from the live channel and S1 to S14 from the video server.
The segments available for downloading from the video
server using the 1st, 2nd, 3rd, and 4th video channels in the
time slot TS14 are S1, S2, S6, and S14, respectively. The
segment S1 can be viewed while downloading from the
video server and does not requires storage space. Just

Figure 2. First channel transition

S. CHAND

Copyright © 2010 SciRes CN

82

Figure 3. Final channel transition

after the channel transition, R13 needs the segment S2 for
viewing and it is already in its buffer because it had been
stored just before the channel transition. After viewing S2,
R13 needs S3 segment which is the first half part of the
second segment S1

2 (=S3 + S4) transmitted by the second
channel after channel transition. Thus, the data of the
segment S3 can be made available to R13. Using similar
discussions, we can show that a request received in any
time slot can receive timely video data. We now discuss
the final channel transition.

3.3 Final Channel Transition

In order to carry out the final channel transition, the
video size must be known and it is possible only when
the live video transmission is over. Since the video size is
known, we can construct the video segments. The live
video can be over at any point of time. If the data broad-
cast by the live channel does not form a complete seg-
ment, we can add dummy data to make it a complete
segment. The live video can be over in any time slot,
which means that the last video channel can have any
number of segments ranging from one to its maximum
capacity. If its capacity is full, then nothing is required to
do. To carry out the final channel transition, the last
channel must have at least one segment and at least one
empty time slot. To occupy empty time slots with the
video data, we need to increase the number of segment to
(2K - 2) so that all time slots of all the video channels K
are occupied. Increasing the number of segments de-
creases the segment size as the video size is of fixed
length. The first channel C1 transmits S1

ℓ-1 and the second
channel C2 transmits the segments S2

ℓ-1 and S3
ℓ-1 just be-

fore the final transition. Here the superscript ℓ of a seg-
ment (time slot) signifies the segment (time slot) after the

final (last) channel transition and (ℓ-1) for a segment
(time slot) just before the final channel transition. After
the final channel transition, the segment size decreases,
i.e., some last portion of S1

ℓ-1 segment is added to the
beginning of S2

ℓ-1 and some last portion S2
ℓ-1 is added to

the beginning of S3
ℓ-1, and so forth. The number of new

segments is (2K - 2) and they can occupy all the time
slots on all channels. While carrying out this process,
timely video data delivery to the current as well as future
requests must be ensured.

We now discuss how the video data delivery can be
timely maintained to all user requests by taking an ex-
ample. Consider that the video server has allocated four
video channels to the video. The last (i.e., fourth) video
channel can accommodate the segments S8, S9,…, S14.
The live video can be over in any time slot STi

ℓ-1
(7<i<14). Let i=8, i.e., the last video channel has to
transmit the last segment as S9

ℓ-1 in the time slot ST8
ℓ-1.

The segment S9
ℓ-1 will be available at the video server for

transmission in the time slot ST9
ℓ-1 (refer Figure 3). We

can carry out the channel transition immediately after the
time slot ST9

ℓ-1. The request R8 that begins to download
the data from the time slot ST9

ℓ-1 onward can download,
if required, the segments S

1
ℓ-1, S3

ℓ-1, S5
ℓ-1, and S9

ℓ-1 in
that time slot (refer Figure 3). The segment S1

ℓ-1 is
viewed while downloading in the time slot ST9

ℓ-1 and in
the next time slot (i.e., after channel transition) this re-
quest needs S2

ℓ-1. The segment S2
ℓ-1 is distributed among

the segments S2
ℓ and S3

ℓ after the channel transition. The
segment S2

ℓ is available for downloading just after the
channel transition, but the initial portion of segment S2

ℓ
comprises some last portion of S1

ℓ-1 and the remaining is
some initial portion of the segment S2

ℓ-1. It means that
just after channel transition the initial portion of S2

ℓ that

S. CHAND

Copyright © 2010 SciRes CN

83

is from the segment S1
ℓ-1 will be available, not the seg-

ment S2
ℓ-1. Thus, the request R8 will not get the data of

the segment S2
ℓ-1 in time. To circumvent this problem, we

delay the final channel transition one time slot after the
live video is over. In the instance case, we carry out final
channel transition at the end of the time slot ST10

ℓ-1, not
ST9

ℓ-1. By doing so, we have one empty time slot (shown
as gray-colored on the last video channel in Figure 3) on
the last video channel that can be used to broadcast S2

ℓ-1
or S3

ℓ-1 depending upon the last segment broadcast by the
live channel is even or odd. The segments available for
downloading to the request R8 in the time slot ST10

ℓ-1 are
S2

ℓ-1 and S6
ℓ-1. The request R8 has segments S2

ℓ-1 and S3
ℓ-1

in its buffer and will need S4
ℓ-1 for viewing in the time

slot ST12
ℓ-1, which is not in the buffer storage. After the

channel transition, the segment S4
ℓ-1 is distributed among

S5
ℓ, S6

ℓ, and S7
ℓ and the time slot ST12

ℓ-1 is distributed in
the time slots ST2

ℓ, ST3
ℓ, and ST4

ℓ. The segment S5
ℓ can

be downloaded in the time slot ST2
ℓ and the segments S6

ℓ
and S7

ℓ in the time slots ST3
ℓ and ST4

ℓ, respectively. It
may be noticed that the segment S5

ℓ is available at the
beginning of the time slot ST2

ℓ, but some initial portion
of ST2

ℓ comprises the last portion of the time slot ST11
ℓ-1.

Thus, the request R8 can get the video data in time. Con-
sider another request R9 that begins downloading the
video data from the time slot ST10

ℓ-1 onward and can
download, if required, the segments S2

ℓ-1, S6
ℓ-1, and, S3

ℓ-1.
The request R9 requires the segment S4

ℓ-1 in the time slot
ST13

ℓ-1. The segment S4
ℓ-1 is distributed among S5

ℓ, S6
ℓ,

and S7
ℓ and the time slot ST13

ℓ-1 becomes a part of the
time slots ST4

ℓ and ST5
ℓ. The segments S5

ℓ, S6
ℓ, and S7

ℓ
can be downloaded in the time slots ST2

ℓ, ST3
ℓ, and ST4

ℓ,
respectively. Thus, the segment S4

ℓ-1 can be made avail-
able in time to request R9. Using similar discussions, we
can show that all requests can be provided the required
data in time.

We now find out those segments Si
ℓ that have the data

of the segment S4
ℓ-1 after the final channel transition. The

indices of the segments Si
ℓ that have the data of segment

S4
ℓ-1 are IL, IL+1, …, IH, where IL and IH are given by IL =

n1 such that
1

1*
min 3
n

n p

N

 
 

 
 and IH = n2 such that

2

2 *
min 4
n

n p

N

 
 

 
where p is the index of the last segment

broadcast by the live channel and N is the number of
segments that is given by (1).

For the request R9 that receives the data from ST10
ℓ-1

time slot onward, assuming that the last segment broad-
cast by the live channel is S9

ℓ-1, the segment S4
ℓ-1 would

be distributed among the segments S5
ℓ, S6

ℓ, and S7
ℓ as IL

= 5 and IL = 7 because for n1 = 5,
1

1 * 9
min 3

14n

n 
 

 
and for

n2 = 7,
2

2 *9
min 4

14n

n 
 

 
hold. This can easily be verified as

follows.
S1

ℓ = 9*S1
ℓ-1/14; S2

ℓ = 5*S1
ℓ-1/14 + 4*S2

ℓ-1/14;
S3

ℓ = 9*S2
ℓ-1/14; S4

ℓ = S2
ℓ-1/14+8*S3

ℓ-1/14;
S5

ℓ = 6*S3
ℓ-1/14 + 3*S4

ℓ-1/14; S6
ℓ = 9*S4

ℓ-1/14; S7
ℓ =

2*S4
ℓ-1/14 + 7*S5

ℓ-1/14.
The video channels allocated by the video server to the

video transmit new segments Si
ℓ (i=1,2,..,N) in the new

time slots STi
ℓ(i=1,2,…,N,…) according to the broad-

casting procedure. Thus, we have discussed channel tran-
sition. In next Section, we discuss the results.

4. Results

The Fast broadcasting scheme is one of the simplest
broadcasting schemes. That’s why we have considered it
for live video broadcasting. In its architecture, we have
made a simple modification so that the number of seg-
ments transmitted by its last video channel is equal to the
total segments transmitted by its remaining channels.
This modification makes the final channel transition at
the optimal time point. In other words, the channel tran-
sition is performed after all time slots of all the video
channels are full with the video segments. Consider
again Figure 2. The request R0 arrived in the 0th time slot
ST0 begins downloading the segments S2 onward from
the live channel and S1 from the video server. The buffer
requirement for this request is one segment. The request
R1 arrived in the 1th time slot ST1 begins downloading the
segments S3 onward from the live channel into its buffer
and S1 and S2 from the video server. Its buffer require-
ment is of two segments. We describe the buffer compu-
tation for an arbitrary request. Consider an arbitrary re-
quest, say, R9, that arrives in the 9th time slot ST9. This
request begins downloading the data from the time slot
ST10 onward. The segments S11 onward are downloaded
from the live channel and the segments S1 to S10 from the
video server. The segments available for downloading,
actually downloaded, and that required for viewing, in
different time slots are shown in Table 1.

In last column ‘+’ and ‘-’ signs signify that the seg-
ment is stored in and read from the buffer, e.g.,
+2-1+1=2 means 2 segments are stored from the video
server into the user’s buffer, one is read from the user’s
buffer, and one is stored from the live channel into the
user’s buffer. Thus, the net buffer requirement is of two
segments. The segment S1 is viewed while downloading.

Using similar discussions, we can compute the buffer
requirement for any request. Table 2 shows the buffer
requirement for different requests (referring Figure 2),
assuming that four video channels have been allocated to
the video by the video server.

In Table 2, for the requests R7, R8, R9, R10, and R11,
there are two different storage requirements. The first
requirement is one when the live video is going on. The
second requirement refers to one when the live video is
over after the 14th segment. The maximum user’s waiting

S. CHAND

Copyright © 2010 SciRes CN

84

Table 1. Segments stored from the live channel and the video server by request R9

Time slot
Segments available for storing

from Video Server
Segments stored from

Video Server
Segments stored from

live channel
Segment required

for viewing
Total segments required

ST10 S1+S2+S6+S10 S2 S11 S1 +1+1=2

ST11 S3+S7 S3 S12 S2 +1-1+1=1

ST12 S4 S4 S13 S3 +1-1+1=1

ST13 S5 S5 S14 S4 +1-1+1=1

ST14 S6 S6 S15 S5 +1-1+1=1

ST15 S4
1/2= S7 S7 S16 S6 +1-1+1=1

ST16 S4
1/2= S8 S8 S17 S7 +1-1+1=1

ST17 S5
1 /2= S9 S9 S18 S8 +1-1+1=1

ST18 S5
1 /2= S10 S10 S19 S9 +1-1+1=1

Buffer Storage required for request R9 = 10S

Table 2. Buffer Requirement for different Requests allocating four video channels

Request
Buffer

Requirement
 Request Buffer Requirement

R0 S R6 7S
R1 2S R7 8S or 7S
R2 3S R8 9S or 5S
R3 4S R9 10S or 5S
R4 5S R10 11S or 5S
R5 6S R11 12S or 5S

time in this scheme is pre-decided for the initial users
and remains the same till the channel transition time.
After every channel transition except the final one the
user’s waiting time becomes double of the previous one.
The final channel transition is done only when the live
video transmission is over. After the final channel transi-
tion the user’s waiting time is stabilized and the scenario
becomes like a stored video. The size of a segment (time
slot) after a channel transition except the final one be-
comes double. If Si, STi and S1

i, ST1
i are the ith segments

and time slots, respectively, before and after the first
channel transition (assuming four video channels), then
we have the following relations:

S1
i = S14+2i-1 + S14+2i

ST1
i = ST14+2i-1 + ST14+2i

In general, we have

Sk
i = Sk-1

14+2i-1 + Sk-1
14+2i, for k = 1, 2, …, ℓ-1, (2)

STk
i = STk-1

14+2i-1 + STk-1
14+2i, for k = 1, 2, …, ℓ-1, (3)

where S0
i, ST0

i denote the very first ith segment and time
slot, respectively, i.e., S0

i = Si, ST0
i = STi and ℓ denotes

the final channel transition.
We can determine the size of a segment (time slot) af-

ter any channel transition in terms of the original seg-
ments (time slots). For example, consider the third chan-
nel transition (assuming it is not the final channel transi-
tion). Then, (2a) & (2b) give

S3
i = S2

14+2i-1 + S2
14+2i. (4)

 ST3
i = ST2

14+2i-1 + ST2
14+2i. (5)

We can take i=1 because after any channel transition
all the segments (time slots) are of same size. We will
derive the relation for the segments only, and for the time
slots exactly the same relation will hold. For i=3, we
have from (3a) as

S3
1 = S2

15 + S2
16

We need to find out S2
15 and S2

16, which are given by
S2

15 = S1
14+29 + S1

14+30 = S1
43 + S1

44
S2

16 = S1
14+31 + S1

14+32 = S1
45 + S1

46.
Again we need to find out S1

43, S1
44, S

1
45, and S1

46,
which are given by

S1
43 = S0

14+85 + S0
14+86 = S0

99 + S0
100

S1
44 = S0

14+87 + S0
14+88 = S0

101 + S0
102

S1
45 = S0

14+89 + S0
14+90 = S0

103 + S0
104

S1
46 = S0

14+91 + S0
14+92 = S0

105 + S0
106

The segments S0
is are the original segments. Thus, we

have
S3

1= S99 + S100 +…+…+ S106

For the time slots, we have
ST3

1= ST99 + ST100 +…+…+ ST106

The segment (time slot) size after the final channel
transition (i.e., ℓth) is  times of the segment (time slot)
size of that of the (ℓ-1)th channel transition, where 0.5 <
 < 1. Here  = 1 signifies that the live video transmis-
sion is over when all time slots of all the video channels
are full. In that case, nothing is done and the user’s wait-
ing time is unchanged. For  ≠ 1, the last channel after
the final but one channel transition must have at least one

S. CHAND

Copyright © 2010 SciRes CN

85

segment and at least one empty time slot. Consider that
the last video channel has NS segments after the final but
one channel transition. After the final channel transition,
the segment size would be (2K-1 + NS)*Sℓ-1/N. For K=4,
N=14, and NS=2, the segment size after the final channel
transition is (23 + 2)*Sℓ-1/ 14=10*Sℓ-1/14.

The user’s waiting time changes after a channel transi-
tion depending upon the segment size and this is fixed
for the stored videos for a given bandwidth. In the pro-
posed scheme, the initial user’s waiting time is decided
by the service provider and it is also equal to the segment
size. This decision is necessary for arranging the video
data that would be downloaded in terms of the segments
and made on the basis of bandwidth allocated to the
video. The video size increases after a new segment from
the live channel has been downloaded, but this change
affects broadcasting only after the channel transition.
After the final channel transition, the user’s waiting time
generally decreases. The basic requirement to carry out
the final channel transition is that there must be at least
one segment and at least one empty time slot on the last
video channel.

5. Conclusions

In this paper, we have proposed a technique so that the
Fast Broadcasting scheme can be used for broadcasting
the live videos. The Fast Broadcasting scheme does not
support the live video services in its original form be-
cause it requires the number of segments of the video
beforehand and for that the video length should be
known, which is generally not known in advance in case
of the live videos. In this proposed scheme, the live
video data is stored in buffer at the video server in terms
of fixed time durations, called time slots. The data
downloaded in a time slot is considered as a segment.
The downloaded segments are broadcast by the video
server till there is free channel available with the video
server. When no free channel is available and live video
is there, channel transition is required. In the proposed
scheme, the channel transition can be delayed maximally,
i.e., up to the point when all time slots of all the video
channels have been completely occupied. This study may
be useful for designing a VOD system that can support
the live video, such as cricket match, interactive educa-
tion session, etc.

REFERENCES

[1] K. M. Ho and K. T. Lo, “Design of a decentralized video-
on-demand system with cooperative clients in multicast
environment,” Advances in Multimedia Information Pr-

ocessing, Lecture Notes Computer Science, 4810, pp.
401–404, 2007.

[2] Y. B. L. Jack, “Channel folding – an algorithm to improve
efficiency of multicast video-on-demand systems,” IEEE
Transactions on Multimedia, Vol. 7, No. 2, pp. 366–378,
2005.

[3] W. F. Poon, K. T. Lo, and J. Feng, “A hierarchical
video-on-demand system with double-rate batching,”
JVCIR, Vol. 16, No. 1, pp. 1–18, 2005.

[4] D. J. Gemmell, H. M. Vin, D. Kandlur, P. V. Rangan, and
L. A. Rowe, “Multimedia storage servers: a tutorial,”
Computer, Vol. 28, No. 5, pp. 40–49, 1995.

[5] N. J. Sarhan and C. R. Das, “Caching and scheduling in
nad based multimedia servers,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 5, No. 10, pp.
921–933, 2004.

[6] A. L. Chervnak, D. A. Patterson and R. H. Katz, “Choos-
ing the best storage system for video service,” In Pro-
ceeding of third ACM international conference on Mul-
timedia, San Francisco, USA, pp. 109–119, 1995.

[7] A. Dan and D. Sitaram, “Buffer management policy for
an on-demand video server,” IBM Watson Research Cen-
ter, RC 19347, 1994.

[8] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation
based pyramid broadcasting scheme for video on demand
systems,” In Proceeding International Conference on
Multimedia Computing and Systems, pp. 118–126, 1996.

[9] L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for
broadcasting popular videos,” In Proceeding of NOSS-
DAV’98, pp. 183–194, 1998.

[10] A. L. N. Reddy, J. Wyllie, and K. B. R. Wijayratne, “Disk
scheduling in a multimedia I/O system,” ACM Transac-
tions on Computer Communication and Application
(TOMCCAP), Vol. 1, No. 1, pp. 37–59, 2005.

[11] L. S. Juhn and L. M. Tseng, “Harmonic broadcasting
scheme for video-on-demand service,” IEEE Transactions
on Consumer Electronics, Vol. 43, No. 3, pp. 268–271,
1997.

[12] H. Om and S. Chand, “Geometrico-harmonic broadcast-
ing scheme with continuous redundancy,” IEEE Transac-
tions on Multimedia, Vol. 9, No. 1, pp. 410–419, 2007.

[13] S. Viswanathan and T. Imielinski, “Metropolitan area
video-on-demand service using pyramid broadcasting,”
ACM Multimedia System, Vol. 4, No. 4, pp. 197–208,
1996.

[14] L. S. Juhn and L. M. Tseng, “Fast data broadcasting and
receiving scheme for popular video service,” IEEE Trans-
actions on Broadcasting, Vol. 44, No. 1, pp. 100–105,
1998.

