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Abstract 
Antimicrobial peptides are promising therapeutic agents in view of increasing 
resistance to conventional antibiotics. Antimicrobial peptides usually fold in 
α-helical, β-sheet, and extended/random-coil structures. The α-helical anti-
microbial peptides are often unstructured in aqueous solution but become 
structured on bacterial membrane. The α-helical structure allows the parti-
tioning into bacterial membrane. Therefore it is important to understand the 
mechanism of unfolding and refolding of α-helical structure in antimicrobial 
peptides. It is not very easy to obverse and study the process of unfolding and 
refolding of α-helical antimicrobial peptides because of their rapidity. There-
fore, molecular simulation provides a way to observe and explain this phe-
nomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide 
and can spontaneously unfold and refold under physiological condition. This 
study demonstrated the unfolding and refolding of plantaricin A by means of 
molecular simulation, and its mechanism was discussed with its implication 
to the Levinthal paradox. 
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1. Introduction 

Antimicrobial peptides are promising therapeutic agents, not only because they 
can act on Gram-positive/negative bacteria, protozoa, yeast, fungi, viruses, etc., 
but also because they come from almost all organisms [1] [2]. Besides having a 
great diversity in their function, antimicrobial peptides also have a great diversi-
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ty in their structures including α-helical, β-sheet, extended/random-coil struc-
ture [3] [4] [5]. 

Of three thousands of antimicrobial peptides [6], α-helical structure accounts 
14.88%, β-sheet structure accounts 2.69%, whereas the majority (58.85%) are 
unknown structures and the rest are mixed structures. Clearly, α-helix is the 
most important structure in antimicrobial peptides. Although the net charge, 
amphipathicity and hydrophobicity, is the most important factor in antimi-
crobial peptides for their activity [3], the α-helical structure produces distinct 
membrane-bound amphipathic conformation [7] and thus allows its partition-
ing into bacterial membrane. 

Curiously, the α-helical antimicrobial peptides are often unstructured in 
aqueous solution but become structured on bacterial membrane. Basically, the 
alternation between unfolding and refolding is not limited to α-helical antimi-
crobial peptides because this feature is observed in diseases. The famous example 
is amyloid β (Aβ) peptide, whose α-helix spontaneously unfolds under the phy-
siological condition and the unfolding of amyloid β is one of the causes for Alz-
heimer’s disease [8]. Also, the unfolding and refolding are important in bio-
technological settings, where microorganisms produce recombinant enzymes 
and biopharmaceutical proteins. For example, the refolding of secreted amylase 
in Bacillus subtilis is extremely important for a profitable production [9] [10]. 

Plantaricin A is an antimicrobial pheromone peptide produced by Lactobacil-
lus plantarum and is composed of 26 amino acids. Plantaricin A has an α-helix 
from position 11 to position 22, and this α-helical structure can spontaneously 
unfold and refold under the physiological condition, because it is unstructured 
in water but becomes partly structured upon the exposure to micelles and fully 
structured under the physiological condition [11]. 

Because of importance of α-helical structure in antimicrobial peptides and 
proteins, it is necessary to study the unfolding and refolding process in order to 
understand the underlying mechanism. Although it is not so easy to observe and 
study this process at small time scale, molecular dynamic simulation could pro-
vide a way to observe and explain this phenomenon. In this study, the unfolding 
and refolding of plantaricin A was found in molecular dynamic simulation and 
an attempt was made to discuss its mechanism. 

2. Materials and Methods 
2.1. Data 

The 3D structure of plantaricin A is available at Protein Data Bank [12] identifi-
er 1YTR, which contains 20 best structures from 100 calculated structures 
measured by NMR at 25˚C, pH 4, zero ionic strength and ambient pressure. The 
selection of these 20 best structures was based on their lowest energy [13]. 

2.2. Molecular Dynamics Simulation 

Of 20 best structures of 1YTR, the 20th structure was used for the molecular dy-
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namic simulation because it is also the one shown in various 3D visualization 
programs. Hydrogen atoms that did not appear in NMR measurement were 
added to plantaricin A using the Visual Molecular Dynamics Program [14]. 

The NAMD2 2.9 [15] was used to perform all the simulations with the 
all-atom force field CHARMM (v. 27) [16]. In simulations, the electrostatic in-
teractions, the short-range non-bonded electrostatic and van der Waals interac-
tions, and the long-range interactions were computed every 1 fs, 2 fs, and 4 fs; 
the particle-mesh Ewald was used with grid points no more than ~1 Å apart; the 
Langevin dynamics was coupled to all atoms except for the hydrogens with a 5 
ps−1 damping coefficient; the Nose-Hoover Langevin piston was used with a de-
cay period of 100 fs and a damping time of 50 fs under 1 atm; a constant tem-
perature was maintained; and 9 Å was chosen for the distance between ions [17]. 
The final system size was 24,661 atoms. Each simulation was continued until the 
time that no change was observed in plantaricin A structures, usually 15 ns. 

Plantaricin A became unfolded in solution with ionic strengths of 150 mM 
NaCl and 1.5 mM CaCl2 at pH 7.4 and 37˚C with the random seed of  
1420883531. 

Root mean square deviation (RMSD), which characterizes the amount of si-
mulated molecule deviates from their defined positions in space, is calculated by 
program using the equation: 
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where Na is the number of atoms whose positions are compared, tj is time, ra(tj) 
is the position of atom a at tine tj, <ra> is the average value of the position of 
atom a, to which the position ra(tj) is compared [18]. 

3. Results 

It is important to study the mechanism of how α-helical structure can sponta-
neously unfold and refold, considering its significance in clinical and biotech-
nical settings. In this study, the unfolding and refolding of plantaricin A were 
conducted in molecular dynamics simulation, because of its ready switch be-
tween folded and unfolded α-helical structures.  

Figure 1(a) demonstrates the unfolding process of α-helix at 1 ns interval. As 
can be seen, the unfolding of α-helix is not monotonic since it progresses faster 
between 0 and 1 ns, and between 4 and 5 ns than other intervals. It is not sur-
prising that the unfolding is faster between 0 and 1 ns because many studies 
showed the great role of the initial phase in molecular dynamics simulations. 
This is due to the change from the measured structure under a particular expe-
rimental condition to the condition of molecular dynamics simulation [19]. In 
addition, the unfolding did not begin at the termini of α-helix, but began in its 
middle as seen in panels 0 ns and 1 ns. 
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Figure 1. The unfolding of α-helix of plantaricin A at 1 ns interval (a), the distance of the 
residues from position 11 to position 22 to the ideal α-helical center −60˚ in ф-axis and 
−50˚ in ψ-axis and their dendrogram produced by the cluster analysis during unfolding 
process (b), and the length of hydrogen bond between the residues i and i + 4 (c). 

https://doi.org/10.4236/cmb.2019.91003


S. M. Yan, G. Wu 
 

 

DOI: 10.4236/cmb.2019.91003 31 Computational Molecular Bioscience 
 

In Figure 1(b), different colors illustrate how far away each residue moved 
away from the reference point, which is the ideal α-helical center −60˚ in ф-axis 
and −50˚ in ψ-axis in terms of the Ramachandran notation. As can be seen, the 
residues with green color did not have great movements from the reference 
point because their color did not change over 5 ns, so these residues could not 
lead the α-helix to unfold. On the contrary, the residues on the top and the bot-
tom in Figure 1(b) moved away from the reference point because of changes in 
their colors, especially the glutamine at position 16. Meanwhile, the dendrogram 
produced by the cluster analysis suggests that this residue was the main force for 
the unfolding of the α-helix. Moreover the alanine at position 11 appeared the 
main force to maintain the α-helix because it moved towards the reference point 
over the time. This is reasonable because alanine is too short to effectively me-
diate its degradation [4]. Still, Figure 1(b) indicates that the turning point of 
unfolding of α-helix is the time between 3 ns and 4 ns, because most residues 
actually move back to the reference point at 3 ns. In effect, the α-helix will be re-
folded if such a tendency holds on. 

Figure 1(c) demonstrated the length of hydrogen bonds between the residues 
i and i + 4 of α-helix. As can be seen, the hydrogen bonds between residues 14 
and 18, between residues 15 and 19, and between residues 13 and 17 increased 
more than others. These residues, isoleucine, lysine, glutamine, valine, lysine and 
lysine, have similar helix propensities except for valine [20]. Just two hydrogen 
bonds, between residues 16 and 20, between residues 17 and 21, hold their 
length around 2 Å, which is the typical length of a hydrogen bond [21]. 

The simulation in at 0 ns and 5 in Figure 1(a) demonstrates the difference 
between folded and unfolded α-helix of plantaricin A, and this difference marks 
the opening of α-helical structure. 

Because the start of refolding of plantaricin A was different in each simula-
tion, we set the refolding time scale from 0 to 5 ns (Figure 2) in order to be 
identical with time scale in unfolding (Figure 1). Figure 2(a) depicts the refold-
ing process of α-helix of plantaricin A at 1 ns interval, where the refolding began 
from a very short α-helix, which is generally considered as the folding nuclei 
[22]. The same explanation in Figure 1(b) and Figure 1(c) can be applied to 
Figure 2(b) and Figure 2(c). Collectively, alanine is the initial residue for re-
folding as it has showed to be the main force to maintain the α-helix in Figure 
1(b). 

Misfolded plantaricin A, which can be eliminated by DnaK and GroEL in 
bacteria [23], suggests the difficulty in folding of native structure, because each 
residue has several pathways to be folded. When a plantaricin A can find a cor-
rect pathway to fold, it reached its native structure in 6 ns (Figure 2(a)). This is 
an extremely short period of time if we consider the number of pathways that a 
protein can fold itself. According to HP model [24] [25] [26] [27], where a pro-
tein folds in a lattice, the number of possible folding pathways for 26-residue 
sequence in 3D HP model is 6 × 525 to find its native state in the worst case. 

https://doi.org/10.4236/cmb.2019.91003


S. M. Yan, G. Wu 
 

 

DOI: 10.4236/cmb.2019.91003 32 Computational Molecular Bioscience 
 

 
Figure 2. The refolding of α-helix of plantaricin A at 1 ns interval (a), the distance of the 
residues from position 11 to position 22 to the ideal α-helical center −60˚ in ф-axis and 
−50˚ in ψ-axis and their dendrogram produced by the cluster analysis during refolding 
process (b), and the length of hydrogen bond between the residues i and i + 4 (c). 
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The simulation in at 1 ns and 6 in Figure 2(a) shows the difference between 
unfolded and folded α-helix of plantaricin A, and this difference marks the 
forming of α-helical structure. 

The native state of a protein is associated with the minimal energy. Molecular 
dynamics simulation provides the trajectories of atomic positions and energy 
over time for equilibration and minimization. Figure 3 reveals that plantaricin A 
needs roughly 5 ns to reach its equalization and minimization during refolding 
process. This period of time was used by plantaricin A to find the correct re-
folding pathway. It was suggested that the hydrophobic force is the main force 
determining the unique native state [24], while the percent of hydrophobic resi-
dues of majority of proteins is 40% - 50% [28]. The percent of hydrophobic re-
sidues in plantaricin A is 42%, so plantaricin A would follow this to fold itself. 

Figure 4 represents the change in total energy of refolding of plantaricin A  
 

 
Figure 3. Root mean square deviation of refolding process of plantaricin A over time. 
 

 
Figure 4. Change in total energy of refolding of plantaricin A during molecular dynamics 
simulation. 
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during molecular dynamics simulation. At time 0, there should be 100% un-
folded structure and the total energy is at maximum. From 0 ps to 20 ps, the to-
tal energy decreased from 574,306 kcal/mol to −120,017 kcal/mol, while from 20 
ps to 6000 ps the total energy fluctuated between −120,000 and −80,000 kcal/mol. 
These rapid decline in total energy suggests an energy funnel for folding [29] 
[30]. 

4. Discussion 

Plantaricin A was chosen because it comes from Lactobacillus plantarum. It is 
known that bacteria evolved a mechanism to use proteins such as DnaK and 
GroEL to prevent the accumulation of unfolded and misfolded proteins [23]. 
Additionally, the folding of plantaricin A occurs at co-translational stage [31]. 
This is very delicate because the folding of proteins occurs either at the post- 
translational stage or at the co-translational stage with different requirement of 
time. Thus, a peptide sequence must fold itself into a well-defined functional 
structure within a reasonable period of time. Essentially, the signal peptide of 
protein has the information on timing of co-translational stage [32], which is the 
case for plantaricin A [31]. 

The most important observation in the unfolding of α-helix of plantaricin A is 
that the α-helix is unfolded from the middle of α-helix rather than from its ter-
mini. Theoretically, the breaking of hydrogen bond requires 30 kJ/mol energy, 
which could be possible under the fluctuation in the system [33]. Hence the 
spontaneous unfolding of α-helix is very probably to occur in vivo because mo-
lecular dynamics simulation with the artificial periodicity stabilizes a protein 
otherwise it would unfold quickly [34]. A study on the folding of DNA loop re-
vealed that the required energy was roughly the same for misfolded and native 
loops [35]. 

For many proteins, their unfolding is irreversible, for example, the coiled-coil 
structure is irreversible in Hv1/VSOP [36]. Plantaricin A can refold itself again 
when exposing to micelles and under the physiological condition [11]. In mole-
cular dynamic simulation, the refolding of plantaricin A is not easy with unspe-
cific time of simulation, and the most important point is that most refolded 
structures are misfolding. A large number of misfoldings is understandable be-
cause the unfolding does not have many choices for each residue, but the folding 
of protein is far more complex, which is explained at least by three theories. 1) 
The hydrophobic-polar (HP) model [24] and the hydrophobic-hydrophilic- 
neutral (BPN) model [37] enumerate all the possible folding pathways in order 
to find out the optimal pathway to rapidly fold the native structure. 2) The 
theory focuses on folding intermediates, and analyzes the stability and activation 
barriers between folding intermediates with folding reaction [38]. 3) The theory 
concentrates on folding energy landscape and proposes a rugged funnel-like 
landscape biased toward the native structure [29] [30]. Over years, the first and 
third theories are becoming more and more complementary [39]. 
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Generally, the folding is faster for α-helix than for α-sheet as well as the mix-
ture of α-helix and α-sheet [40], and plantaricin A belongs to the small ultra-
fast-folding proteins. 

How a protein can find out its native state without globally exhaustive search 
is the Levinthal paradox [41], which extends beyond the protein folding into 
other combinatorial problems in biological fields such as protein-protein inte-
raction [42] and biomolecular complex assembly [43]. 

In the past, molecular dynamics simulation was used to unfold proteins with 
external forces, including mechanic force [44], chemical force [45], high tem-
perature [46], pressure [47], light/electromagnetic radiation [48], whereas the 
simulation of refolding of proteins was also studied with low temperature [49]. 
In this study, we simulated the spontaneously unfolding and refolding of planta-
ricin A, which is the advantage of our study because we did not apply any for-
eign force and environmental conditions. Molecular dynamics simulation de-
monstrates that plantaricin A unfolds its α-helix from the middle residue, refolds 
its α-helix from a terminal. Moreover, our study reveals that fluctuation of ener-
gy under the physiological condition is sufficient to initiate unfolding of planta-
ricin A. 
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