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Abstract 
Drought is a common occurrence in many arid and semi-arid regions that can 
have large negative impacts on water resources and agricultural production. 
Since agricultural drought is affected by both water supply and demand (pre-
cipitation and evapotranspiration), it is beneficial to include both in agricul-
tural drought monitoring. The Standardized Precipitation-Evapotranspiration 
Index (SPEI) was found to be a suitable drought index for monitoring agri-
cultural drought. In this study, the SPEI calculated from agro-meteorological 
weather stations was used to determine exceedance probabilities at five levels 
in the Texas High Plains. In addition, the kriging method was used to inter-
polate between the stations to generate spatial maps for the exceedance prob-
abilities. No significant differences were found between stations, indicating 
any station should be suitable to represent the Texas High Plains. Results 
showed drought conditions occurred at all five probability levels during the 
summer growing season for this region. Although differences were not signif-
icantly different, the interpolated maps showed a trend where minor differ-
ences in the SPEI values were associated with the West-East precipitation gra-
dient. However, there was no trend associated with the North-South air tem-
perature gradient. A risk analysis showed that the SPEI probability values can 
provide policy and decision makers with additional information for better 
water management in the Texas High Plains. 
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1. Introduction 

Drought is a common occurrence in most arid and semi-arid climates that can 
have drastic economic consequences, especially for agriculture. Drought is a 
complex phenomenon, which causes difficulty in creating a singular definition 
[1]. Location and climate influence the definition and relative severity of 
drought. For instance, in tropical climates, a drought will be defined differently 
than in an arid climate. The definition of drought will also vary based on the 
field of the study or use of the definition. For hydrology, droughts are characte-
rized by periods of below normal stream flow and depleted reservoir storage. In 
meteorology, drought may be defined as extended periods of below normal pre-
cipitation. In agriculture, the main concern may be with periods of below-nor- 
mal soil water that affect crop growth, which vary among the respective growing 
seasons. Economists are concerned with low water supply and the effects on so-
ciety’s productive and consumptive activities [1]. Although drought impacts 
most aspects of life, the greatest impact is observed in agriculture. 

In areas such as the Texas High Plains, which is largely an agricultural region, 
drought can cause severe economic losses due to reduced crop yields or reduced 
cattle gains, or in extreme cases, crop failure or livestock death. In irrigated crop 
production, losses to drought can be somewhat mitigated; however, the in-
creased irrigation requirements due to decreased/erratic precipitation put addi-
tional strain on already limited water resources. In the Texas High Plains, water 
resources are becoming scarce [2] [3], which has caused physical and political 
limitations on water use. In many areas, well capacities have decreased due to 
the lowering water table of the Ogallala Aquifer [4]. The reduced water availabil-
ity also has caused local groundwater conservation districts to impose regulatory 
limits on the amount of irrigation water that can be withdrawn annually by 
producers [5] [6] [7].  

Drought management strategies may be useful for maintaining profitable 
agricultural production and optimal policy decision making. Understanding 
drought conditions, or more importantly, the probability of drought occurrence 
and severity, can be beneficial for managing water resources. For monitoring 
agricultural drought, Moorhead et al. [8] found the Standardized Precipitation- 
Evapotranspiration Index (SPEI-[9]) to be the most suitable drought index. The 
SPEI accounts for precipitation and evapotranspiration (ET), which are two of 
the main components of the water balance. Moorhead et al. [10] revised the SPEI 
by replacing reference ET with potential ET of specific crops to make it more 
suitable for its application in irrigated regions. They reported statistical regres-
sion models for major irrigated crops in the Texas High Plains. These regression 
models offer a simplified method for determining irrigation water demand based 
on current drought conditions in the Texas High Plains. 

The usefulness of the SPEI demonstrates that management decisions can ben-
efit from a greater understanding of current or possible drought conditions. Al-
though forecasting drought can be rather difficult, exceedance probability me-
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thods offer useful information for future water management purposes. The ex-
ceedance probability indicates likelihood that a certain value, or level of drought, 
will occur based on historical data. For example, a 50% exceedance probability 
indicates a 50% chance of up to a certain level or severity of drought occurring, 
or such a level of drought could be expected to occur “on average” one out of 
two years. The probability can then be used as an assumed level of risk [11], 
where assuming a 20% risk level would indicate using the 80% exceedance 
probability. Exceedance probability analyses have been used in a wide array of 
applications, from climate change research [12] to natural disaster risk assess-
ment [13] to solar energy analysis [14].  

Drought forecasting and risk assessment studies have been performed using a 
variety of methods. Drought forecasting typically attempts to predict future con-
ditions based on historical precipitation patterns and other data. Forecasting 
drought using the Standardized Precipitation Index (SPI) has been investigated 
using Gamma Highest Probability [15], Markov chains [16], and other methods. 
Although forecasting may be beneficial for water management decision making, 
it also can be advantageous to have an analysis of probability occurrence with 
certain potential scenarios. Probability-based decision making can allow various 
stakeholders to assume any desired (acceptable) level of risk. The probabilities 
also make risk analysis and various projection scenarios possible. Probability 
exceedance-based decision metrics do have an inherently higher risk over small 
time periods. Therefore they are no guarantee that in any one given year that the 
results will fall in line with the probabilities. As such, these approaches are more 
appropriate in assessing risk as part of a longer term management plan. 

Shahid and Behrawan [17] performed a drought risk assessment for Bangla-
desh using SPI. They noted that Bangladesh has high population density and 
poverty rates, making it vulnerable to drought-based disasters. To assess the 
vulnerability, the SPI and several socio-economic and physical factors were used 
to develop a drought risk index. Using geographical information systems (GIS), 
they then created drought risk maps for three month and six month time steps. 
Shahid and Behrawan [17] hoped that the maps will aid in disaster risk reduc-
tion and intervention in Bangladesh in the future. 

Carbone and Dow [18] produced drought probability forecasts for South Car-
olina using the Palmer Drought Severity Index (PDSI). They noted that several 
stakeholders at local and state levels were interested in knowing various states of 
probabilities of drought to anticipate potential water restrictions. They devel-
oped a matrix using precipitation and temperature data and used terciles to ca-
tegorize each month as compared to normal conditions. Then, a probability 
anomaly value was estimated using Gaussian and gamma distributions. Carbone 
and Dow [18] noted that forecasts reflected the historical data from which they 
were derived more than the probability of occurrence; therefore, users can bene-
fit from probabilities without forecasts. 

Torres et al. [19] evaluated drought probability based on soil water deficit. 
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They developed probabilities for each day of year for eight meteorological sta-
tions in Oklahoma. They calculated the drought probability as the number of 
times the soil water deficit exceeded a set threshold, divided by the number of 
observations. This procedure provided the probability of a given soil water defi-
cit status for each day of the year.  

Understanding the potential for drought conditions and associated probabili-
ties can be beneficial for water management by stakeholders and policy makers 
in areas such as the Texas High Plains. Although several studies have investi-
gated risk assessment or forecasting of drought, few have used the exceedance 
probability approach. Exceedance probability should provide indications to 
likely drought scenarios and allow for the selection of a desired (acceptable) level 
of risk in decision making. In addition, having spatial representation of drought 
probability can demonstrate the variability of drought conditions and lead to 
more local, specialized water management strategies. Therefore, the objectives of 
this study were to evaluate the variability of the SPEI based on historical climate 
data and to develop spatially representative maps of drought exceedance proba-
bilities using SPEI. 

Study Area 

The Texas High Plains, comprising the Texas Panhandle, constitutes a major 
portion of the Southern High Plains in the Ogallala Aquifer region. In the Texas 
High Plains, agriculture accounts for a large portion of the land use, while irri-
gated land accounts for the majority of the agricultural crop production. Irriga-
tion in this region accounts for 89% of the total fresh water use, in contrast to 
60% for the entire state of Texas [20]. The Texas High Plains is a major wheat, 
corn, and cotton producing region. Corn production in the Texas High Plains is 
largely dependent on irrigation, while wheat and cotton may be grown under 
fully irrigated, deficit irrigated, or dryland conditions. The vast majority of irri-
gation water for regional crop production is withdrawn from the Ogallala Aqui-
fer. Limited rainfall (400 to 600 mm·yr−1 or 16 to 24 in. yr−1, on average across 
the region), provides little recharge in this region of the Ogallala Aquifer [2], 
which results in the aquifer being effectively a finite resource. Consequently, 
water conservation is an integral part of the regional water management plan 
[21]. The northern and southern parts of the Texas High Plains (see Figure 1) 
are similar in size; however, the northern Texas High Plains irrigates over 1.1 
million ha (2.7 million ac) while the southern Texas High Plains irrigates about 
760,000 ha [4]. In both northern and southern regions, irrigated crop yields 
generally are at least twice the yields obtained under dryland (rainfed) condi-
tions. 

2. Methodology 

The SPEI was chosen as the drought index based on the findings of Moorhead et 
al. [8]. They investigated several drought indices for suitability of agricultural  
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Figure 1. Locations of the selected TXHPET network stations throughout the Texas high plains. 

 
drought monitoring. They determined the SPEI to be suitable for agricultural 
drought, since it accounts for both water input as precipitation and water loss as 
ET. The SPEI determines relative wet or dry conditions, based on the difference 
between precipitation and ET. The calculation methodology of the SPEI is de-
tailed in Vicente-Serrano et al. [9]. Data for SPEI calculations were obtained 
from the Texas High Plains ET (TXHPET) Network [22], which consisted of 19 
agro-meteorological stations throughout the Texas High Plains (Figure 1) dur-
ing the period of 1991-2014. The TXHPET network was selected for the data 
source since all stations were sited and maintained for the purpose of estimating 
ET, following specifications in the 2005 ASCE Standardized Reference ET Equa-
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tion Manual [23]. Proper station siting, design, and maintenance should provide 
the most accurate ET data for SPEI calculation. A study by Porter et al. [24] 
showed that errors in weather measurements can have large effects on reference 
ET calculations. 

The TXHPET network recorded weather at 6 s intervals and data were aver-
aged or summed for hourly intervals. Measured weather parameters included 
precipitation, wind speed, air temperature, relative humidity, and solar radiation 
(irradiance). These hourly measurements were used to calculate hourly grass and 
alfalfa reference ET (ETos and ETrs, respectively) using the 2005 ASCE Standar-
dized ET Equation [23] which are then summed to provide daily ET values. 
Prior to distribution, the data underwent quality control assessment to identify 
and correct any errors or missing data. This quality control procedure involved 
ensuring each measurement fell within realistic upper and lower limits as well as 
cumulative comparisons with weather stations within close proximity. Even 
though data was subjected to TXHPET quality control, each dataset was addi-
tionally visually inspected for incorrect or missing data. 

Precipitation and ETos data collected from TXHPET stations were used to 
calculate the SPEI at a monthly time step in this study. The monthly time step 
was chosen, as it is short enough to be useful in agricultural applications, but 
long enough to help account for the variability in precipitation and ETos. Daily 
precipitation and ETos data from the TXHPET Network were summed to 
monthly values. The difference between monthly precipitation and ETos was 
then used to calculate the SPEI. Calculation of SPEI was performed in the same 
manner as described by Vicente-Serrano et al. [9] and the same log-logistic dis-
tribution was used to allow for commonality in calculation methodology. The 
log-logistic distribution was also used for the TXHPET data by Moorhead et al. 
[10] and Moorhead et al. [8]. Although Moorhead et al. [8] found that using 
crop-specific ET (ETc) to calculate SPEI differed from using ETos, and may be 
more beneficial in some cases, the purpose of this study was to determine the 
probability of relative drought conditions. Therefore, ETos was used to calculate 
SPEI, as ETos represents the atmospheric demand for water, based on microme-
teorological parameters and associated water requirements of a standardized, 
short grass reference crop.  

The monthly SPEI was calculated for all TXHPET stations with a data record 
longer than 10 years, which consisted of 15 stations with a data record of at least 
13 years (Table 1). Although a much longer data record is desired for exceed-
ance probability calculations, agro-meteorological stations with continuous, 
highly accurate ET data are uncommon and have not been in existence as long as 
other, less agriculturally representative weather station networks. To calculate 
the exceedance probabilities for each network station, monthly SPEI values were 
calculated and ranked by month, from largest to smallest. The probabilities were 
then calculated by dividing the rank by the number of observations per month 
plus one (n + 1). This method of calculating exceedance probability has been  
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Table 1. Location and data record of selected TXHPET stations. 

Station Latitude (degrees) Longitude (degrees) Data Record 

Bushland 35.20 −102.10 1991-2014 

Chillicothe 34.20 −99.50 1999-2014 

Dalhart 36.30 −102.50 1995-2010 

Dimmitt 34.70 −102.50 1995-2010 

Etter 36.00 −102.00 1995-2014 

Farwell 34.40 −103.00 1997-2010 

Halfway 34.20 −101.90 1998-2014 

JBF 35.20 −102.10 1995-2014 

Lamesa 32.80 −101.90 1998-2014 

Lubbock 33.70 −101.80 1998-2014 

Pecos 31.40 −103.60 1995-2014 

Perryton 36.20 −100.90 1997-2010 

Wellington 35.00 −100.30 1996-2010 

White Deer 35.40 −101.10 1995-2010 

WTAMU 35.00 −101.80 2002-2014 

 
used in other water monitoring and management applications such as stream-
flow analysis [25], groundwater contamination analysis [26], precipitation anal-
ysis [27], and in other areas of water and risk management. In this study, five 
probability levels were selected for analysis: 25%, 50%, 60%, 75%, and 85%. 
These probability levels provide the quartiles as well as a value slightly above the 
median and a value of high likelihood.  

In the Texas High Plains (and the rest of the Ogallala Aquifer region), gra-
dients exist for some weather parameters. In general, air temperature decreases 
from North to South and precipitation increases from West to East [28]. The 
variation in temperature and precipitation may lead to differences in drought 
conditions. As precipitation and ET data are often not normally distributed, the 
Shapiro-Wilk test was performed to test for normality. Based on the Shapiro- 
Wilk outcome, an analysis of variance (ANOVA) or the Kruskal-Wallis test was 
performed to test for significant differences between stations for average monthly 
SPEI and for each exceedance probability level. To provide a visual representa-
tion of any spatial variation in the exceedance probabilities, maps were created 
using spatial interpolation. The GIS software ArcMap (ESRI, Redlands, CA) was 
used to create shapefiles containing the SPEI exceedance probabilities. The or-
dinary kriging procedure was used with the shapefiles to generate the exceed-
ance probability maps. 

The availability of drought maps can be more beneficial than using point- 
based data for a variety of planning and policy applications. For on-farm deci-
sion making, it can be difficult to determine which station is closest, or best 
represents a specific field. With a map, a value for any specific location can be 
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selected. In addition, maps can be used for larger scale decision making, such as 
on a county or regional level. The spatial representation allows for determining 
what portion of a region may experience a certain level of drought. 

The drought probability values were used to perform a risk assessment com-
paring drought probability levels and associated effects on crop yields and irriga-
tion water requirements. First, a regression equation was established between the 
SPEI and precipitation to allow for the SPEI to be used as a predictor of potential 
rainfall. Then, to assess effects on irrigation requirements, monthly SPEI values 
from the mean, as well as 25%, 50%, 60%, 75%, and 85% probability levels were 
used to estimate potential monthly precipitation amounts. These precipitation 
amounts were used to determine how much irrigation would be required to 
achieve total seasonal crop water use of 750 mm (30 in.) for grain corn, which 
would result in maximum yield based on regional production functions [29]. 
The Texas A&M-Amarillo (TAMA) regional water demand model [20] was used 
to determine average monthly soil moisture depletion and fraction of irrigation 
and precipitation that occurs each month of the growing season. This analysis 
allowed for determining how the various drought scenarios would affect irriga-
tion requirements to maintain maximum crop production. 

In the Texas High Plains and many other areas, irrigation may be limited 
through regulation (established pumping limits, often on a per acre basis), or in 
many cases, physical hydrologic limitation (water availability, saturated thick-
ness, etc.) of the irrigation wells. In the Texas High Plains, the capacity of many 
irrigation wells has decreased to the point that producers struggle to supply 
enough water to crops to attain maximum production; in fact many cannot meet 
full crop water demand due to low well capacities. Whether physical or regula-
tory limitations, achieving a desired water amount may not be possible. To de-
termine the effects of drought on these situations, yield was calculated based on 
the crop production function of a common grain corn variety grown in the Tex-
as High Plains [29]; however, rather than meeting a total water threshold, the 
seasonal irrigation amount was held constant at 400 mm (16 in.), which is a tar-
geted regulatory limit desired by several groundwater conservation districts in 
the Texas High Plains [6] [7]. In this scenario, irrigation water was held constant 
and yield fluctuated based on the precipitation calculated from the drought 
probability levels. This allowed for an analysis of how various drought levels 
would affect yield. 

3. Results and Discussion 

The SPEI was calculated at a monthly time step from 15 TXHPET network sta-
tions across the Texas High Plains. Drought conditions are frequent in the re-
gion, as indicated by the average monthly SPEI value for each station. For all sta-
tions, the average monthly SPEI was below zero (indicating drought conditions) 
for the months between April and September, with the lone exception being the 
Farwell station for August (Figure 2). (While located in the southwest area of  
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Figure 2. Monthly average SPEI values for each TXHPET Network station. 

 
the network, the Farwell location has a comparative high altitude, and ETos is 
lower as compared to other surrounding stations). Although numerical differ-
ences existed between the average monthly SPEI values, as indicated by Figure 2, 
the differences were not found to be statistically significant. Therefore, drought 
conditions could be effectively monitored by any one of the stations for the Tex-
as High Plains, based upon the data set evaluated. 

Based on the SPEI, the months typically exhibiting drought correspond to the 
summer growing season when most crops are grown in the Texas High Plains. 
This illustrates why irrigation is so prevalent in the region. The precipitation 
events occurring during the summer do not satisfy the demand for water ade-
quately. In addition to the growing season, the summer months also coincide 
with the period of highest temperatures. Although the SPEI in this study was 
calculated using ETos, Moorhead et al. [8] showed similar results are seen when 
using crop specific ET.  

Exceedance probabilities for SPEI in the Texas High Plains were calculated for 
the monthly SPEI at five probability levels. The results of the Shapiro-Wilk test 
for normality showed that the SPEI data were not normally distributed, so the 
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Kruskal-Wallis test was used to test for differences among the TXHPET stations. 
The Kruskal-Wallis results showed that differences between the stations were 
not statistically significant, with all p-values being greater than 0.99. Since there 
were no significant differences between stations, the SPEI values for each ex-
ceedance probability level were averaged for all stations (see Figure 3). The data 
show a pattern where the SPEI values for any particular month become smaller 
(indicating greater drought conditions) as the exceedance probability increases. 
This is because the exceedance probability indicates the likelihood of a particular 
value being exceeded, so a more extreme value should have a higher likelihood 
of being exceeded.  

Figure 3 illustrates how using probabilities can be different than using the av-
erage values. All but the 25% probability level indicate drier conditions than us-
ing the average. Therefore, using the average SPEI value for a particular month 
may indicate the expected drought conditions are less than what is more proba-
ble. This illustrates how using the average value for decision making can be mis-
leading as to what conditions may be more likely or probabilistic. The numerical 
values of Figure 3 are presented in Table 2. 

Although differences were not significant between the THXPET stations, the 
SPEI exceedance probabilities were mapped to illustrate the existence of potential  

 

 
Figure 3. SPEI exceedance probabilities averaged across all TXHPET stations. 
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Table 2. Monthly average and exceedance probability level SPEI values. 

Month Average 25% 50% 60% 75% 85% 

January 0.74 1.02 0.62 0.52 0.33 0.03 

February 0.58 0.94 0.49 0.34 0.08 −0.18 

March 0.13 0.55 −0.05 −0.27 −0.49 −0.72 

April −0.50 −0.16 −0.77 −0.95 −1.15 −1.36 

May −0.85 −0.42 −1.04 −1.26 −1.55 −1.74 

June −0.84 −0.30 −1.06 −1.26 −1.68 −1.95 

July −0.93 −0.61 −1.13 −1.32 −1.56 −1.79 

August −0.45 0.00 −0.59 −0.86 −1.05 −1.24 

September −0.04 0.34 −0.12 −0.39 −0.59 −0.91 

October 0.58 1.07 0.34 0.12 −0.18 −0.36 

November 0.69 0.85 0.52 0.38 0.28 0.16 

December 0.92 1.15 0.83 0.76 0.57 0.44 

 
gradients in SPEI. The months of June, July, and August had the driest condi-
tions and are therefore presented in Figures 4-6. The figures show trends where 
differences tend to occur from East to West, which corresponds with the preci-
pitation gradient. For most of the maps, much less variation is seen in the 
North-South directions, which may indicate that the air temperature gradient 
does not have as large of an impact on drought conditions as the precipitation 
gradient. 

Figure 7 presents the regression analysis that was used to predict potential 
precipitation from the SPEI exceedance probabilities. The expected yields based 
on precipitation calculated from the equation in Figure 7 and 400 mm (16 in.) 
of irrigation are presented in Figure 8. Using the SPEI probability values at the 
85% level, and assuming 400 mm (16 in.) of irrigation, resulted in an estimated 
grain corn yield of 10.8 Mg·ha−1 (172 bu ac−1); whereas using the 50% level re-
sulted in a yield of 13.5 Mg·ha−1 (215 bu ac−1). This illustrates how the SPEI 
probability can be used to assist management decisions. If a producer is expect-
ing a normal year, near the 50% probability level, and actual conditions move 
towards the 85% level, the producer can manage inputs accordingly to try to mi-
nimize expenses knowing yield will likely be decreased. For example, to achieve 
a grain corn yield goal of 13.2 Mg·ha−1 (210 bu ac−1), 302 kg·ha−1 (270 lb. ac−1) of 
nitrogen (N) would be required [30]. Adjusting the yield goal to 10.7 Mg·ha−1 
(170 bu ac−1) would reduce the N requirement to 224.2 kg·ha−1 (200 lb. ac−1). 
This 78.5 kg·ha−1 (70 lb. ac−1) reduction in fertilizer would reduce the producer’s 
input costs and potentially increase profits. Likewise, if a producer expects dry 
conditions, such as the 75% probability level, and actual conditions become 
more favorable and more precipitation occurs, inputs can be increased to take 
advantage of the higher potential yield. In addition, the ability to quantify the  
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Figure 4. Exceedance probability maps for June. 

 
change in yield based on the SPEI can allow a producer to manage inputs to a 
specific yield goal. 

For maximum grain corn production, a total water of 750 mm (30 in.) is re-
quired based on the production functions presented by Hao et al. [29]. To illu-  
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Figure 5. Exceedance probability maps for July. 

 
strate the benefits of SPEI probability values in a different way, the probability 
levels can be used to determine how much irrigation will be required to achieve 
the targeted total water. The irrigation requirement for each probability level is  
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Figure 6. Exceedance probability maps for August. 

 
presented in Figure 9. For conditions representing the 75% probability level, the 
irrigation required for total water of 750 mm would be 550 mm, whereas only 
480 mm are needed at the 50% probability level. This type of relationship can as-
sist decision making not only for producers, but also for groundwater manage-
ment districts that place regulations on groundwater withdrawal. These data can  
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Figure 7. Regression using SPEI as a predictor for precipitation. 

 

 
Figure 8. Grain corn yield estimated from SPEI exceedance probabili-
ty, assuming 400 mm irrigation capacity. 

 

 
Figure 9. Irrigation requirement to achieve 750 mm (30 in.) total seasonal wa-
ter for each SPEI probability level. 

P = 25.37*SPEI + 56.73
R² = 0.42
p<0.001
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illustrate how in extremely dry conditions or extremely wet conditions, with-
drawal regulations can be temporarily altered to allow producers to maintain 
profitable production or increase water conservation. To illustrate an example, 
setting a yield goal could be the basis for determining irrigation withdrawal lim-
its. With a yield goal of 12.6 Mg·ha−1 (200 bu. ac−1) at the 50% probability level, 
375 mm (15 in.) of irrigation would be required. At the 75% level, the withdraw-
al limit could be increased to 450 mm (18 in.) to achieve 12.6 Mg·ha−1 (200 bu. 
ac−1); however, in a wet period corresponding to the 25% probability level, the 
withdrawal limit (or recommendation) could be decreased to 288 mm (11.5 in.) 
to achieve the same 12.6 Mg·ha−1 (200 bu. ac−1). 

4. Conclusion 

Managing water resources in arid and semi-arid regions can be most challeng-
ing. With water resources becoming ever increasingly limited, new management 
tools and information can be beneficial to policy and decision makers. In arid 
and semi-arid areas, such as the Texas High Plains where drought conditions are 
common, characterizing the potential level of drought for a given time period 
can aid in decision making regarding irrigation and water management. In this 
study, exceedance probabilities were calculated based on 25%, 50%, 60%, 75%, 
and 85% probability levels for the SPEI calculated from weather data from 15 
TXHPET network weather stations. The results showed that all stations indi-
cated drought conditions at each probability level during the months that coin-
cide with the summer growing season. The Kruskal-Wallis test indicated that 
there were no significant differences between the stations at any of the probabil-
ity levels, which indicates that data from any one station could be used for the 
Texas High Plains. The exceedance probabilities were interpolated using kriging 
to produce spatial maps for each probability level. The interpolated maps 
showed that even though differences were not significantly different, there was a 
trend of SPEI values becoming lesser from West to East, which corresponds to a 
precipitation gradient where precipitation increases from West to East. An anal-
ysis of drought effects on yield and irrigation requirements showed that the ex-
ceedance probability of the SPEI can provide a useful tool for management deci-
sions for producers as well as agricultural and water policymakers. 
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