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Abstract 
One of the most challenges in the remote sensing applications is Hyperspec-
tral image classification. Hyperspectral image classification accuracy depends 
on the number of classes, training samples and features space dimension. The 
classification performance degrades to increase the number of classes and re-
duce the number of training samples. The increase in the number of feature 
follows a considerable rise in data redundancy and computational complexity 
leads to the classification accuracy confusion. In order to deal with the Hughes 
phenomenon and using hyperspectral image data, a hierarchical algorithm 
based on SVM is proposed in this paper. In the proposed hierarchical algo-
rithm, classification is accomplished in two levels. Firstly, the clusters in-
cluded similar classes is defined according to Euclidean distance between the 
class centers. The SVM algorithm is accomplished on clusters with selected 
features. In next step, classes in every cluster are discriminated based on SVM 
algorithm and the fewer features. The features are selected based on correla-
tion criteria between the classes, determined in every level, and features. The 
numerical results show that the accuracy classification is improved using the 
proposed Hierarchical SVM rather than SVM. The number of bands used for 
classification was reduced to 50, while the classification accuracy increased 
from 73% to 80% with applying the conventional SVM and the proposed Hie-
rarchical SVM algorithm, respectively. 
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1. Introduction 

In order to discriminate between the similar species, hyperspectral image (HSI) 
including a large number of spectrum bands is introduced. The large number of 
spectral bands in hyperspectral remote sensing images is challenging in the clas-
sification algorithms from two perspectives. Firstly, due to the proximity and 
narrow spectral bands, redundancy information is significant. On the other 
hand, high information volume leads to confusion and degradation of the classi-
fication algorithm performance. 

HSI classification is a significant challenge in remote sensing applications. 
Generally, the HIS classification algorithms fall into three categories: supervised, 
unsupervised, and semi-supervised. Due to the high feature space dimension of 
the hyperspectral images, the supervised algorithms are encountered with the 
Hughes phenomenon. Two approaches are proposed for solving this problem. 
The first, the semi-supervised algorithm [1] prevent from Hughes phenomenon 
with predicting initial labels for the test pixels. The feature space reduction [2] 
which includes two different methods, feature extraction [3] and feature selec-
tion [4] is the second approach for reducing computational complexity and in-
creasing prediction accuracy. In [5], a Genetic Algorithm (GA) based wrapper 
method is presented for classification of hyperspectral image using (SVM), a 
state-of-art classifier that has found success in a variety of areas. 

The large number of algorithms has been proposed for HSI classification in 
the last decades. Among these methods, SVMs is most compatible with HSI 
Classification optimization problem [6] [7] [8] [9]. In [10], the SVM method is 
introduced to classify the spectral data directly with a polynomial kernel. In or-
der to improve the classification performance, different kinds of SVM-based al-
gorithms [11]-[19] have been proposed. The semi-supervised learning based on 
labeled and unlabeled samples and kernel combination for integrating both spec- 
tral and spatial information are two ways to deal with Hughes phenomenon and 
linear of SVM algorithm.  

SVM algorithm is particularly attractive in RS (Remote Sensing) applications. 
The main properties of it can be summarized as follows: 
• The SVM algorithm is designed based on the structural risk minimization 

principle, which results in high classification accuracy and very good genera-
lization capabilities. This property is significant in HIS classification problem 
with high dimensional feature spaces and few training samples. 

• The data is mapped into a high dimensional feature space to solve non-linear 
separable classification problems by the kernel function. Thus, the data is se-
parated with a simple linear function. 

• The optimization problem in the learning processes of the classifier is con-
vex, which is solved by linearly constrained quadratic programming (QP) 
characterized from a unique solution. Thus, the system cannot fall into sub-
optimal solutions associated with local minima. 

• A dual formulation of the convex optimization problem can be represented, 
where only non-zero Lagrange multipliers are necessary for defining the se-
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paration hyper-plane. This is related to the property of sparseness of the so-
lution. 

In attention to the high information volume of hyperspectral images, a pro-
posed hierarchical algorithm based on SVM for processing data without pro- 
cessing the additional information is presented in two stages. In the proposed 
algorithm, clusters including several same classes are introduced. The same 
classes are determined based on the Euclidean distance between the centers of 
class. Due to the lower number of clusters and less similarity between the clus-
ters, a limited number of features for clustering pixels are required. Features are 
selected based on correlation criteria between cluster labels and features. The 
number of clusters and the used features at any stage is determined in prepro-
cessor block. Then, SVM algorithm is applied at each stage and predicted labels 
are presented. The first, the proposed classifiers and preprocessing block ex-
plained. Then, the data sets used in the evaluation process is presented. Finally 
experiment results are shown for evaluating the hierarchical SVM method. 

The proposed method is presented in Section 2. Section 3 shows the result si-
mulation and discuses on effective parameters in determining classification ac-
curacy. Finally, Section 4 concludes the paper. 

2. Material and Method 

In this paper, the proposed algorithm is based on SVM algorithm which ma-
chine learning is supervised. In general, supervised learning stages as follows: 
1) Prepare image: Preprocessing block is responsible the preparation of the data 

for the image classification algorithm. 
2) Select the algorithms: algorithms based on factors speed the process of learn-

ing, memory requirements, new data prediction accuracy and transparency 
of the relationship between output and input is selected. 

3) Allocate Model 
4) Apply the model to test data (prediction) 

In this thesis, in order to cope with the effects of high information volume of 
images in the classification accuracy, preprocessing block is designed according 
to the data structure. The proposed hierarchical classifier is shown in Figure 1. 
In this design, data set is analyzed by preprocessing block so that the required 
number of classes and features is determined in each stage. Classification accu-
racy depends on the number of classes, training samples and features. Assuming 
a constant number of samples and features, classification accuracy decreases if 
the number of classes will increase. On the other hand, reducing the number of 
training samples leads to degradation in the classification performance. The high 
number of features in HIS and correlation of them, by increasing data redun-
dancy and computational complexity, lead to confusion in classification algo-
rithms result. The high resolution hyperspectral images to enhance discrimina-
tion of the high similarity classes are proposed. The proposed algorithm reduces 
computational complexity by combining similar classes and choosing a limited 
number of features in the first level. In the next step, classes within every cluster 
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are separated. 

Preprocessing Block 

The preprocessor block determines the new clusters and features which the clas-
sifiers require at both levels. The mean pixels in each class are considered as the 
class center. The new clusters include classes which the Euclidean distance is 
minimum. In this block, feature selection method type is filtering. Features rank 
is determined based on the correlation criterion between Features and labels ac-
cording to Equation (1). 

( ) ( )
( ) ( )

cov x ,

var x var
i

i

Y
R i

Y
=                     (1) 

xi  and Y are i-th feature and labels vector respectively. A correlation criterion 
reveals linear dependence between features and labels. On the other hand for the 
aggregation class, the average of each class is intended to represent each class. 
This block is shown in Figure 2. 

3. Discussion and Simulation Results 

As noted earlier, the classification accuracy of HSI remote sensing images de-
pend on the number of classes, features, training data as well as the kernel func-
tion. Overall classification accuracy is reduced by growing the number of classes. 
According to the simulation, overall classification accuracy reaches to 73% when 
applying SVM to IPS image with 16 classes and 100 features. While the overall 
accuracy approaches to 86% by reducing the number of classes and features to 7 
and 50, respectively. Different kernel functions vary the classification accuracy of 
about 20%. According to tradeoff between accuracy and complexity, Gaussian 
kernel function is acceptable. Training data limitation is a most important for 
reducing the classification accuracy. In order to determine the range of changes, 
the simulation was performed with assuming 50 features of IPS data. As shown  

 

 
Figure 1. The proposed hierarchical classifier block. 
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Figure 2. Preprocessing block diagram. 

 

 
Figure 3. Classification accuracy of SVM algorithm versus training data set. 

 
in Figure 3 if training data set is changed from 10% to 75%, the overall accuracy 
increases as much as 10%. 

Another contributing factor in the origin of HIS classification accuracy is the 
number of features. It seems that a rising number of features should increase the 
classifier accuracy. But since the number of training data is limited, the classifi-
cation accuracy does not improve with increasing the number of features in 
practice. SVM algorithm is applied on IPS with assuming the number of differ-
ent features. As shown in Figure 4, classification accuracy versus the number of 
features is not monotonically increasing function. Not only does not increasing 
the number of features of the 170 improve the classification accuracy but also 
classification accuracy is decreased with increasing computational complexity 
and information redundancy. 

3.1. Data Set 

First, we evaluate the performance of proposed method on the Indian Pines data 
set. This data set totally consists of 145 × 145 pixels and 224 spectral bands in the 
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Figure 4. Classification accuracy of SVM algorithm versus the number of feature. 

 
wavelength range 0.4 - 2.5 μm, which contains 16 ground-truth classes corres-
ponding to different plants. Figure 5 illustrates original image and ground-truth 
classes.  

3.2. Results 

In order to evaluate the proposed hierarchical algorithm, the performance of this 
algorithm and SVM algorithm were compared on Indian Pines data. The pro-
posed algorithm steps are given in the Table 1. 

Simulation is done based on SVM algorithm assuming a Gaussian kernel 
function, 100 features and 20% training data set. While proposed hierarchical 
algorithm is applied assuming Gaussian kernel function, 20% training and 50 
(level 1), 30 (level 2) features. Figure 6 and Figure 7 illustrate the overall accu-
racy of the SVM algorithm and proposed hierarchy algorithm, respectively.  

In Table 2, detail the classification accuracy of all mentioned two classifiers 
including the SVM classifiers and the proposed methods on the Indian Pines 
data is shown. 

4. Conclusion 

According to the correlation of classes and features in hyperspectral images, it is 
not needed to all the features for discriminating the classes. In the proposed al-
gorithm, classification is accomplished in both levels so that computational 
complexity reduces and overall accuracy increases. Feature selection is based on 
filter method which decision criteria is correlation between classes and features. 
Thus, the proposed hierarchical SVM algorithm achieves an acceptable accuracy  
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(a) 

 
(b) 

Figure 5. (a) Original image; (b) Ground-truth classes of Indian Pines data set. 
 

Table 1. The proposed algorithm steps. 

Steps  

1 Normalization of feature matrix 

2 Calculating the center of classes 

3 Calculating the Euclidean distance of the classes center 

4 Integrating the same classes 

5 Calculating correlation between the new classes in both levels 

6 Feature selection in both levels 

7 Apply SVM Algorithm to the classes of the level 1 

8 Apply SVM Algorithm to the classes of the level 2 

9 Final decision 

10 end 
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Figure 6. Classification map with SVM algorithm. 
 

 
Figure 7. Classification map with proposed hierarchical SVM algorithm. 
 

Table 2. Classification Accuracy on IPS for Hierarchical SVM and SVM. 

Method Hierarchical SVM SVM (16) 

Class Name Level 1 Level 2 Total  

“Oats” 0.99 0.38 0.376 0 

“Grass/pasture-mowed” 0.94 1 0.94 0.24 

“Alfalfa” 0.94 0.7 0.66 0.39 

“Stone-steel towers” 0.97  0.97 0.53 

“Wheat” 0.99 0.95 0.94 0.7 
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Continued 

“Corn” 0.32  0.32 0.4 

“Bldg-Grass-Tree-Drives” 0.99 0.87 0.86 0.76 

“Hay-windrowed” 0.94 0.98 0.92 0.91 

“Grass/Pasture” 0.88 0.94 0.83 0.8 

“Soybean-clean” 0.94 0.62 0.58 0.74 

“Grass/Trees” 0.99 0.97 0.96 0.88 

“Corn-min” 0.94 0.7 0.66 0.54 

“Soybeans-notill” 0.94 0.7 0.66 0.73 

“Woods” 0.88 0.98 0.86 0.8 

“Corn-notill” 0.52  0.52 0.7 

“Soybeans-min” 0.94 0.85 0.8 0.76 

OA   0.8 0.73 

 
with the number of fewer features. The simulation results also show an increase 
about 7% in the accuracy of the proposed method rather than SVM algorithm. 
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