On the Structure of Infinitesimal Automorphisms of the Poisson-Lie Group $SU(2,\mathbb{R})$

Bousselham Ganbouri

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Email: g.busslem@gmail.com

Received 6 January 2014; revised 6 February 2014; accepted 15 February 2014

Abstract

We study the Poisson-Lie structures on the group $SU(2,\mathbb{R})$. We calculate all Poisson-Lie structures on $SU(2,\mathbb{R})$ through the correspondence with Lie bialgebra structures on its Lie algebra $su(2,\mathbb{R})$. We show that all these structures are linearizable in the neighborhood of the unity of the group $SU(2,\mathbb{R})$. Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.

Keywords

Poisson-Lie Structure, Lie Bialgebra, Hamiltonian, Poisson Automorphism, Linearization

1. Introduction

Let G be a Lie group. A Poisson-Lie structure on G is a Poisson structure on G for which the group multiplication is a Poisson map. Then as is usual in [1]-[3], this is equal to giving an antisymmetric contravariant 2-tensor π on G which satisfies Jacobi identity and the relation

$$\pi(xy) = l_x \pi(y) + r_y \pi(x), \quad \forall x, y \in G,$$

where l_x and r_y respectively denote the left and right translations in G by x and y. We note that a Poisson-Lie structure π has rank zero at a neutral element e of G, i.e., $\pi(e) = 0$.

If we choose local coordinates (x_1, x_2, \cdots, x_n) in a neighborhood U of neutral element e of G, the Poisson-Lie structure π reads

\[\pi(x) = \sum \pi_{ij}(x) \partial_i \wedge \partial_j, \quad x \in U, \] (2)

where \(\pi_{ij} \) are smooth functions vanishing at \(e \) and

\[\{x_i, x_j\}(x) = \pi_{ij}(x), \quad x \in U, \] (3)

where \(\{,\} \) is the Poisson bracket associated to \(\pi \). By this Poisson bracket, \(C^\infty(G) \) becomes a Lie algebra.

Let \(\mathcal{G} \) be a Lie algebra of \(G \). The derivative of \(\pi \) at \(e \) defines a skew-symmetric co-commutator map \(\delta : \mathcal{G} \to \mathcal{G} \wedge \mathcal{G} \) such that:

1) The map \(\delta \) is a 1-cocycle, i.e.,

\[\delta([X,Y]) = ad_x \delta(Y) - ad_y \delta(X), \quad \forall X,Y \in \mathcal{G}. \] (4)

2) The dual map \(\delta^* : \mathcal{G}^* \wedge \mathcal{G}^* \to \mathcal{G}^* \) is a Lie bracket on \(\mathcal{G}^* \).

The bialgebra structure \(\delta \) is called a coboundary one when there exists a skew-symmetric element \(r \) of \(\mathcal{G} \wedge \mathcal{G} \) (the classical r-matrix) such that

\[\delta(S) = ad_s r, \quad \forall S \in \mathcal{G}. \] (5)

Both properties 1) and 2) imply that the element \(r \) has to be a constant solution of the modified classical Yang-Baxter equation (mCYBE) [4]-[6]:

\[ad_s [r,r] = 0, \quad S \in \mathcal{G}. \] (6)

Therefore, a constant solution of mCYBE \(r \) on a given Lie algebra \(\mathcal{G} \) provide a coboundary Poisson-Lie structure \(\pi \) on (connected and simply connected) group \(G \) given by

\[\pi(s) = r_s - l_s r, \quad \forall s \in G, \] (7)

where \(l_s \) and \(r_s \) denote respectively the left and right translations in \(G \) by \(s \).

Finally, recall that for semisimple Lie algebras, all Lie bialgebra structures are coboundaries, and the corresponding Poisson-Lie structures can be fully solved through the classical r-matrices.

In this work, We shall treat the case of the Poisson-Lie group \(SU(2,\mathbb{R}) \). We will calculate, firstly, all Poisson-Lie structures through the correspondence with Lie bialgebra; secondly, we will show that these Poisson-Lie structures are linearizable in a neighborhood of the unity \(e \) of the group \(SU(2,\mathbb{R}) \) and, finally, we shall study infinitesimal automorphism of \(SU(2,\mathbb{R}) \) with a linear Poisson-Lie structure, and show that the Lie algebra \(A \), consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra \(\mathfrak{h} \) consisting of Hamiltonian vector fields.

2. The Group \(SU(2,\mathbb{R}) \) and Lie Algebra \(su(2,\mathbb{R}) \)

The special unitary group \(SU(2,\mathbb{R}) \) is defined by

\[SU(2,\mathbb{R}) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, \alpha \bar{\alpha} + \beta \bar{\beta} = 1 \right\}. \]

Let \(\alpha = x + iy \) and \(\beta = z + it \). \(SU(2,\mathbb{R}) \) can be identified with the unit sphere \(\mathbb{S}^3 \) in \(\mathbb{R}^4 \) with the unity \(e = (1,0,0,0) \).

The Lie algebra \(su(2,\mathbb{R}) \) of group \(SU(2,\mathbb{R}) \) is defined by

\[su(2,\mathbb{R}) = \left\{ S \in \mathbb{C}^{2 \times 2} : \bar{S} + S = 0 \text{ and } Tr(S) = 0 \right\}. \]

Let

\[e_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} ; \quad e_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} ; \quad e_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}. \]
a basis of \(su(2, \mathbb{R}) \). The Lie bracket on \(su(2, \mathbb{R}) \) is defined by
\[
\begin{align*}
[e_1, e_1] &= 2e_1; \\
[e_1, e_2] &= -2e_2; \\
[e_2, e_1] &= 2e_2.
\end{align*}
\]

Through a straightforward computation, the left invariant fields associated to this basis had this local expression
\[
\begin{align*}
X &= -y \partial_y + x \partial_x + t \partial_z - z \partial_t, \\
Y &= -z \partial_z - t \partial_y + x \partial_z + y \partial_t, \\
Z &= -t \partial_t + z \partial_z - y \partial_x + x \partial_t.
\end{align*}
\]

3. The Lie Bialgebra Structure on \(su(2, \mathbb{R}) \) and the Poisson Lie Structure on \(SU(2, \mathbb{R}) \)

3.1. Lie Bialgebra Structures on \(su(2, \mathbb{R}) \)
Recall that the Lie algebra \(su(2, \mathbb{R}) \) is semisimple. Then, all Lie bialgebra structures on \(su(2, \mathbb{R}) \) are co-boundaries, there exists an skew symmetric element \(r \) of \(su(2, \mathbb{R}) \) such that the cocommutator \(\delta \) is given by
\[
\delta(S) = ad_r, \quad \forall S \in su(2, \mathbb{R}).
\]

We stress that the element \(r \) satisfies the classical Yang-Baxter Equation (CYBE) (6). Through a long but straightforward computation, we show that these solutions are of the form
\[
r = k \cdot e_1 \wedge e_2, \quad k \in \mathbb{R}^*.
\]

So any Lie bialgebra structure of \(su(2, \mathbb{R}) \) can be written as
\[
\begin{align*}
\delta(e_1) &= -2k e_1 \wedge e_2, \\
\delta(e_2) &= 2k e_2 \wedge e_1, \\
\delta(e_3) &= 0.
\end{align*}
\]

3.2. Poisson-Lie Structures on \(SU(2, \mathbb{R}) \)
Since the Lie bialgebra structures \(\delta \) on \(su(2, \mathbb{R}) \) are coboundaries, the Poisson-Lie structures on \(SU(2, \mathbb{R}) \) corresponding to \(\delta \) are given by
\[
\pi(s) = r_s - l_s r, \quad \forall s \in SU(2, \mathbb{R}),
\]
where \(r \) is the solution of Yang-Baxter equation given by (8) and \(r_s \) and \(l_s \) respectively denote the right and left translations in \(SU(2, \mathbb{R}) \) by \(s \). Then, using \(\alpha = x + iy, \quad \beta = z + it \) and \(x^2 + y^2 + z^2 + t^2 = 1 \), one gets
\[
\pi(x, y, z, t) = 2k(zx - yt)Y \wedge Z - 2k(xy + zt)Z \wedge X + 2k(y^2 + z^2)X \wedge Y.
\]

Let
\[
\begin{align*}
\pi_1 &= 2k(zx - yt); \\
\pi_2 &= -2k(xy + zt); \\
\pi_3 &= 2k(y^2 + z^2),
\end{align*}
\]
be the components of \(\pi \) in the basis \((Y \wedge X, Z \wedge X, X \wedge Y) \) of the bivector field.

4. Linearization of Poisson-Lie Structures on \(SU(2, \mathbb{R}) \)
By taking back the formula (2), The Taylor series of the functions \(\pi_{ij} \) reads
\[
\pi_{ij}^k(x) = c^k_{ij} x^k + \theta^k_i (x) x^i,
\]
where \(c^k_{ij} = \frac{\partial \pi_{ij}}{\partial x^k}(e) \) are the structure constants of a Lie algebra \(\mathcal{G} \), dual of a Lie algebra \(\mathcal{G}^* \), and the \(\theta^k_i \) are smooth functions vanishing at \(e \).

The term \(c^k_{ij} x^k \) of (12) defines a linear Poisson structure, called the linear part of \(\pi \). The linearization
problem for a structure π around e is the following [7] [8]:

Linearization problem. Are there new coordinates where the functions θ^i_j vanish identically, so that the Poisson structure is linear in these coordinates?

Let us notice that the Lie bialgebra structure δ associated to π defines a linear Poisson-Lie structure on the additive group $G \ (G = \mathbb{R}^n)$ that can be expressed as follows

$$\delta(a) = \sum_i c^i_j a_i \partial_i \wedge \partial_j, \quad a = (a_1, \cdots, a_n) \in \mathbb{R}^n,$$

where $(\partial_1, \cdots, \partial_n)$ is the canonical basis of \mathbb{R}^n.

Let us notice that (13) coincides with the linear part of π, so, the linearization problem would be the following:

There is a local Poisson diffeomorphism $G \rightarrow G$ of a neighborhood in e of G to a neighborhood of 0 in G?

If (ϕ_1, \cdots, ϕ_n) are the components of φ, then φ is solution of the system of equations

$$\{ \varphi_i, \varphi_j \} = \sum c^i_j \varphi_k, \quad 1 \leq i < j \leq n.$$

(14)

For the Poisson-Lie structure on $SU(2, \mathbb{R})$ given by (10), the system of equations (14) would be

$$\{ \varphi_1, \varphi_2 \} = 0, \quad \{ \varphi_2, \varphi_3 \} = 2k \varphi_2, \quad \{ \varphi_3, \varphi_1 \} = -2k \varphi_1.$$

(15)

With the identification of the subgroups of the singular points and the symplectic leaves of $SU(2, \mathbb{R})$ and $\text{SU}(2, \mathbb{R})$, we have:

Proposition 1. The map $\varphi = (\varphi_1, \varphi_2, \varphi_3) : (x, y, z, t) = \left(y, z, \text{Arctan} \frac{t}{x} \right)$ is a diffeomorphism in the neighborhood of $e = (1, 0, 0, 0)$ such that $\varphi(e) = 0$ and

$$\{ \varphi_1, \varphi_2 \} = 0, \quad \{ \varphi_2, \varphi_3 \} = 2k \varphi_2, \quad \{ \varphi_3, \varphi_1 \} = -2k \varphi_1.$$

(16)

So, the Poisson-Lie structure π on $SU(2, \mathbb{R})$ is linear in the new variables

$$u = y; \quad v = z; \quad w = \text{Arctan} \frac{t}{x}.$$

(17)

and will be written

$$\pi(u, v, w) = 2kv \cdot \partial_v \wedge \partial_w - 2ku \cdot \partial_u \wedge \partial_w.$$

(18)

5. Casimir Functions and Infinitesimal Automorphisms on $SU(2, \mathbb{R})$

Recall that for $f \in C^\infty(SU(2, \mathbb{R}))$, $\{ f, \cdot \}$ defines a derivation of $C^\infty(SU(2, \mathbb{R}))$. Hence there corresponds a vector field χ_f, which we call the Hamiltonian vector field. We denote by \mathcal{H} the Lie algebra of Hamiltonian vector fields.

A Casimir function on $SU(2, \mathbb{R})$ is a function C such that $\{ C, f \} = 0$ for all function f. On the other words, C is an element of the center of the Lie algebra $C^\infty(SU(2, \mathbb{R}))$. By simple consideration, we know that for each Casimir function C there exists a function ϕ of one variable such that $C(u, v, w) = \phi \left(\frac{u}{v} \right)$.

Each symplectic leaf is the common level manifold of casimir functions. So, these have for equation:

$$\lambda u + \mu v = 0 \quad (\lambda, \mu \in \mathbb{R}; (\lambda, \mu \neq (0, 0)),$$

and hence are spheres.

By an automorphism of $SU(2, \mathbb{R})$, we mean a smooth vector field ξ on $SU(2, \mathbb{R})$ such that

$$\mathcal{L}_\xi \pi = 0,$$

(19)

where \mathcal{L}_ξ denotes the Lie derivative along ξ.
If we denote by \(\mathcal{A} \) the Lie algebra consisting of all infinitesimal automorphism, it is easy to see that \(\mathcal{H} \) is an ideal of \(\mathcal{A} \). Let \(\xi = f \partial_u + g \partial_v + h \partial_w \) be a vector field of \(\mathcal{A} \). Then three function \(f, g \) and \(h \) must satisfy:

\[
\begin{align*}
 f &= u \partial_u f + v \partial_v f + u \partial_u h; \\
 g &= u \partial_u g + v \partial_v g + v \partial_v h; \\
 v \partial_v f &= u \partial_u g.
\end{align*}
\]

(20)

Now we shall clarify the gap between \(\mathcal{H} \) and \(\mathcal{A} \).

We consider the vector field

\[
\mathcal{U} = \pi_1 [Y, Z] + \pi_2 [Z, X] + \pi_3 [X, Y],
\]

(21)

where \((\pi_1/\pi_2/\pi_3) \) are the components of the structure \(\pi \) in the basis \((Y \wedge Z, Z \wedge X, X \wedge Y) \) given by (11). In the local coordinates \((u, v, w) \) given by (14), this vector field reads

\[
\mathcal{U} = -4kv \partial_u + 4ku \partial_v.
\]

(22)

A simple check shows that the components of \(\mathcal{U} \) satisfy the relations (20). So, the vector field \(\mathcal{U} \) belongs to \(\mathcal{A} \). In other hand, \(\mathcal{U} \) is locally Hamiltonian if and only if there exist a smooth function \(F \) in a neighborhood of the unity \(e \) of the group \(SU(2, \mathbb{R}) \) such that \(\mathcal{U} = \chi_F \), this is translated by the fact that \(F \) is a solution of the following system of equations

\[
\begin{align*}
 u \partial_u &= -v, \\
 v \partial_v &= u \\
 u \partial_u + v \partial_v &= 0.
\end{align*}
\]

(23)

It is easy to see that (23) does not admit solutions. Hence \(\mathcal{U} \) does not belong \(\mathcal{H} \). Thus we have proved:

Proposition 2. The ideal \(\mathcal{H} \) is strictly contained in the Lie algebra \(\mathcal{A} \).

In terms of Poisson cohomology [9], recall that the first Poisson cohomology group \(H^1_\pi(SU(2, \mathbb{R})) \) is the quotient of the Lie algebra \(\mathcal{A} \) by its ideal \(\mathcal{H} \). Then, by Proposition 2, we show that the vector field \(\mathcal{U} \) defines a non trivial class \([\mathcal{U}] \in H^1_\pi(SU(2, \mathbb{R})) \). On the other hand, this result shows that the classical result due to Conn [10] [11] stating that for a Poisson structure formally linearizable around a singular point any local Poisson automorphism is Hamiltonian, and not just in the \(C^\infty \) category.

References

