The p.q.-Baer Property of Skew Group Rings under Finite Group Action*

Bo Li, Hailan Jin

Department of Mathematics, College of Sciences, Yanbian University, Yanji, China
Email: #hljin98@ybu.edu.cn, hljin98@hanmail.net

Received October 14, 2013; revised November 14, 2013; accepted November 20, 2013

Copyright © 2013 Bo Li, Hailan Jin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, Let R is a ring, G be a finite group of ring automorphisms of R. R^*G denote the skew group ring of R under G. We investigate the right p.q.-Baer property of skew group rings under finite group action. Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R, then 1) R^*G is p.q.-Baer if and only if R is G-p.q.-Baer; 2) if R is p.q.-Baer, then R^*G is p.q.-Baer.

Keywords: p.q.-Baer Property; Skew Group Ring; Group Action

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise stated. Let R is a ring, for a non-empty subset X of a ring R, $r_X(X)$ (resp., $l_X(X)$) denote a right (resp., left) annihilator of X in R. A ring R is called right principally quasi-Baer (simply, right p.q.-Baer) if the right annihilator of every principal right ideal of R is generated, as a right ideal by an idempotent of R in [1]. A left principally quasi-Baer (simply, left p.q.-Baer) ring is defined similarly. Right p.q.-Baer rings have been initially studied in [1]. For more details on (right) p.q.-Baer rings, see [1-6]. A ring R is called quasi-Baer if the right annihilator of every right ideal is generated, as a right ideal by an idempotent of R in [7] (see also [8]. A ring R is called biregular, if for each $x \in R$, $RxR = eR$ for some central idempotent $e \in R$.

We note that the class of right p.q.-Baer rings is a generalization of classes of quasi-Baer rings and biregular rings. $Q(R)$ denote a fixed maximal right ring of quotients of R. Recall from [9] an idempotent e of a ring R is called left (resp., right) semicentral if $ae = eae$ (resp., $ea = eae$) for all $a \in R$. Equivalently, an idempotent e is left (resp., right) semicentral if and only if eR (resp., Re) is a two-sided ideal of R. $S_X(R)$ (resp., $S^*_X(R)$) denote the set of all left (resp., right) semicentral idempotents. An idempotent e of a ring R is called semicentral reduced if $Su_e(R) = \{0, e\}$. According to [2] a ring R is called semicentral reduced if $S(R) = \{0, 1\}$, i.e., 1 is a semicentral reduced idempotent of R.

If R is a semiprime ring and I is a two-sided ideal of R, then $r^*_R(I) = l^*_R(I)$. For a right R-module M and a submodule N of M, we use M_R^{ess} and M_R^{ess} to denote that N_R is essential in M_R and N_R is dense in M_R, respectively.

Let R is a ring, $Aut(R)$ denote a group of ring automorphisms of R, G be a subgroup of $Aut(R)$.

The skew group ring R^*G is defined to be

$R^*G = \bigoplus_{g \in G} Rg$

with addition given componentwise and multiplication given as follows: if $a, b \in R$ and $g, h \in G$, then

$(ab)(gh) = ab^{e^{-1}}gh \in Rgh$.

We begin with the following example.

2. Preliminary

Example 2.1 There exist a ring R and a finite group G of ring automorphisms of R such that R is right p.q.-Baer but R^*G is not right p.q.-Baer.

Let $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ with a field F of characteristic 2, then R is right p.q.-Baer. Define $g \in Aut(R)$ by

$g \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

*Project supported by the National Natural Science Foundation of China (11361063).
*Corresponding author.
Since characteristic of F is 2, Then $g^2 = 1$.

Now we show that $R \ast G$ is not right p. q.-Baer. Consider the right ideal $(1 + g)(R \ast G)$ of $R \ast G$ generated by $1 + g$. By computation, we have

$$r_{nG}(1 + g)(R \ast G) = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} x & x + y \\ 0 & 0 \end{bmatrix}g, \quad x, y \in F.$$

Suppose that

$$r_{nG}(1 + g)(R \ast G) = e(R \ast G)$$

for some $e = e^2 \in R \ast G$. Note that the idempotents of $R \ast G$ are $0, 1$.

$$\begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}g, \quad \begin{bmatrix} 0 & a \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}g$$

with $a, b \in F$. Since $e = r_{nG}(1 + g)(R \ast G)$, the only possible choice for e is 0. Thus if $R \ast G$ is right p. q.-Baer, then it follows that $r_{nG}(1 + g)(R \ast G) = 0$. This is a contradiction. Therefore $R \ast G$ is not right p. q.-Baer. Also we see that $R \ast G$ is not left p. q.-Baer.

Definition 2.2 Let R be a semiprime ring. For $g \in \text{Aut}(R)$, let

$$\phi_g = \{x \in Q_n(R) | x^g = rx \text{ for each } r \in R \},$$

where $Q_n(R)$ is the Martindale right ring of quotients of R (see [10] for more on $Q_n(R)$). We say that g is X-outer if $\phi_g = 0$. A subgroup of $\text{Aut}(R)$ is called X-outer on R if every $1 \neq g \in G$ is X-outer. Assume that R is a semiprime ring, then for $g \in \text{Aut}(R)$, let

$$\Phi_g = \{x \in Q(R) | x^g = rx \text{ for each } r \in R \}.$$

For $g \in \text{Aut}(R)$, we claim that $\Phi_g = \phi_g$. Obviously $\phi_g \subseteq \Phi_g$. Conversely, if $x \in \Phi_g$ then $x^g = rx$. There exists $I_g \subseteq \text{Rad}_R$ such that $x \in R$. Therefore $RI < R$, $(RI)_g \subseteq \text{Rad}_R$, and $xRI = Rx \subseteq R$. Thus $x \in Q_n(R)$, hence $x \in \phi_g$. Therefore $\Phi_g = \phi_g$. So if G is X-outer on R, then G can be considered as a group of ring automorphisms of $Q(R)$ and G is X-outer on $Q(R)$. For more details for X-outer ring automorphisms of a ring, etc., see [10, p. 396] and [11].

We say that a ring R has no nonzero n-torsion (n is a positive integer) if $na = 0$ with $a \in R$ implies $a = 0$.

Lemma 2.3 Let R be a semiprime ring and G a group of ring automorphisms of R.

1) [11,12] If G is X-outer, then every nonzero two-sided ideal of $R \ast G$ intersects R nontrivially. Hence $R \ast G$ is semiprime.

2) [11] If G is finite and R has no nonzero $|G|$-torsion, then $R \ast G$ is semiprime.

For a ring R, we use $\text{Cen}(R)$ to denote the center of R.

Lemma 2.4 For a semiprime ring R, let G be a group of X-outer ring automorphisms of R. Then $\text{Cen}(R \ast G) = \text{Cen}(R_G)$.

Proof.

Let $\alpha = a_1 + \alpha_2 a_2 + \cdots + a_n g_n \in \text{Cen}(R)$ with $a_i \in R$, g_i the identity of G, and $g_n \in G$. The

$$(a_1 + a_2 a_3 + \cdots + a_g g_n) = b(a_1 + a_2 a_3 + \cdots + a_g g_n)$$

for all $b \in R$. So $ab = ba_1, ab^2 = ba_2, \cdots, ab^{e_n} = ba_n$ for all $b \in R$. Since G is X-outer, it follows that $a_2 = \cdots = a_n = 0$. Hence $\alpha = a_1 \in R$. Also since $ab = ba_1$ for all $b \in R$, we have that $a_1 \in \text{Cen}(R)$. Note that for all $g \in G$, $a_i = g a_i = g a_i \in \text{Cen}(R_G)$. Thus

$$\text{Cen}(R \ast G) \subseteq \text{Cen}(R_G).$$

Conversely, $\text{Cen}(R) \subseteq \text{Cen}(R \ast G)$ is clear. Therefore $\text{Cen}(R \ast G) = \text{Cen}(R_G)$.

Lemma 2.5 [13,14] Let R be a ring and G a finite group of ring automorphisms of R. Then $Q(R) \ast G$ is the maximal right ring of quaternions of R.

Assume that a group G of ring automorphisms of a ring R is finite. Then for $a \in R$, let $tr(a) = \sum_{g \in G} a^g$, which is called the trace of a. Also for a right ideal I of R, the right ideal $tr(I) = \sum_{g \in G} a^g$, of R^G is called the trace of I. Say $G = \{g_1, \cdots, g_n\}$, we put $t = g_1 \cdots g_n \in R^G$. For $r \in R$ and $\alpha = a_1 g_1 + a_2 g_2 + \cdots + a_n g_n \in R^G$ with $a_i \in R$, define $r \cdot \alpha = r^g a_1 g_1 + r^g a_2 g_2 + \cdots + r^g a_n g_n$. Then R is a right R^G-module. Moreover, we see that $\forall^g : R^G \rightarrow R^G$ is an $(R^G, R \ast G)$-bimodule.

Lemma 2.6 Assume that R is a semiprime ring and $e \in B(Q(R))$. Let I be a two-sided ideal of R such that $I_R \leq \text{Ess} eR$ and $r(e) = fR$ with $r \in B(Q(R))$. Then $e = 1 - f$.

Proof. Since R is semiprime,

$I_R \leq \text{Ess} (1 - f)Q(R)_R$.

Thus

$I_R \leq \text{Ess} (1 - f)Q(R)_R$.

As $I_R \leq \text{Ess} eR$ and $I_R \leq \text{Ess} Q(R)_R$. We note that e and $1 - f$ are in $B(Q(R))$. So we have that $e = 1 - f$.

Proposition 2.7 [1] Let R be a semiprime ring. Then the following are equivalent.

1) R is right p. q.-Baer.

2) Every principal two-sided ideal of R is right essential in a ring direct summand of R.

Open Access
3) Every finitely generated two-sided ideal of R is right essential in a ring direct summand of R.
4) Every principal two-sided ideal of R that is closed as a right ideal is a direct summand of R.
5) For every principal two-sided ideal I of R, $r_e(I)$ is right essential in a direct summand of R.
6) R is left p.q.-Baer.

For a ring R with a group G of ring automorphisms of R, we say that a right ideal I of R is G-invariant if $I^g \subseteq I$ for every $g \in G$, where $I^g = \{ag | a \in I\}$. Assume that R is a semiprime ring with a group G of ring automorphisms of R. We say that R is G-p.q.-Baer if the right annihilator of every finitely generated G-invariant two-sided ideal is generated by an idempotent, as a right ideal.

As was shown in [15], a ring R is p.q.-Baer if and only if R is G-p.q.-Baer.

Lemma 2.8 [15] Assume that R is a semiprime ring. Then:
1) The ring $\hat{Q}_{p.q.}(R)$ is the smallest right ring of quotients of R which is p.q.-Baer.
2) R is p.q.-Baer if and only if $B_p(Q(R)) \subseteq R$.

With these preparations, in spite of Example 2.1, we have the following result for p.q.-Baer property of $R\ast G$ on a semiprime ring R for the case when G is finite and X-outer.

3. Main Results

Theorem 3.1 Let R be a semiprime ring with a finite group G of X-outer ring automorphisms of R. Then $R\ast G$ is p.q.-Baer if and only if R is G-p.q.-Baer.

Proof. Assume that $R\ast G$ is p.q.-Baer. Say
$I = Ra_1R + \cdots + Ra_nR$
is a finitely generated G-invariant two-sided ideal of R with $a_i \in R$. Then $I \ast G$ is a two-sided ideal of $R \ast G$.
Moreover,
$I \ast G = (R \ast G)a_1(R \ast G) + \cdots + (R \ast G)a_n(R \ast G)$.

Note that $R \ast G$ is semiprime by Lemma 2.3, So Proposition 2.7 yields that there exists $e \in S_i(R \ast G)$ such that
$(I \ast G)_{R \ast G} \subseteq e (R \ast G)_{R \ast G}$.

Since $R \ast G$ is semiprime, $e \in B(R \ast G)$ by [9]. Hence by Lemma 2.4, $e \in Cen(R \ast G)$. First, we see that $I_g \subseteq eR_g$. For this, let $0 \neq er \in eR$ with $r \in R$. As $(I \ast G)_{R \ast G} \subseteq e(R \ast G)_{R \ast G}$, there exists $\beta \in R \ast G$ such that $0 \neq er \beta \in I \ast G$.

Say $\beta = b_1g_1 + \cdots + b_ng_n$ with $b_i \in R$ and $g_i \in G$ for $i = 1, \cdots, n$. Then
$er\beta = (erb_1)g_1 + \cdots + (erb_n)g_n \in I \ast G$.

Hence $0 \neq erb_j \in I$ for some j, so $I_g \subseteq eR_g$. As $e = e^2 \in Cen(R \ast G)$, $I \subseteq eR$, and so $I_{eR} \subseteq eR_{eR}$.

Now we show that $r_{\alpha}(I) = (1 - e)R$. If $e = 0$, then $r_{\alpha}(I) = \emptyset$. So we may assume that $e \neq 0$. Note that eR is semiprime and $I_{eR} \subseteq eR_{eR}$, and so $r_{eR}(I) = 0$.

Hence
$eR \cap r_{\alpha}(I) = eR \cap (1 - e)R = 0$.

As $I \subseteq eR$, $(1 - e)R \subseteq r_{\alpha}(I)$. From the modular law,
$r_{\alpha}(I) = (1 - e)R \oplus (eR \cap r_{\alpha}(I))$.

But since $eR \cap r_{\alpha}(I) = 0$, $r_{\alpha}(I) = (1 - e)R$. Therefore R is G-p.q.-Baer.

Conversely, let R be G-p.q.-Baer. Take
$e \in B_p(Q(R) \ast G)$.

Then
$e \in \left[Cen(Q(R))\right]^G$

by Lemma 2.4 since G is also X-outer on $Q(R)$ as was noted. Also there exists $\alpha \in R \ast G$ such that
$(R \ast G)\alpha (R \ast G)_{R \ast G} \subseteq e(R \ast G)_{R \ast G}$
because $Q(R) \ast G$ is the maximal right ring of quotients of $R \ast G$ (Lemma 2.5) and $e \in B_p(Q(R) \ast G)$. Say
$\alpha = a_1g_1 + a_2g_2 + \cdots + a_ng_n$ with $a_i \in R$ and $g_i \in G$ for $i = 1, 2, \cdots, n$. Then $\alpha \in e(R \ast G)(eR) \ast G$ and so $a_i \in eR$
for each $i = 1, 2, \cdots, n$. Consider $K = \sum_{i=1}^n Ra_iR$. Then K is a finitely generated G-invariant two-sided ideal of R.

Further, $K \subseteq eR$ because $e \in \left[Cen(Q(R))\right]^G$. By the preceding argument, we see that $K_{eR} \subseteq eR_{eR}$. From the assumption, there exists $f \in S_i(R) = B(R)$ such that
$r_{\alpha}(K) = fR$. Thus $e = 1 - f \in eR$ by Lemma 2.6. Therefore $eR \subseteq R \ast G$, so $B_p(Q(R) \ast G) \subseteq R \ast G$.

Open Access APM
Lemma 2.8, R^*G is p.q.-Baer.

Corollary 3.2 Let R be a semiprime ring with a finite group G of X-outer ring automorphisms of R. If R is p.q.-Baer, then R^*G is p.q.-Baer.

Proof. The proof follows immediately by Theorem 3.1.

4. Conclusion

In [16] researched quasi-Baer property of skew group rings under finite group actions on a semiprime ring and their applications to C^*-algebras (see also [17,18]). In this paper, we investigate the right p.q.-Baer property of skew group rings under finite group action. Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R, then 1) R^*G is p.q.-Baer if and only if R is G-p.q.-Baer; 2) if R is p.q.-Baer, then R^*G is p.q.-Baer.

REFERENCES

