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ABSTRACT 

Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse 
transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to 
partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial 
differential equations of higher order with real and complex coefficients and with variable coefficients with or without 
boundary conditions are considered. 
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1. Introduction 

The Laplace transform over the complex field is already 
classical and plays very important role in mathematics 
including complex analysis and differential equations [1- 
3]. The classical Laplace transform is used frequently for 
ordinary differential equations and also for partial dif- 
ferential equations sufficiently simple to be resolved, for 
example, of two variables. But it meets substantial dif- 
ficulties or does not work for general partial differential 
equations even with constant coefficients especially for 
that of hyperbolic type.  

To overcome these drawbacks of the classical Laplace 
transform in the present paper more general noncom- 
mutative multiparameter transforms over Cayley-Dick- 
son algebras are investigated. In the preceding paper a 
noncommutative analog of the classical Laplace trans- 
form over the Cayley-Dickson algebras was defined and 
investigated [4]. This paper is devoted to its generali- 
zations for several real parameters and also variables in 
the Cayley-Dickson algebras. For this the preceding re- 
sults of the author on holomorphic, that is (super) dif- 
ferentiable functions, and meromorphic functions of the 
Cayley-Dickson numbers are used [5,6]. The super-dif- 
ferentiability of functions of Cayley-Dickson variables is 
stronger than the Fréchet's differentiability. In those works 
also a noncommutative line integration was investigated. 

We remind that quaternions and operations over them 
had been first defined and investigated by W. R. Ha- 
milton in 1843 [7]. Several years later on Cayley and  

Dickson had introduced generalizations of quaternions 
known now as the Cayley-Dickson algebras [8-11]. These 
algebras, especially quaternions and octonions, have found 
applications in physics. They were used by Maxwell, 
Yang and Mills while derivation of their equations, which 
they then have rewritten in the real form because of the 
insufficient development of mathematical analysis over 
such algebras in their time [12-14]. This is important, 
because noncommutative gauge fields are widely used in 
theoretical physics [15].  

Each Cayley-Dickson algebra rA  over the real field  

R  has 2r  generators  0 1 2 1
, , , ri i i


  such that 0 = 1i ,  

2 = 1ji   for each =1,2, ,2 1rj  , =j k k ji i i i  for every 
1 2 1rk j    , where 1r  . The algebra 1rA   is 
formed from the preceding algebra rA  with the help of 
the so-called doubling procedure by generator 

2ri . In par- 
ticular, 1 =A C  coincides with the field of complex 
numbers, 2 =A H  is the skew field of quaternions, 3A  
is the algebra of octonions, 4A  is the algebra of seden- 
ions. This means that a sequence of embeddings  

1r rA A      exists.  
Generators of the Cayley-Dickson algebras have a 

natural physical meaning as generating operators of 
fermions. The skew field of quaternions is associative, 
and the algebra of octonions is alternative. The Cayley- 
Dickson algebra rA  is power associative, that is,  

=n m n mz z z  for each ,n m N  and rz A . It is non- 
associative and non-alternative for each 4r  . A 
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conjugation * =z z  of Cayley-Dickson numbers  

rz A  is associated with the norm 
2 * *= =z zz z z . 

The octonion algebra has the multiplicative norm and is 
the division algebra. Cayley-Dickson algebras rA  with 

4r   are not division algebras and have not multi- 
plicative norms. The conjugate of any Cayley-Dickson 
number z  is given by the formula:  

(M1) * *:=z l  .  

The multiplication in 1rA   is defined by the fol- 
lowing equation:  

(M2)       =l l l               

for each  ,  ,  , rA  , 1:= rz l A    ,  

1:= rl A     .  
At the beginning of this article a multiparameter non- 

commutative transform is defined. Then new types of the 
direct and inverse noncommutative multiparameter trans- 
forms over the general Cayley-Dickson algebras are in- 
vestigated, particularly, also over the quaternion skew 
field and the algebra of octonions. The transforms are 
considered in rA  spherical and rA  Cartesian coordi- 
nates. At the same time specific features of the noncom- 
mutative multiparameter transforms are elucidated, for 
example, related with the fact that in the Cayley-Dickson 
algebra rA  there are 2 1r   imaginary generators  

 1 2 1
, , ri i


  apart from one in the field of complex num-  

bers such that the imaginary space in rA  has the di- 
mension 2 1r  . Theorems about properties of images 
and originals in conjunction with the operations of linear 
combinations, differentiation, integration, shift and ho- 
mothety are proved. An extension of the noncommuta- 
tive multiparameter transforms for generalized functions is 
given. Formulas for noncommutative transforms of pro- 
ducts and convolutions of functions are deduced.  

Thus this solves the problem of non-commutative ma- 
thematical analysis to develop the multiparameter Lap- 
lace transform over the Cayley-Dickson algebras. More- 
over, an application of the noncommutative integral trans- 
forms for solutions of partial differential equations is 
described. It can serve as an effective means (tool) to 
solve partial differential equations with real or complex 
coefficients with or without boundary conditions and 
their systems of different types (see also [16]). An algo- 
rithm is described which permits to write fundamental 
solutions and functions of Green’s type. A moving bound- 
ary problem and partial differential equations with dis- 
continuous coefficients are also studied with the use of 
the noncommutative transform.  

Frequently, references within the same subsection are 
given without number of the subsection, apart from 
references when subsection are different.  

All results of this paper are obtained for the first time. 

2. Multidimensional Noncommutative  
Integral Transforms 

2.1. Definitions Transforms in Ar Cartesian  
Coordinates 

Denote by rA  the Cayley-Dickson algebra, 0 r , which 
may be, in particular, 2=H A  the quaternion skew field 
or 3=O A  the octonion algebra. For unification of the 
notation we put 0 =A R , 1 =A C . A function  

: n
rf R A  we call a function-original, where 2 r , 

n N , if it fulfills the following conditions (1-5).  
1) The function  f t  is almost everywhere conti- 

nuous on nR  relative to the Lebesgue measure n  on 
nR .  
2) On each finite interval in R  each function  
   1= , ,j j ng t f t t  by jt  with marked all other va- 

riables may have only a finite number of points of dis- 
continuity of the first kind, where  1= , , n

nt t t R , 

jt R , = 1, ,j n . Recall that a point 0u R  is called 
a point of discontinuity of the first type, if there exist 
finite left and right limits  

   , < 00 0
=: 0limu u u u rg u g u A    and  

   , > 00 0
=: 0limu u u u rg u g u A   .  

3) Every partial function    1= , ,j j ng t f t t  satis- 
fies the Hölder condition:  

    j
j j j j j j jg t h g t A h


    for each <jh  ,  

where 0 < 1j  , = > 0jA const , > 0j  are  
constants for a given  1= , , n

nt t t R , = 1, ,j n , 
everywhere on nR  may be besides points of discon- 
tinuity of the first type.  

4) The function  f t  increases not faster, than the 
exponential function, that is there exist constants  

= > 0vC const ,  1= , , nv v v , 1 1,a a R  , where 
 1,1jv    for every = 1, ,j n , such that   

    < exp ,v vf t C q t  for each nt R  with 0j jt v   

for each = 1, ,j n ,  1 1
= , ,v v n vn

q v a v a ; where  

5)   =1
, :=

n

j jj
x y x y  denotes the standard scalar pro- 

duct in nR .  
Certainly for a bounded original f  it is possible to 

take 1 1= = 0a a .  
Each Cayley-Dickson number rp A  we write in the 

form  
6) 

2 1

=0
=

r

j jj
p p i

 , where  0 1 2 1
, , , ri i i


  is the stand- 

ard basis of generators of rA  so that 0 = 1i , 2 = 1ji   
and 0 0= =j j ji i i i i  for each > 0j , =j k k ji i i i  for each 

> 0j  and > 0k  with k j , jp R  for each j . If 
there exists an integral  

7)       ,:= ; := dp tn n
nR

F p F p f t e t  
 ,  

then  nF p  is called the noncommutative multipara- 
meter (Laplace) transform at a point rp A  of the func- 
tion-original  f t , where  
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0 1 1 2 1 2 1
= r r ri i A   

 
     is the parameter of an 

initial phase, j R   for each = 0,1, , 2 1rj  ,  

rA  , = 2 1rn  ,  d = dnt t ,  

8)    2 1

0 1 =12 1
, = r

r

j j jj
p t p t t p t i




   ,  

we also put  

8.1)   , ; = ,u p t p t  .  

For vectors , nv w R  we shall consider a partial 
ordering  

9) v w  if and only if j jv w  for each  
= 1, ,j n  and a k  exists so that <k kv w ,  

1 k n  . 

2.2. Transforms in Ar Spherical Coordinates 

Now we consider also the non-linear function  
 = , ;u u p t   taking into account non commutativity of 

the Cayley-Dickson algebra rA . Put  
1)      0 1 0, := , ; := ,u p t u p t p s M p t   , where  

2)              1 1 1 1 2 2 2 2 2 2 2 3 3 3 2 2 22 2
, = , ; = cos sin cos sinrM p t M p t p s i p s i p s p s i p s     


           

         2 2 22 2 2 2 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 1 2 1
sin cos sin sin sinr r r r r r r r r r r r rp s p s i p s p s p s    

            
        

 
for the general Cayley-Dickson algebra with 2 <r  .  

2.1)  : ; :j j j ns s n t t t     for each = 1, ,j n , 
= 2 1rn  , so that 1 1= ns t t  , =n ns t . More ge- 

nerally, let  
3)      0 1 0, = , ; = ,u p t u p t p s w p t   , where  
 ,w p t  is a locally analytic function,   , = 0Re w p t  

for each rp A  and 2 1r
t R  ,    := 2Re z z z  ,  

*=z z  denotes the conjugated number for rz A . Then 
the more general non-commutative multiparameter trans- 
form over rA  is defined by the formula:  

4)       ; := exp , ; dn
nu R

F p f t u p t t    

for each Cayley-Dickson numbers rp A  whenever 
this integral exists as the principal value of either Rie- 
mann or Lebesgue integral, = 2 1rn  . This non-com- 
mutative multiparameter transform is in rA  spherical 
coordinates, when  , ;u p t   is given by Formulas 
(1,2).  

At the same time the components jp  of the number 
p  and j  for   in  , ;u p t   we write in the p - 

and  -representations respectively such that  

5)     1 2 1 *
=1

= 2 2 2
r

r
j j j k kk

h hi i h i hi
       

 
   

for each = 1, 2, , 2 1rj  ,  

6)     1 2 1 *
0 =1

= 2 2 2
r

r
k kk

h h h i hi
      

 
 ,  

where 2 r N  , 0 0 2 1 2 1
= r r rh h i h i A

 
   , jh R  

for each j , * = =k k ki i i  for each > 0k , 0 = 1i ,  

rh A . Denote  ;n
uF p   in more details by  

 , ; ;nF f u p  .  
Henceforth, the functions  , ;u p t   given by 1(8,8.1) 

or (1,2,2.1) are used, if another form (3) is not specified. 
If for  , ;u p t   concrete formulas are not mentioned, it 
will be undermined, that the function  , ;u p t   is given 
in rA  spherical coordinates by Expressions 1,2,2.1). If 
in Formulas 1(7) or (4) the integral is not by all, but only 
by (1) ( ), ,j j kt t  variables, where 1 <k n ,  

   1 1 < <j j k n  , then we denote a noncom- 
mutative transform by  ; , ,(1) ( ) ;

k t tj j k
uF p 


 or  

 ; , ,(1) ( ) , ; ;
k t tj j kF f u p 


. If  1 = 1,j ···, ( ) =j k k , then 

we denote it shortly by  ;k
uF p   or  , ; ;kF f u p  . 

Henceforth, we take = 0m  and = 0mt  and = 0mp  
for each     1 1 , ,m j j k    if something other is 
not specified. 

2.3. Remark 

The spherical rA  coordinates appear naturally from the 
following consideration of iterated exponents:  

1)        1 1 1 1 3 2 2 2 1 3 3 3exp exp expi p s i p s i p s        

           1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 2 2 2 3 3 3= exp cos sin cos sin sin .p s i p s i p s p s i p s p s              

 
Consider 

2ri  the generator of the doubling procedure 
of the Cayley-Dickson algebra 1rA   from the Cayley- 
Dickson algebra rA , such that 2 2

=j r r j
i i i


 for each  

= 0, , 2 1rj  . We denote now the function  
 , ;M p t   from Definition 2 over rA  in more details 

by r M . Then by induction we write:  

2)          1 1 1 1 1 12 1 2 1 2 2 2 1 2 2 1 2 1
exp , ; = exp , , , , ;r r r r r r r r rM p t M i p i p t t t s i i        

        

       1 1 1 1 12 1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
exp exp , , , ; ,r r r r r r r r r r r r ri p s M i p i p t t i i            
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where  1= , , nt t t ,   1= 1 = 2 1rn n r   ,  

  = 1 ;j js s n r t  for each  = 1, , 1j n r  , since  

  
     

( 1)

2

1 ; =

= ; 1 ;

m m n r

m r

s n r t t t

s n r t s n r t

  

 


 

for each = 1, , 2 1rm  .  
An image function can be written in the form  

3)    2 1

,=0
; := ;

r
n n

u j u jj
F p i F p  ,  

where a function f  is decomposed in the form  

3.1)    2 1

=0
=

r

j jj
f t i f t

 ,  

: n
jf R R  for each = 0,1, , 2 1rj  ,  , ;n

u jF p   
de-notes the image of the function-original jf .  

If an automorphism of the Cayley-Dickson algebra 

rA  is taken and instead of the standard generators  

 0 2 1
, , ri i


  new generators  0 2 1

, , rN N


  are used,  

this provides also    , ; = , ;NM p t M p t   relative to 
new basic generators, where 2 r N  . In this more 
general case we denote by  ;n

N uF p   an image for an 
original  f t , or in more details we denote it by  

 , ; ;n
N F f u p  .  

Formulas 1(7) and 2(4) define the right multipa- 
rameter transform. Symmetrically is defined a left multi- 
parameter transform. They are related by conjugation and 
up to a sign of basic generators. For real valued originals 
they certainly coincide. Henceforward, only the right 
multiparameter transform is investigated.  

Particularly, if  0 1= , ,0, ,0p p p   and  
 1= ,0, ,0t t  , then the multiparameter non-commu- 

tative Laplace transforms 1(7) and 2(4) reduce to the 
complex case, with parameters 1a , 1a . Thus, the given 
above definitions over quaternions, octonions and gene- 
ral Cayley-Dickson algebras are justified. 

2.4. Theorem 

If an original  f t  satisfies Conditions 1(1-4) and  

1 1<a a , then its image  , ; ;nF f u p   is rA -holo- 
morphic (that is locally analytic) by p  in the domain 

  1 1: < <rz A a Re z a , as well as by rA  , where 
1 r N  , 12 2 1r rn    , the function  , ;u p t   is 
given by 1(8,8.1) or 2(1,2,2.1).  

Proof. At first consider the characteristic functions  
 Uv
t , where   = 1U t  for each t U , while  

  = 0U t  for every \nt R U ,  

 := : 0 = 1, ,n
v j jU t R v t j n     is the domain in the  

Euclidean space nR  for any v  from §  1. Therefore,  

1)  ; :=n
uF p   

        = , , : , , 1,11 1
exp , ; d ,

v v v v v Un n v
f t u p t t   

     

since   = 0n v wU U   for each v w . Each integral  

    exp , ; d
Uv

f t u p t t  is absolutely convergent for  

each rp A  with the real part  1 1< <a Re p a , since 
it is majorized by the converging integral  

2)          1 1 0 110 0
exp , ; d exp d dv v n v n nnUv

f t u p t t C v w a y v w a y y y 
 

             

  1
0

=1

= ,
n

v j v j
j

C e v w a


   

 
where  =w Re p , since   = expze Re z  for each 

rz A  in view of Corollary 3.3 [6]. While an integral, 
produced from the integral (1) differentiating by p  
converges also uniformly:  

3)     exp , ; d
Uv

f t u p t p h t       

      
    

0 1 1 1 1 1 1 1 10 0

1 1 0 11

, , , ,

   exp ... d d

v n n n n n n n n n n n n

v n v n nn

C h v y v y h v y v y h v y v y h v y

v w a y v w a y y y

 

       

     

    


 

 
for each rh A , since each rz A  can be written in 
the form  = expz z M , where 

2
= [0, )z zz R   , 

rM A ,    Re := 2 = 0M M M   in accordance with 
Proposition 3.2 [6]. In view of Equations 2(5,6):  

4)     exp( , ; )d = 0nR
f t u p t t p     and  

5)      exp , ; d = 0nR
f t u p t t     , while  

6)     exp , ; . d
Uv

f t u p t h t       

       1
0

1 1 0 110 0
=1

exp d d =
n

v v n v n n v j vn j
j

h C v w a y v w a y y y h C e v w a
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for each rh A . In view of convergence of integrals 
given above (1-6) the multiparameter non-commutative 
transform  ;n

uF p   is (super)differentiable by p  and 
 , moreover,  ; = 0n

uF p p   and  
 ; = 0n

uF p      in the considered  ,p  -represen- 
tation. In accordance with [5,6] a function  g p  is 
locally analytic by p  in an open domain U  in the 
Cayley-Dickson algebra rA , 2 r , if and only if it is 
(super)differentiable by p , in another words rA -ho- 
lomorphic. Thus,  ;n

uF p   is rA -holomorphic by  

rp A  with  1 1< <a Re p a  and rA   due to Theo- 
rem 2.6 [4].  

Corollary 
Let suppositions of Theorem 4 be satisfied. Then the 
image  , ; ;nF f u p   with  = , ;u u p t   given by 2 
(1,2) has the following periodicity properties:  

1) for each = 1, ,j n  and 2πZ  ;  
2) for each = 1, , 1j n   so that 1 2

0 0=   and  
1 2=j j  , 1 2

1 1= πj j   , 1 2=s s   for each s j  
and 1s j  , while either 1 2=j jp p  and 1 2=l lp p  for 
each l j  with = 2  or 1 2=p p  and  f t  is an 
even function with = 2  by the  =j j ns t t   
variable or an odd function by  =j j ns t t   with 

= 1 ;  
3)    1, ; ; π = , ; ;n nF f u p i F f u p   .  
Proof. In accordance with Theorem 4 the image  
 , ; ;nF f u p   exists for each  

  1 1:= : < <f rp W z A a Re z a   and rA  , where 
1 r . Then from the 2π  periodicity of sine and cosine 
functions the first statement follows. From  

   sin = sin   ,    cos = cos  ,  
   sin π = sin   ,    cos π = cos    we get 

that    1 2cos = cosj j j j j jp s p s    ,  

   
     

1 1
1 1 1

2 2
1 1 1

sin cos

= sin cos

j j j j j j

j j j j j j

p s p s

p s p s

 

 

  

  

 

    
 

and  

   
     

1 1
1 1 1

2 2
1 1 1

sin sin

= sin sin

j j j j j j

j j j j j j

p s p s

p s p s

 

 

  

  

 

    
 

for each nt R . On the other hand, either 1 2=j jp p  
and 1 2=l lp p  for each 1l j   with = 2  or  

1 2=p p  and  

 
   1 1 1 1

1 1 1 1, , , ,

1 , , , , , ,

, ,

j j j j

j j j j

j n

j nf t s s s s t t

f t s s s s t t


  

  



  

  

 

 
  

is an even with = 2  or odd with = 1  function by 
the  =j j ns t t   variable for each  

 1= , , n
nt t t R , where 1=j j jt s s   for  

= 1, ,j n ,  1 1= ; = 0n ns s n t  . From this and For- 
mulas 2(1,2,4) the second and the third statements of this 
corollary follow. 

2.5. Remark 

For a subset U  in rA  we put  

   , ,π := : , = , =s p t v s pv b
U u z U z w v u w s w p


   

for each s p b  , where  

 
, ,\{ , }

:= :=

: = , = = 0, ,

v r s pv b s p

r v s p vv b

t w v A

z A z w v w w w R v b







   




 

where  0 1 2 1
:= , , , rb i i i


  is the family of standard ge-  

nerators of the Cayley-Dickson algebra rA . That is, geo- 
metrically  , ,πs p t U  means the projection on the com- 
plex plane ,s pC  of the intersection U  with the plane 

, ,πs p t t ,  , := : ,s pC as bp a b R  , since  
 * ˆ := \ 1sp b b . Recall that in §  §  2.5-7 [6] for each 

continuous function : rf U A  it was defined the ope- 
rator f̂  by each variable rz A . For the non-com- 
mutative integral transformations consider, for example, 
the left algorithm of calculations of integrals.  

A Hausdorff topological space X  is said to be n - 
connected for 0n   if each continuous map  

: kf S X  from the k -dimensional real unit sphere 
into X  has a continuous extension over 1kR   for each 
k n  (see also [17]). A 1-connected space is also said 
to be simply connected.  

It is supposed further, that a domain U  in rA  has 
the property that U  is  2 1r  -connected;  , ,πs p t U  
is simply connected in C  for each 1= 0,1, ,2rk  , 

2= ks i , 2 1= kp i  , , ,r s pt A  and ,s pu C , for which 
there exists =z u t U  . 

2.6. Theorem 

If a function  f t  is an original (see Definition 1), 
such that  ;n

N uF p   is its image multiparameter non- 
commutative transform, where the functions f  and n

uF  
are written in the forms given by 3(3,3.1),  n

rf R A  
over the Cayley-Dickson algebra rA , where 1 r N  , 

12 2 1r rn    .  
Then at each point t, where  f t  satisfies the Hölder 

condition the equality is accomplished :  

1)           1 1 1
1

1
= 2π 2π ; exp , ; d

N Nn n
n N uN Nn

f t N N F a p u a p t p 
  

   

                    
    

    1
=: ; , , ; ,n n

N uF F a p u t 
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where either   , ; = ,u p t p t   or  
   0 1 0, ; = , ;Nu p t p s M p t     (see §  §  1 and 2), 

the integrals are taken along the straight lines  
  =j j j rp N A   , j R   for each = 1, ,j n ;  

 1 1< = <a Re p a a  and this integral is understood in 
the sense of the principal value,  1= , , n

nt t t R ,  

        1 1 2 2= ... n ndp d p N d p N d p N .  

Proof. In Integral (1) an integrand  p dp  certainly 
corresponds to the iterated integral as  

       1 1 n np d p N d p N  , where  

1 1= n np p N p N  , 1, , np p R . Using Decom- 
position 3(3.1) of a function f  it is sufficient to 
consider the inverse transformation of the real valued 
function jf , which we denote for simplicity by f . We 
put       , ; := exp , ; d .n

nN u j jR
F p f t u p t t   

If   is a holomorphic function of the Cayley- 
Dickson variable, then locally in a simply connected 
domain U  in each ball  0, ,rB A z R  with the center at 

0z  of radius > 0R  contained in the interior  Int U  
of the domain U  there is accomplished the equality  

 
0

d .
z

z
a z             1 = a z  , where the inte-  

gral depends only on an initial 0z  and a final z  points 
of a rectifiable path in  0, ,rB A z R , a R  (see also 
Theorem 2.14 [4]). Therefore, along the straight line 

jN R  the restriction of the antiderivative has the form  

 
0

dj j ja N



   , since  

2)    =

=0 0 0
ˆd = d

z N j
j j j jz N j

a a N N
 

 
         ,  

where     = .a z a z z         jN  for the  

(super)differentiable by z U  function  z , when 
= jz N , R  . For the chosen branch of the line 

integral specified by the left algorithm this antiderivative 
is unique up to a constant from rA  with the given 
z -representation   of the function   [4-6]. On the 
other hand, for analytic functions with real expansion 
coefficients in their power series non-commutative in- 
tegrals specified by left or right algorithms along straight 
lines coincide with usual Riemann integrals by the 
corresponding variables. The functions  sin z ,  cos z  
and ze  participating in the multiparameter non-com- 
mutative transform are analytic with real expansion co- 
efficients in their series by powers of rz A . 

Using Formula 4(1) we reduce the consideration to 
   Uv
t f t  instead of  f t . By symmetry properties 

of such domains and integrals and utilizing change of 
variables it is sufficient to consider vU  with  

 = 1, ,1v  . In this case nR  for the direct multi- para- 
meter non-commutative transform 1(7) and 2(4) reduces 
to 

0 0

 

  . Therefore, we consider in this proof below 
the domain 1, ,1U   only. Using Formulas 3(3,3.1) and 
2(1,2,2.1) we mention that any real algebra with 
generators 0 = 1N , kN  and jN  with 1 k j   is 
isomorphic with the quaternion skew field H , since 

  = 0j kRe N N  and = 1jN , = 1kN  and = 1j kN N . 
Then  

        exp exp = expM M M              

for each real numbers , , ,     and a purely imaginary 
Cayley-Dickson number M . The octonion algebra O  
is alternative, while the real field R  is the center of the 
Cayley-Dickson algebra rA . We consider the integral  

3)           1 1 1
1 ,

1
:= 2π 2π ; exp , ; d

N b N bn n
b n N u jN b N bn

g t N N F a p u a p t p  

 

                      

 
for each positive value of the parameter 0 < <b  . With 
the help of generators of the Cayley-Dickson algebra rA  

and the Fubini Theorem for real valued components of 
the function the integral can be written in the form:  

4)              1 1 1
1 10 0 1

= [ 2π d ] 2 d exp , ; exp , ; d ,
N b N bn

b n n N NN b N bn
g t N N f u a p t u a p p      

  

 

                  

 

since the integral     
1,...,1

exp , ; dNU
f u a p       

for any marked  1 10 < < 3a a    is uniformly con- 
verging relative to p  in the domain  

 1 1a Re p a      in rA  (see also Proposition 
2.18 [4]). If take marked kt  for each k j  and 

= jS N  for some 1j   in Lemma 2.17 [4] considering 
the variable jt , then with a suitable ( R -linear) auto- 
morphism v  of the Cayley-Dickson algebra rA  an 
expression for   , ;v M p t   simplifies like in the 
complex case with :=KC R RK  for a purely imagi- 

nary Cayley-Dickson number K , = 1K , instead of 

1:=C R Ri , where   =v x x  for each real number 
x R . But each equality =   in rA  is equivalent to 
   =v v  . Then  

5)     * *
,= =j q j l q l q lRe N N N N Re N N  

  
  

for each ,q l .  
If 

0 ;
=j

l ll n l j
S N

   , 
0 ;

=j
l ll n l j

N N
    with 

1j   and real numbers ,l l R    for each l , then  

6)      * *
= =j j j j

j j l ll
Re N S N N Re S N     

        .  
 



S. V. LUDKOVSKY 

Copyright © 2012 SciRes.                                                                                 APM 

69

 
The latter identity can be applied to either 

  1 1 1 1 1 1= , , , ;k
k k k n n k n k k n nS M p N p N t t N N             

and  

  1 1 1 1 1 1= , , , ;k
k k k n n k n k k n nN M p N p N N N              ,  

or  

   1 1 1 1=k
k k k k n n n nS p t N p t N         

and  

   1 1 1 1=k
k k k k n n n nN p N p N          , 

where  

7)   1 1 1 1 1 1... , , , ; ...k k k n n k n k k n nM p N p N t t N N          ,  

     1 1, 1 2 2, 1 2 ,1 1sin sinn k k k n n kk kk k np s N p s p s               

 
8)    , 1 , 1= ; = = ;j k j k k j n k js s n t t t s n t      

for each = 1, , 1j n  ;  , 1 , 1= ; =n k k n k k ns s n t t    . We 
take the limit of  bg t  when b  tends to the infinity. 
Evidently,  

      1; ; = 1; =k j k k js n s n s j          

for each 1 <k j n  . By our convention  
   1; = ;ks n s n   for < 1k , while  ; = 0ks n   for 
>k n . Put  

9)   , 0 0, , , ;n j j j n n j n j j n nu p p N p N N N             

    0 0 1, 0= , ( , , );j j j j n n j n j j n np s M p N p N N N                

for Nu  given by 2(1,2,2.1), where jM  is prescribed by (7),  , ,= ;k j k js s n  ;  

10)     , 0 0 0 0 1, =
, , , ; =

n

n j j j n n j n j j n n j k k k kk j
u p p N p N N N p s p N                   

 
for = Nu u  given by 1(8,8.1). For > 1j  the parameter 

0  for = Nu u  given by 1(8,8.1) or 2(1,2,2.1) can be 
taken equal to zero.  

When 1 1 1, , , , ,j j nt t t t    and  

1 1 1, , , , ,j j np p p p    variables are marked, we take the 
parameter  

  
   

0

0 0 1 1 1 1

:= , , , ;

:=

j j
j j n n j n j j n n

j j n n j j j j n n n

p N p N N N

N N a p s p s N p s N

      

      

    

       

  

 
 

for  , ;u p    given by Formulas 2(1,2,2.1) or  

  
   

0

0 0 1 1 1 1

:= , , , ;

:=

j j
j j n n j n j j n n

j j n n j j j j n n n

p N p N N N

N N a p s p N p N

      

       

    

       

  

 
  

for  , ;u p    described in 1(8,8.1). Then the integral operator  

   1

0
2π d dlim

N bj
b j j j jN bj

N p N
 

 

 
      

(see also Formula (4) above) applied to the function  

     
   

1 1 , 0 0

, 0 0

, , , , , exp , , , ;

exp , , , ;

j j n N j j j n n j n j j n n

N j j j n n j n j j n n

f t t u a p p N p N t t N N

u a p p N p N N N
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with the parameter j  instead of   treated by Theo- 
rems 2.19 and 3.15 [4] gives the inversion formula cor- 
responding to the real variable jt  for  f t  and to the 
Cayley-Dickson variable 0 0 j jp N p N  restricted on the 

complex plane =N jj
C R RN , since  

  =j jd c d   for each (real) constant c . After inte- 
grations with = 1, ,j k  with the help of Formulas (6- 
10) and 3(1,2) we get the following:  

11)      1 1 1
1 10 0 1

= 2π d 2π dlim
N Nn k

b n n k kN Nb n k
g t Re N N 

     
     

               

         
       

1 1 , 1 0 1 1 1 0 1 1

, 1 0 1 1 1 0 1 1

    , , , , , exp , , , ;

exp ... , , , ; ... d .

k k n N k k k n n k n k k n n

N k k k n n k n k k n n

f t t u a p p N p N t t N N

u a p p N p N N N p

    

    

      

     

       

       
 

    

 
 

 
Moreover,   =q qRe f f  for each q  and in (11) the 

function = qf f  stands for some marked q  in accor- 
dance with Decompositions 3(3,3.1) and the beginning of 
this proof.  

Mention, that the algebra  , ,R j k lalg N N N  over the 
real field with three generators jN , kN  and lN  is 
alternative. The product k lN N  of two generators is also 
the corresponding generator   ( , )

1
k l

mN
  with the de- 

finite number  = ,m m k l  and the sign multiplier  
  ( , )

1
k l , where    , 0,1k l  . On the other hand,  

    1 2 1 2
=k j j k l k k lN N N N N N N N 

  
 . We use decom-  

positions (7-10) and take 2 =k l  due to Formula (11), 
where Re  stands on the right side of the equality, since 

  = 0k lRe N N  and    = 0j j k lRe N N N N  
  for each 

k l . Thus the repeated application of this procedure by 
= 1,2, ,j n  leads to Formula (1) of this theorem.  

Corollary 
If the conditions of Theorem 6 are satisfied, then  

1)              1

1= 2π ; exp , ; d d = ; , , ; .
n n n n

n u n N uR
f t F a p u a p t p p F F a p u t   

      

 
Proof. Each algebra  , ,R j k lalg N N N  is alternative. 

Therefore, in accordance with §  6 and Formulas 
1(8,8.1) and 2(1-4) for each non-commutative integral 
given by the left algorithm we get  

2)          1 exp , ; exp , ; d
N bj

j N N j jN bj
N f u a p t u a p p N   


      

       

       

2 1

=0

exp , ; exp , ; d

= exp , ; exp , ; d

r
N bj

j j l l N N jN bjl

b

N N jb

N N N f u a p t u a p p

f u a p t u a p p

   

   







          

    

 




 

 
for each = 1, ,j n , since the real field is the center of 
the Cayley-Dickson algebra rA , while the functions 

sin  and cos  are analytic with real expansion coeffi- 
cients. Thus  

3)             1 10 0
= 2π d d exp , ; exp , ; d d

b bn

b n N N nb b
g t f u a p t u a p p p     

 

 

                       

 
hence taking the limit with b  tending to the infinity im- 
plies, that the non-commutative iterated (multiple) inte- 
gral in Formula 6(1) reduces to the principal value of the 
usual integral by real variables  1, , n   and  
 1, , np p  6.1(1). 

2.7. Theorem 

An original  f t  with  n
rf R A  over the Cayley- 

Dickson algebra rA  with 1 r N   is completely de- 
fined by its image  ;n

N uF p   up to values at points  

of discontinuity, where the function  , ;u p t   is given 
by 1(8,8.1) or 2(1,2,2.1).  

Proof. Due to Corollary 6.1 the value  f t  at each 
point t  of continuity of  f t  has the expression 
throughout  ;n

N uF p   prescribed by Formula 6.1(1). 
Moreover, values of the original at points of discontinuity 
do not influence on the image  ;n

N uF p  , since on 
each bounded interval in R  by each variable jt  a 
number of points of discontinuity is finite and by our 
supposition above the original function  f t  is n —  
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almost everywhere on nR  continuous. 

2.8. Theorem 

Suppose that a function  ;n
N uF p   is analytic by the 

variable rp A  in a domain  

  1 1:= : < <rW p A a Re p a , where 2 r N  ,  
12 2 1r rn    ,  n

rf R A , either  
  , ; = ,u p t p t   or  
   0 1 0, ; := , ;u p t p s M p t     (see §  §  1 and 2). 

Let  ;n
N uF p   be written in the form  
     ,0 ,1; = ; ;n n n

N u N u N uF p F p F p   , where  
 ,0 ;n

N uF p   is holomorphic by p in the domain  

 1 <a Re p . Let also  ,1 ;n
N uF p   be holomorphic by 

p  in the domain   1<Re p a . Moreover, for each  

1>a a  and 1<b a  there exist constants > 0aC ,  
> 0bC  and > 0a  and > 0b  such that  

1)    ,0 ; expn
N u a aF p C p    for each rp A   

with  Re p a ,  

2)    ,1 ; expn
N u b bF p C p    for each rp A   

with  Re p b , the integral,  

3)  1 ,

1
; d

N Nn n k
N uN Nn

F w p p
 

   
   converges abso-  

lutely for = 0k  and = 1k  and each 1 1< <a w a . 
Then  ;n

N uF w p   is the image of the function,  

4)           1 1 1
1

1
= [ 2π ] 2π ; exp , ; d

N Nn n
n N uN Nn

f t N N F w p u w p t p 
  

   

                

    1
= ( ; , , ; .n n

N uF F w p u t 


  

 
Proof. For the function  ,1 ;n

N uF p   we consider 
the substitution of the variable =p g ,  1 <a Re g . 
Thus the proof reduces to the consideration of  

 ,0 ;n
N uF w p  . An integration by dp  in the ite- 

rated integral (4) is treated as in §  6. Take marked 
values of variables 1 1 1, , , , ,j j np p p p    and  

1 1 1, , , , ,j j nt t t t   , where  = ;k ks s n   for each  
= 1, ,k n  (see §  6 also). For a given parameter  

   0 0 1

1 1 1

:=

         

j
j j n n j

j j j n n n

N N w p s

p s N p s N

    

  

    

  




 

for  , ;u p    prescribed by Formulas 2(1,2,2.1) or  

   0 0 1

1 1 1

:=

         

j
j j n n j

j j j n n n

N N w p s

p N p N

   

 


  

    

  




 

for  , ;u p t   given by 1(8,8.1) instead of   and any 
non-zero Cayley-Dickson number rA   we have  

= 1lim
j

j jj
           .  

For any locally z-analytic function  g z  in a do- 
main U  satisfying conditions of §  5 the homotopy 
theo-rem for a non-commutative line integral over rA , 
2 r , is satisfied (see [5,6]). In particular if U  con- 
tains the straight line jw RN  and the path  

  := j
j j j jt t N   , then    d = d

N j

N j j
g z z g w z z





 
  ,  

when  ˆ 0g z   while z  tends to the infinity, since 
|| j  is a finite number (see Lemma 2.23 in [4]). We 

apply this to the integrand in Formula (4), since 
 ;n

N uF w p   is locally analytic by p  in accord- 
ance with Theorem 4 and Conditions (1,2) are satisfied.  

Then the integral operator   1
2π

N j
j N j

N
 

 

 
    on the  

j -th step with the help of Theorems 2.22 and 3.16 [4] 
gives the inversion formula corresponding to the real 
parameter jt  for  f t  and to the Cayley-Dickson va- 
riable 0 0 j jp N p N  which is restricted on the com- 
plex plane =N jj

C R RN  (see also Formulas 6(4,11) 
above). Therefore, an application of this procedure by 

= 1,2, ,j n  as in §  6 implies Formula (4) of this 
theorem. Thus there exist originals 0f  and 1f  for 
functions  ,0 ;n

N uF p   and  ,1 ;n
N uF p   with a choice 

of Rw  in the common domain  
 1 1< <a Re p a . Then 0 1=f f f  is the original for 

 ;n
N uF p   due to the distributivity of the multi- 

plication in the Cayley-Dickson algebra rA  leading to 
the additivity of the considered integral operator in 
Formula (4)

 
.  

Corollary  
Let the conditions of Theorem 8 be satisfied, then  

1)              1

1= 2π ; exp , ; d d = ; , , ; .
n n n n

n N u n N uR
f t F w p u w p t p p F F w p u t   

      

 
Proof. In accordance with §  §  6 and 6.1 each non- 

commutative integral given by the left algorithm reduces 
to the principal value of the usual integral by the cor- 
responding real variable:  

2)                1 1
2π ; exp , ; d = 2π ; exp , ; d

N j n n
j N u j j N u jN j

N F w p u w p t p N F w p u w p t p   
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 for each = 1, ,j n . Thus Formula 8(4) with the non- 
commutative iterated (multiple) integral reduces to For- 
mula 8.1(1) with the principal value of the usual integral 
by real variables  1, , np p . 

2.9. Note 

In Theorem 8 Conditions (1,2) can be replaced on  

1)  
( )

ˆ = 0,suplimn p CR n
F p    

where     ( ) 1 1:= : = , < <R n rC z A z R n a Re z a  is a 
sequence of intersections of spheres with a domain W , 
where    < 1R n R n   for each n ,   =limn R n  . 
Indeed, this condition leads to the accomplishment of the 

rA  analog of the Jordan Lemma for each 2r   (see 
also Lemma 2.23 and Remark 2.24 [4]).  

Subsequent properties of quaternion, octonion and 
general rA  multiparameter non-commutative analogs of 
the Laplace transform are considered below. We denote 
by:  

2)       1 1= : < <f rW p A a f Re p a f  a domain 
of  ;n

N uF p   by the p  variable, where  1 1=a a f  
and  1 1=a a f   are as in §  1. For an original  

3)    
1, ,1Uf t t


 we put  

    1= : < ,f rW p A a f Re p  

that is 1 =a  . Cases may be, when either the left hy- 
perplane   1=Re p a  or the right hyperplane  

  1=Re p a  is (or both are) included in fW . It may 
also happen that a domain reduces to the hyperplane 

  1 1= : = =fW p Re p a a . 

2.10. Proposition 

If images  ;n
N uF p   and  ;n

N uG p   of functions 
originals  f t  and  g t  exist in domains fW  and 

gW  with values in rA , where the function  , ;u p t   
is given by 1(8,8.1) or 2(1,2,2.1), then for each  

, rA    in the case 2 =A H ; as well as f  and g  
with values in R  and each , rA    or f  and g  
with values in rA  and each , R    in the case of 

rA  with 3r  ; the function  
   ; ;N u N uF p G p     is the image of the func- 

tion    f t g t   in a domain f gW W .  
Proof. Since the transforms  ;n

N uF p   and  
 ;n

N uG p   exist, then the integral  

                 exp , ; d = exp , ; d exp , ; dn n nR R R
f t g t u p t t f t u p t t g t u p t t              

converges in the domain  

            1 1 1 1= : max , < < min ,f g rW W p A a f a g Re p a f a g   . 

 
We have nt R , 12 2 1r rn    , while R  is the 

center of the Cayley-Dickson algebra rA . The qua- 
ternion skew field H  is associative. Thus, under the 
imposed conditions the constants ,   can be carried 
out outside integrals. 

2.11. Theorem 

Let = > 0const , let also  ;nF p   be an image of 
an original function  f t  with either = ,u p t   or 
u  given by Formulas 2(1,2) over the Cayley-Dickson 
algebra rA  with 2 <r  , 12 2 1r rn    . Then an 
image  ;n nF p     of the function  f t  exists.  

Proof. Since  
   = =j j j j j j j j jp s p s p s         for each  

= 1, ,j n , where =j js s  ,  = ;j js s n t ,  

 = ;j js s n  , =j jt   for each = 1, ,j n . Then 
changing of these variables implies:  

     
 

, ; ( , / ; )d = d

= ;

u p t u p n
n nR R

n n

f t e t f e

F p

      

  

    

due to the fact that the real filed R  is the center Z(Ar) of 
the Cayley-Dickson algebra rA . 

2.12. Theorem 

Let  f t  be a function-original on the domain 1, ,1U   
such that   kf t t   also for = 1k j   and =k j  
satisfies Conditions 1(1-4). Suppose that  , ;u p t   is 
given by 2(1,2,2.1) or 1(8,8.1) over the Cayley-Dickson 
algebra rA  with 2 <r  , 12 2 1r rn    . Then  

1)             1;

1, 1 1, ,1
, ; ; = , , ; ; ;

jn n t j j
j U UF f t t t u p F f t t u p t p      

 ，
 

    0 1, ,1
=1

, ; ;
j

n
k e Uk

k

p p S F f t t u p 
 

  
 

 
 

in the rA  spherical coordinates or  
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1.1)             1;

1, ,1 1, ,1
, ; ; = , , ; ; ;

jn n t j j
j U UF f t t t u p F f t t u p t p      

 
 

    0 1, ,1
, ; ;n

j e Uj
p p S F f t t u p      

 

 
in the rA  Cartesian coordinates in a domain  

       1 1= : max , <r jW p A a f a f t Re p   , where 
 1:= , , , , : = 0j

j n jt t t t t  , =e kk
S    for each  

1k  .  

Proof. Certainly,  

2)     1 1=f t s s f t t     and  

2.1)           =1 =1
= =

n j

j k k j kk k
f t t f t s s s t f t s s           

 
for each = 2, ,j n , since 1=j j jt s s  , 1 1 2=t s s , 
where  = ;j js s n t , = 0n ls   for each 1l  . From 

Formulas 30(6,7) [4] we have the equality in the rA  
spherical coordinates:  

3)         0 1,e xp , ; = exp , ; exp , ;j j j e j
u p t s p u p t p S u p t          ,  

since        0 1 0exp , ; = exp exp , ;u p t p s M p t      , 

   0 1 0 0 1, 0 1 0exp = expj jp s s p p s         , 

      
     

       

cos sin = exp

= exp = exp π 2

= cos π 2 sin π 2 = cos sin ,

j j j j j j j j j j j j j

j j j j j j j j j j j

j j j j j j j j j e j j j j j j jj

p s p s i s p s i s

p i p s i p p s i

p p s p s i p S p s p s i

  

 

   

          

      

               

 

since js  and ks  are real independent variables for each k j , where , = 0j k  for j k , while , = 1j j , 

3.1)        cos sin = cos sine j j j j j j j j j j j j j j jj
S p s p s i p s p s i                    

   = cos π 2 sin π 2j j j j j j jp s p s i          

In the rA  Cartesian coordinates we take jt  instead of js  in (3.1). If  z  is a differentiable function by jz  for 
each j , : r rA A  , =j j j jz p t  , then  

3.2)          
=

exp = d exp d .j j jz qt q z z p
 

   


          

                      
         

      

11

=1 =1
=

= !

= exp = exp ,

k n kn

j jn k

j j j qe j

qp z z z z n

qp z p S z

 
  

  

  



     

     

 
  

 
where either = 1q  or = 1q  , since = 1j jz   .  

That is  
3.3)   exp = 0x

e k k kj
S i     for each 1j k   and 

any positive number > 0x ,  

3.4)      exp = exp π 2x
e j j j j j jj

S i i x         

and  

     exp = exp π 2x
e j j j j j jj

S i i x          

for each non-negative real number 0x  , k  and  

k R  , where  =e e jj j
S S  , the zero power 0 =e j

S I  
is the unit operator;  

3.5)        ( , ; ) 0 1 0
0 ,1 1 1 1 ,1 1 1 1 1= cos 1 sin cosp su p t q

qe j j j j j j jj
S e e T i p s i p s p s      




    


  

       
2 2

1 1 1 1 1 1 1 1 12 1 2 1 2 1 2 1
=

sin cos sin sin
r

k k k k r r r r
k j

i p s p s i p s p s   
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in the rA  spherical coordinates, where either = 1q  or 

= 1q   and  

3.6)    := π 2x
j j jT x       

for any function  j   and any real number x R , 
where 1j  . Then in accordance with Formula (3.2) we 
have:  

3.7)   exp , ;qe j
S u p t    

      
 

11

=1 =1
= , ;

!
k n kn

jn k
u p t

z qi z n
 

 
  



 
     

for  , ;u p t   given by Formulas 1(8,8.1) in the rA  
Cartesian coordinates, where either = 1q  or = 1q  . 
The integration by parts theorem (Theorem 2 in §  II.2.6 
on p. 228 [18]) states: if <a b  and two functions f   

and g  are Riemann integrable on the segment  ,a b , 
   = d

x

a
F x A f t t   and    = d

x

a
G x B g t t  , where 

A  and B  are two real constants, then  

           d = d
b bb

aa a
F x g x x F x G x f x G x x  . 

Therefore, the integration by parts gives  

4)      
0

exp , ; dj jf t t u p t t

    

    

     

=

=0

0

= exp , ;

  exp , ; d .

t j

t j

j j

f t u p t

f t u p t t t











     
 

Using the change of variables t s  with the unit 
Jacobian    1 1, , , ,n nt t s s    and applying the Fu- 
bini’s theorem componentwise to j jf i  we infer:  

5)            
. 01, ,1 1 2

exp , ; d = exp , ; dj jU s s sn
f t t u p t t f t t u p t s 

   
       

 

     

         

0 0 1

00 0 0 0
=1

= exp , ; d d

= exp , ; d exp , ; d

j
j js j

j
j j j

k ek
k

f t t u p t s t

f t u p t t p p S f t u p t t



 

  



   

     
           

  

   



 
 

in the rA  spherical coordinates, or  

5.1)      
1, ,1

exp , ; djU
f t t u p t t  


 

         00 0 0 0
= exp , ; d exp , ; dj j j

j e j
f t u p t t p p S f t u p t t 

                     

in the rA  Cartesian coordinates, since      0 1 0 0 0 1 0exp = expjp s t p p s         for each 1 j n  . This gives 
Formula (1), where  

6)          1;

1, ,1 0 0
, , ; ; ; = exp , ; d

jn t j j j j j
UF f t u p t p f t u p t t   

   
  

      1 1 10 0 0 0
= d d d exp , ;j j

j j nt t dt t f t u p t 
   

        

 
is the non-commutative transform by  

 1 1 1= , , ,0, , ,j
j j nt t t t t   .  

Remark 
Shift operators of the form      = expx d dx x     
in real variables are also frequently used in the class of 
infinite differentiable functions with converging Taylor 
series expansion in the corresponding domain.  

It is possible to use also the following convention. One 
can put  

       1 1 1 1 2 2 1
cos = cos cos cos r     


   ,  , 

   
       
1 1

1 1 1 2 1

sin cos

= sin cos cos cos ,

k k

k k k r

   

      

 

 



 
 

where = 0j  for each 1j  , 2 < 2 1rk  , so that 
 1 1cos = 0l

jT    for each > 1j  and 1l  ,   

   1 1sin cos = 0l
j k kT       for each >j k  and 

1l  , where  1=l l
j j jT T T   is the iterated compo-  

sition for > 1l , l N . Then  , ;u p tl
jT e   gives with   

such convention the same result as  , ;u p tl
e j

S e  , so one   

can use the symbolic notation    , ; π /2, ; =
u p t i lu p t jl

jT e e
   . 

But to avoid misunderstanding we shall use e j
S  and 

jT  in the sense of Formulas 12(3.1-3.7).  
It is worth to mention that instead of 12(3.7) also the 

formulas  
1)      1 1exp = cos sinn np i p i M     with  

 
1/22 2

1:= := np p p       and  

 1 1= n nM p i p i    for 0  , 0 = 1e ;  
2)  1 1exp n n jp i p i p      

   
   2

= sin cos

   sin

j

j j

M p

i Mp
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and   = 1j j j jp t      can be used. 

2.13. Theorem 

Let  f t  be a function-original. Suppose that  

 , ;u p t   is given by 2(1,2,2.1) or 1(8,8.1) over the  

Cayley-Dickson algebra rA  with 2 <r  . Then a 
(super) derivative of an image is given by the following 
formula: 

1)             1 0 1 11
, ; ; = , ; ; , ; ; , ; ;n n n n

e e n nn
F f t u p p h F f t s u p h S F f t s u p h S F f t s u p h            

in the rA  spherical coordinates, or  

1.1)              1 0 1 11
, ; ; . = , ; ; , ; ; , ; ;n n n n

e e n nn
F f t u p p h F f t s u p h S F f t t u p h S F f t t u p h          

 
in the rA  Cartesian coordinates for each  

0 0= n n rh h i h i A   , where 0 , , nh h R ,  
12 2 1r rn    , fp W .  

Proof. The inequalities      1 1< <a f Re p a f  are 
equivalent to the inequalities  

       1 1< <a f t t Re p a f t t
, since  

 | | exp = 0lim t b t t   for each > 0b . An image  

  , ; ;nF f t u p   is a holomorphic function by p  for  

     1 1< <a f Re p a f  by Theorem 4, also  

0
d <ct ne t t

    for each > 0c  and = 0,1, 2,n  .  

Thus it is possible to differentiate under the sign of the 
integral:  

2)             
{ 1,1}

exp , ; = ( exp , ; d )n UvR Uvnv

f t u p t dt p h f t u p t t p h  
 

          

     = exp , ; d .nR
f t u p t p h t     

Due to Formulas 12(3,3.2) we get:  

3)             1 0 1 11
exp , ; = exp , ; exp , ; exp , ;e e n nn

u p t p h u p t s h S u p t s h S u p t s h                

in the rA  spherical coordinates, or  

4)             1 0 1 11
exp , ; = exp , ; exp , ; exp , ;e e n nn

u p t p h u p t s h S u p t t h S u p t t h               

 
in the rA  Cartesian coordinates. 

Thus from Formulas (2,3) we deduce Formula (1). 

2.14. Theorem 

If  f t  is a function-original, then  
1)       , ; ; = , ; ; ,n nF f t u p F f t u p p      

for either  
i)    0 1 0, ; = , ;u p t p s M p t     or  

ii)   , ; = ,u p t p t   over rA  with 2 <r   
in a domain fp W , where nR  , 12 2 1r rn    ,  

2)  0 1 1 1 1, = n n np p s p s i p s i     with  

 = ;j js s n   for each j  in the first (i) and  
 , = ,p p   in the second (ii) case (see also Formulas 

1(8), 2(1,2,2.1)). 
Proof. For p  in the domain   1>Re p a  the iden- 

tities are satisfied:  

3)       ( , ; )

1,...,1 1
, ; ; = dn u p t

U
n

F f t u p f t e t
 

   
      

        , ; ,

1, ,11,...,1
= d = , ; ; , ,

u p p n
UU

f t e F f t u p p
         

 

 
due to Formulas 1(7,8) and 2(1,2,2.1,4), since  

     0 1 0 0 1 0 0 1; = ; ;p s n t p s n p s n       and  
 =j j j j j j j jp t p p       and  

      ; = ; ;j j j j j j j jp s n t p s n p s n       for each 
= 1, , 2 1rj  , where =t   . Symmetrically we get 

(2) for vU  instead of 1, ,1U  . Naturally, that the mul- 
tiparameter non-commutative Laplace integral for an 
original f  can be considered as the sum of 2n  in- 

tegrals by the sub-domains vU :  

4)     exp , ; dnR
f t u p t t  

      
{ 1,1}

= exp , ; d .n UvR
nv

f t u p t t t 
 

   

The summation by all possible  1,1
n

v   gives 
Formula (1). 
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2.15. Note 

In view of the definition of the non-commutative trans- 
form nF  and  , ;u p t   and Theorem 14 the term  

1 1 2 1 2 1r ri i 
 

   has the natural interpretation as the 
initial phase of a retardation. 

2.16. Theorem 

If  f t  is a function-original with values in rA  for 

2 <r  , 12 2 1r rn    , b R , then  

1)        1 . , ; ; = , ; ;nb t tn nF e f t u p F f t u p b     

for each  1 1> >a b Re p a b   , where u  is given by 
1(8,8.1) or 2(1,2). 

Proof. In accordance with Expressions 1(8,8.1) and 
2(1,2,2.1) one has  
     1, ; = , ; .nu p t b t t u p b t      If  

 1 1> >a b Re p a b   , then the integral  

2)              1 1... ..., ; ; = exp , ; dn nb t t b t tn
Uv Uv

F e f t t u p f t e u p t t        

         = exp , ; d = , ; ;n
UvUv

f t u p b t t F f t t u p b      

 
converges. Applying Decomposition 14(4) we deduce 
Formula (1). 

2.17. Theorem 

Let a function  f t  be a real valued original,  
    ; = ; ; ;nF p F f t u p  , where the function  
 , ;u p t   is given by 1(8,8.1) or 2(1,2,2.1). Let also 
 ;G p   and  q p  be locally analytic functions such 

that  

1)         , ; ; ; = ; exp , ;nF g t u p G p u q p       

for = ,u p t   or  
   0 1 0= , ;nu p t t M p t      , then  

2)     , d ; ; ;n
nR

F g t f u p      

    = ; ;G p F q p   

for each gp W  and   fq p W , where 2 <r  , 
12 2 1r rn    .  

Proof. If gp W  and   fq p W , then in view of 
the Fubini’s theorem and the theorem conditions a change  

of an integration order gives the equalities:  

       
       

       
      
    

, d exp , ; d

= , exp , ; d d

= ; exp , ; d

= ; exp ( , ; d

= ; ; ,

n nR R

n nR R

nR

nR

g t f u p t t

g t u p t t f

G p u q p f

G p f u q p

G p F q p

   

   

    

    

 









 

 




 

since , nt R   and the center of the algebra rA  is R .  

2.18. Theorem 

If a function  
1, ,1Uf t 


 is original together with its 

derivative     11,. ,1

n
U nf t t s s  


  or  

    11,. ,1

n
U nf t t t t  


 , where  ;n
uF p   is an image  

function of  
1, ,1Uf t 


 over the Cayley-Dickson algebra 

rA  with 2 r N  , 12 2 1r rn    , for  
 0 1 0= , ;u p s M p t     given by 2(1,2,2.1), then  

1)    
1

0 1 21 2
=0

; 1lim
n

mn
e e n e unp m

p p S p S p S F p 




    
  

       1 0,0;( )
0 1, 1 1 21 21 < < ; 1 < < ;  ,1 1

; = 1 0 ,
n un m l

j j e j e j e uj j n m jn mj j n l l n l jn m m

p p S p S p S F p f e 

  

   

      

    
 

  

or  

1.1)    
1

0 1 0 2 01 2
=0

; 1lim
n

mn
e e n e unp m

p p S p p S p p S F p 




              
  

  
     

0 0 01 21 21 < < ; 1 < < ;  ,1 1

1 0,0;

;

= 1 0

ln m
j e j e j e uj j n m jn mj j n l l n l jn m m

n u

p p S p p S p p S F p

f e

  





      

 

               




 


 

 
for  , ;u p t   given by 1(8,8.1), where  

   ; 01, ,1
0 = lim t U tf f t 

, 

p  tends to the infinity inside the angle  

  < π 2Arg p   

for some 0 < < π 2 , 1 2 1rj   ,  
 

 =0,
=

nl
j jj j l

p p i
 ,    1= , , ml l l . If the restriction    
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       1111

; 0, , 0;  , ,1, 1=0, , =0; = , ,
= lim mmmm

t U t t t k j jj j kt t t k j jj j k
f t f t         ，

 

exists for all 11 < < mj j n  , then  

2)    
1

0 1 21 20 =0

; 1lim
n

mn
e e n e unp m

p p S p S p S F p 




    
  

 

     
 

11

( )
0 1, 1 1 21 21 < < ; 1 < < ;  ,1 1

1
0,0,

=0, , =0; = , ,
=0 1 <...<1

;

= 1
mm

n m l
j j e j e j e uj j n m jn mj j n l l n l jn m m

n
m u

t t t k j jj j km j j nm

p p S p S p S F p

f t e

  



 

      




 
 

     





 

 

 


 

in the rA  spherical coordinates or  

2.1)    
1

0 1 0 2 01 20 =0

; 1lim
n

mn
e e n e unp m

p p S p p S p p S F p 




              
  

 
     

 

1

11

( )
0 0 01 21 21 < < ; 1 < < ;  ,1

1
0,0,

=0, , =0; = , ,
=0 1 <...<1

;

= 1

m

mm

n m l
j e j e j e uj j n m jn mj j n l l n l jn m

n
m u

t t t k j jj j km j j nm

p p S p p S p p S F p

f t e

   





      




 
 

               





 

 

 



 

 
in the rA  Cartesian coordinates, where 0p   inside 
the same angle.  

Proof. In accordance with Theorem 12 the equality 
follows:  

3)             0 1,1, ,1 1, ,1
, ; ; = , , ; , ;n n

j U j j e Uj
F f t s t u p p p S F f t t u p t p           

 

    1;

1, ,1
, , ; ; ;

jn t j j
UF f t u p t p  


 

for    0 1 0= , ; = , ;u u p t p s M p t     in the rA  spherical coordinates, or  

3.1)             01, ,1 1, ,1
, ; ; = , , ; , ;n n

j U j e Uj
F f t t t u p p p S F f t t u p t p          

 

    1;

1, ,1
, , ; ; ;

jn t j j
UF f t u p t p  


 

 
in the rA  Cartesian coordinates, since  

3.2)       1=j j jf t s s f t t f t t         

for each 2j  ,     1 1=f t s s f t t    ,  
where 0 1 1 2 1 2 1

= r r rp p p i p i A
 

    ,  

0 2 1
, , rp p R


 ,  0 2 1

, , ri i


  are the generators of the  

Cayley-Dickson algebra Ar, = 0n ls   for each 1l  , the 
zero power 0 =e j

S I  is the unit operator. For short we 
write f  instead of 

1, ,1Uf 


. Thus the limit exists:  

4)     1; , , ; ; ; =
jn t j jF f t u p t p   

 

    

1 1 10 0 0 00
d d d dlim

exp , ; .

j j n
t j

t t t t

f t u p t 

   

 




    
 

Mention, that  

    21 = 0, ,0, , , : = 0
j

j n jt t t t  
 
      

for every 1 j n  , since 1=k k kt s s   for each  
1 k n  . We apply these Formulas (3,4) by induction 

= 1, ,j n , 12 2 1r rn    , to   1
n

nf t s s   , 
  ,  1n j

j nf t s s    , ,   nf t s   instead of 
  jf t s  .  

From Note 8 [4] it follows, that in the rA  spherical 
coordinates  

 
   1 1, ,1,| |<π /2

, ; ;lim

= 0,

n n
n U

p Arg p
F f t s s u p


 

 
  




 

also in the rA  Cartesian coordinates  

 
   1 1, ,1,| |<π /2

) , ; ;lim

= 0,

n n
n U

p Arg p
F f t t t u p


 

 
  




 

which gives the first statement of this theorem, since 
     , 0, = 0, ; = 0,0,u p u t u    and  
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     0,0,0 (1, 1) ; = 0 u
uF p f e  ， , while  ;n

uF p   is de- 
fined for each   > 0Re p .  

If the limit  jf t  exists, where  
 1:= , , , , : =j

j n jt t t t t   , then  

5)            1;

1 1 10 0 0 0
d d d d exp , ; =: , , ; ; ; .lim

jn t j j
j j n

t j

t t t t f t u p t F f t u p t p  
    

 


      

Certainly,    21
1 1= , , : = , , =

j

n jt t t t t
        
     for each 1 j n  . Therefore, the limit exists:  

 
     

        

 
   

111

1 0 1 0
0,| |<π /2 1, ,1

(0,0; )
1 =0, , =0; =  , ,1,...,1 =0 1 < <

1

0 1 21 20,| |<π 2 =0

exp , ;lim

= d = 1

= ; 1lim

k mmm

n
nUp Arg p

n
mn u

n t t t k j jU j jm j j n

n
mn

e e n e unp Arg p m

f t s s p s M p t

f t s s e t f t

p p S p S p S F p







 



 



 
 



 

     

   

    



 





 








      
1 1

( ) (0,0, )
0 1, 1 1 21 21 < < ; 1 < < ;  ,

; 1 0 ,
n m m

nn m l u
j j e j e j e uj j n m jn mj j n l l n l j

p p S p S p S F p f e
 



 
 



 

      




     
 



 

 
from which the second statement of this theorem follows 
in the rA  spherical coordinates and analogously in the 

rA  Cartesian coordinates using Formula (3.1). 

2.19. Definitions 

Let X  and Y  be two R  linear normed spaces which 
are also left and right rA  modules, where 1 r . Let 
Y  be complete relative to its norm. We put  

:=k
R RX X X    is the k  times ordered tensor 

product over R  of X . By  , ,k
q kL X Y  we denote a 

family of all continuous k  times R  poly-linear and Ar 
additive operators from kX   into Y . Then  

 , ,k
q kL X Y  is also a normed R  linear and left and 

right rA  module complete relative to its norm. In 
particular,  ,1 ,qL X Y  is denoted also by  ,qL X Y . 
We present X  as the direct sum  

0 0 2 1 2 1
= r rX X i X i

 
  , where 0 2 1

, , rX X


  are pair- 
wise isomorphic real normed spaces. If  

 ,qA L X Y  and    =A xb Ax b  or    =A bx b Ax  
for each 0x X  and rb A , then an operator A  we 
call right or left rA -linear respectively. An R  linear 
space of left (or right) k  times rA  poly-linear ope- 
rators is denoted by  , ,k

l kL X Y  (or  , ,k
r kL X Y  

respectively).  
We consider a space of test function  := ,nD D R Y  

consisting of all infinite differentiable functions  
: nf R Y  on nR  with compact supports. A sequence 

of functions nf D  tends to zero, if all nf  are zero 
outside some compact subset K  in the Euclidean space 

nR , while on it for each = 0,1,2,k   the sequence 
 ( ) : k

nf n N  converges to zero uniformly. Here as 
usually  ( )kf t  denotes the k-th derivative of f, which 
is a k  times R  poly-linear symmetric operator from 
  knR


 to Y , that is  

       ( ) ( )
1 (1) ( ). , , = . , ,k k

k kf t h h f t h h Y     

for each 1, , n
kh h R  and every transposition  

   : 1, , 1, ,k k   ,   is an element of the sym- 
metric group kS , nt R . For convenience one puts  

(0) =f f . In particular,  

     ( )

1 1
. , , =k k

j j j jk k
f t e e f t t t      

for all 11 , , kj j n  , where  
 = 0, ,0,1,0, ,0 n

je R   with 1 on the j-th place.  
Such convergence in D  defines closed subsets in this 

space D , their complements by the definition are open, 
that gives the topology on D . The space D  is R  
linear and right and left rA  module. 

By a generalized function of class  := ,nD D R Y
     

is called a continuous R -linear rA -additive function 
: rg D A . The set of all such functionals is denoted by 

D . That is, g  is continuous, if for each sequence 

nf D , converging to zero, a sequence of numbers 
   =: ,n n rg f g f A  converges to zero for n  tending 

to the infinity.  
A generalized function g  is zero on an open subset 

V  in nR , if  , = 0g f  for each f D  equal to zero 
outside V . By a support of a generalized function g  is 
called the family, denoted by  supp g , of all points 

nt R  such that in each neighborhood of each point 
 t supp g  the functional g  is different from zero. 

The addition of generalized functions ,g h  is given by 
the formula:  

1)      , := , ,g h f g f h f  .  

The multiplication 'g D  on an infinite differen- 
tiable function w  is given by the equality:  

2)    , = ,gw f g wf  either for : n
rw R A  and 

each test function f D  with a real image  
 nf R R , where R  is embedded into Y ; or 
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: nw R R  and : nf R Y .  
A generalized function g   prescribed by the equa- 

tion:  
3)    , := ,g f g f   is called a derivative g   of a 

generalized function g , where   , ,n n
qf D R L R Y ,  

  , ,n n
qg D R L R Y

    .  

Another space  := ,nB B R Y  of test functions con- 
sists of all infinite differentiable functions : nf R Y  
such that the limit  ( )

| | = 0lim
m j

t t f t  exists for each 
= 0,1,2,m  , = 0,1,2,j  . A sequence nf B  is 

called converging to zero, if the sequence  ( )m j
nt f t  

converges to zero uniformly on  \ ,0,n nR B R R  for 
each , = 0,1,2,m j   and each 0 < <R  , where  
    , , := : ,B Z z R y Z y z R   denotes a ball with 

center at z  of radius R  in a metric space Z  with a 
metric  . The family of all R-linear and rA -additive 
functionals on B  is denoted by B .  

In particular we can take = rX A , = rY A  with 
1 , Z   . Analogously spaces  ,D U Y ,  

 ,D U Y    ,  ,B U Y  and  ,B U Y     are defined for 
domains U  in nR , for example, = vU U  (see also §  
1). 

A generalized function 'f B  we call a generalized 
original, if there exist real numbers 1 1<a a  such that 
for each 1 1 1 1< , , , , <n na w w w w a    the generalized 
function  

4)     exp ,v Uv
f t q t   is in  ,vB U Y    for all  

 1= , , nv v v ,  1,1jv    for every = 1, ,j n  for  

each nt R  with 0j jt v   for each = 1, ,j n , where  

 1 11
= , ,v v n v nn

q v w v w . By an image of such original we  

call a function. 
5)     , ; ; := ,exp , ;nF f u p f u p t    of the vari- 

able rp A  with the parameter rA  , defined in the 
domain   1 1= : < <f rW p A a Re p a  by the fol- 
lowing rule. For a given fp W  choose  

 1 1 1 1< , , < < , , <n na w w Re p w w a    , then  

6)   , exp , ; :=f u p t    

        exp , ,exp , ; ,v v Uv v
f q t u p t q t        

since       exp , ; , ,v vu p t q t B U Y     ,  

where in each term  

        exp , ,exp , ; ,v v Uv
f q t u p t q t         

the generalized function belongs to  ,vB U Y     by Con- 
dition (4), while the sum in (6) is by all admissible 
vectors  1,1

n
v  . 

2.20. Note and Examples 

Evidently the transform  , ; ;nF f u p   does not depend 
on a choice of  1 1, , , ,n nw w w w  , since  

       
            

exp( , ,exp , ; ,

= exp , , ,exp , ; , ,

v v Uv

v v v v Uv

f q t u p t q t

f q t b t u p t q t b t

 

 

     
       

 

 
for each nb R  such that  

 1 1< < < <j j j ja w b Re p w b a     

for each = 1, ,j n , because   exp ,vb t R  . At the 
same time the real field R  is the center of the Cayley-  

Dickson algebra rA , where 2 r N  .  
Let   be the Dirac delta function, defined by the 

equation  

 DF       , := 0t t    for each B  . Then  

1)             ( ) ( )
{ 1,1}

, ; ; = [ exp , ,exp , ; , )n j j
n v v Uv v

F t u p t q t u p t q t      
 

         

    
=

= 1 exp , ;
j j

t
t

u p t


      ,  

 
since it is possible to take 1 1< < 0 < <a a   and 

= 0kw  for each  1,1, 2, 2, , ,k n n    , where 

nR   is the parameter, | | 1 1
1 1:= j jj j

t t t    . In parti- 
cular, for = 0j  we have  

2)      , ; ; = exp , ;nF t u p u p      .  

In the general case:  

3)            
1 1

1 2| | 1 1 1
1 0 1 2 01

1

2
0 1

, ; ; = exp ,0;
k j

jk j njj j kn j n
n e e n en

F t s s u p p p S p S p
j

S
k

M p   





  





 





    

in the rA  spherical coordinates, or  
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3.1)            1 2| | 1
1 0 1 0 2 01 2

, ; ; = exp ,0;
jj j njjn j n

n e e n en
F t t t u p p p S p p S p p S u p            

 
in the rA  Cartesian coordinates, where  

1 =nj j j  , 1 1, , , nk j j  are nonnegative integers,  

12 2 1r rn    ,  := ! ! !
l

l m l m
m

 
    

 
 denotes the bi-  

nomial coefficient, 0! = 1 , 1! = 1 , 2! = 2 ;  
! = 1 2l l    for each 3l  ,  = ;j js s n t .  

The transform  nF f  of any generalized function 
f  is the holomorphic function by fp W  and by 

rA  , since the right side of Equation 19(5) is holo- 
morphic by p  in fW  and by   in view of Theorem 
4. Equation 19(5) implies, that Theorems 11-13 are  

accomplished also for generalized functions.  
For 1 1=a a  the region of convergence reduces to the 

vertical hyperplane in rA  over R . For 1 1<a a  there 
is no any common domain of convergence and  f t  
can not be transformed. 

2.21. Theorem 

If  f t  is an original function on nR ,  ;nF p   is 
its image,  | | 1

1
jjj n

nf t s s    or  | | 1
1

jjj n
nf t t t    

is an original, 1= nj j j  , 10 , , nj j Z  ,  
12 2 1r rn    ; then  

1)            1 21| | 1 1 1
1 0 1 21 2

0 11 1

, ; ; = , ; ;
jk j njj j kn j nn

n e e n en
k j

j
F f t s s u p p p S p S p S F f t u p

k
 

 

 
    

 
   

for    0 1 0, ; := , ;u p t p s M p t     given by 2(1,2, 2.1), or  

1.1)            1 2| | 1
1 0 1 0 2 01 2

, ; ; = , ; ;
jj j njjn j nn

n e e n en
F f t t t u p p p S p p S p p S F f t u p         

 
for  , ;u p t   given by 1(8,8.1) over the Cayley- Dick- 
son algebra rA  with 2 <r  . Domains, where For- 
mulas (1,1.1) are true may be different from a domain of 

the multiparameter noncommutative transform for f , 
but they are satisfied in the domain  1 1< <a Re p a , 
where  

     | | 1
1 1 1 1= min , : ,0mmm n

n l la a f a f t m j m j l           ; 

     | | 1
1 1 1 1= max , : ,0mmm n

n l la a f a f t m k m j l        , 

 
if 1 1<a a , where =j js  or =j jt  for each j  cor- 
respondingly. 

Proof. To each domain vU  the domain vU  sym- 

metrically corresponds. The number of different vectors 
 1,1

n
v   is even 2n . Therefore, for  

 0 0= , ;u p t M p t    due to Theorem 12 the equality  

2)      ( , ; ) ( , ; )d = du p t u p t
n nj jR R

f t s e s f t s e t        

        ( , ; ) ( , ; )
1 1= d d dj u p t j u p t

n n j jR R
t f t e t f t e s s   

  
            

 
is satisfied in the rA  spherical coordinates, since the 
absolute value of the Jacobian  ,j

jt t s   is unit. 
Since for  1 1< <a Re p a  the first additive is zero, 
while the second integral converts with the help of 
Formulas 12(2,2.1), Formula (1) follows for = 1k :  

3)   , ; ; =n
jF f t s u p     

     0 1, , ; ; , ; ;n n
j j e j

p F f t u p p S F f t u p    

To accomplish the derivation we use Theorem 14 so 
that  

     
       

    0 1 1

0

0 1 1
0

, ;( , ; ) 1

0

, ; ; , ; ;lim

= , ; ; , ; ;lim

= d ,lim

n n
j

n n
j j

u p t p p i p ij ju p t
nR

F f t u p F f t e u p

F f t u p F f t u p p p i p i

f t e e t
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where  = 0, ,0,1,0, ,0 n

je R   with 1 on the j -th 
place. If the original  | | 1

1
jjj n

nf t s s    exists, then 
 | | 1

1
mmm n
nf t s s    is continuous for 0 1m j    

with 0 l lm j   for each = 1, ,l n , where 0 :=f f . 
The interchanging of 0lim  and nR  may change a 
domain of convergence, but in the indicated in the 
theorem domain  1 1< <a Re p a , when it is non void, 
Formula (3) is valid. Applying Formula (3) in the rA  
spherical coordinates by induction to 

  | | 1
1 : ,0mmm n

n l lf t s s m j m j l        

with the corresponding order subordinated to  
 | | 1

1
jjj n

nf t s s   , or in the rA  Cartesian coor- 
dinates using Formula 12(1.1) for the partial derivatives 

  | | 1
1 ) : ,0mmm n

n l lf t s s m j m j l        

with the corresponding order subordinated to  
 | | 1

1/ jjj n
nf t t t    we deduce Expressions (1) and (1.1) 

with the help of Statement 6 from §  XVII.2.3 [19] 
about the differentiation of an improper integral by a 
parameter and §  2. 

2.22. Remarks 

For the entire Euclidean space nR  Theorem 21 for 
  jf t s   gives only one or two additives on the right 

side of 21(1) in accordance with 21(3).  
Evidently Theorems 4, 11 and Proposition 10 are 

accomplished for      1; , ,
, ; ;j j kk t t

F f u p 


 also.  
Theorem 12 is satisfied for    1; , ,j j kk t t

F


 and any 
    1 , ,j j j k  , so that  
     = ; =l l j l j ks s k t t t   f o r  e a c h  1 l k  , 

= 0mp  and = 0m  for each     1 1 , ,m j j k    
(the same convention is in 13, 14, 17, 21, see also below). 
For    1; , ,j j kk t t

F


 in Theorem 13 in Formula 13(1) it is  

natural to put = 0mt  and = 0mh  for each  
    1 1 , ,m j j k   , so that only  1k   additives 

with 0h ,    1 , ,j j kh h  on the right side generally may 
remain. Theorems 14 and 17 and 21 modify for  

   1; , ,j j kk t t
F


 putting in 14(1) and 17(1,2) and 21(1)  

= 0jt  and = 0j  respectively for each  
    1 , ,j j j k  .  

To take into account boundary conditions for domains 
different from vU , for example, for bounded domains 
V  in nR  we consider a bounded noncommutative mul- 
tiparameter transform  

1)      , ; ; =: , ; ;n n
V VF f t u p F f t u p   .  

For it evidently Theorems 4, 6-8, 11, 13, 14, 16, 17, 
Proposition 10 and Corollary 4.1 are satisfied as well 
taking specific originals f  with supports in V . 

At first take domains W  which are quadrants, that is 
canonical closed subsets affine diffeomorphic with  

=1
= ,

nn
j jj

Q a b   , where <j ja b    ,  

 , := : j j j ja b x R a x b       denotes the segment in  

R . This means that there exists a vector nw R  and a 
linear invertible mapping C  on nR  so that  
  =C W w Q . We put  ,1

1:= , , , , : =j
j n j jt t t t t a  , 

 ,2
1:= , , , , : =j

j n j jt t t t t b  . Consider  
 1= , , n

nt t t Q . 

2.23. Theorem 

Let  f t  be a function-original with a support by t  
variables in nQ  and zero outside nQ  such that  

  jf t t   also satisfies Conditions 1(1-4). Suppose that 
 , ;u p t   is given by 2(1,2,2.1) or 1(8,8.1) over rA  

with 2 <r  , 12 2 1r rn    . Then  

1)                ,2 ,11; ,2 ,2 1; ,1 ,1, ; ; = , ; ; , ; ;
j jn n t j j n t j j

j n n nQ Q Q
F f t t t u p F f t t u p F f t t u p          

    0
=1

, ; ;
j

n
k e nk Q

k

p p S F f t t u p 
 

  
 

  

in the rA  spherical coordinates, or  

              ,2 ,11; ,2 ,2 1; ,1 ,1
0, ; ; , ; ; , ; ;

j jn t j j n t j j n
n n j e njQ Q Q

F f t t u p F f t t u p p p S F f t t u p            
 

 
in the rA  Cartesian coordinates in a domain rW A ; 
if =ja   or =jb  , then the addendum with ,1jt  
or ,2jt  correspondingly is zero.  

Proof. Here the domain nQ  is bounded and f  is 
almost everywhere continuous and satisfies Conditions  

1(1-4), hence  
      1exp , ; , ,n

n rf t u p t L R A    

for each rp A , since   exp , ;u p t   is continuous 
and    nsupp f t Q .  

Analogously to §  12 the integration by parts gives  

2)                 =

=
exp , ; d = exp , ; exp , ; d ,

t bb bj jj j
j j j ja at aj jj j

f t t u p t t f t u p t f t u p t t t              

where  1= , , nt t t . Then the Fubini's theorem implies:  
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3)            1 1 1

1 1 1
exp , ; d = exp , ; d d

b b b b bj j n j j
n j j jQ a a a a aj j n j

f t t u p t t f t t u p t t t  

 

               

         

    

,2 ,2 ,1 ,1

, = , =

1
0

1=1

= exp , ; d ] [ exp , ; d

   exp , ; d

j j j j j j
n nt Q t b t Q t aj j j j

j
b bn

k ek a ank

f t u p t t f t u p t t

p p S f t u p t t

 



 

     
 

   
 

 

  
 

in the rA  spherical coordinates or  

3.1)      exp , ; dn jQ
f t t u p t t    

         
    

,2 ,2 ,1 ,1

, = , =

1
0

1

= exp , ; d exp , ; d

   exp , ; d

j j j j j j
n nt Q t b t Q t aj j j j

b bn
j e j a an

f t u p t t f t u p t t

p p S f t u p t t

 



 

           
     

 

 
 

 
in the rA  Cartesian coordinates, where as usually  

 1 1 1= , , ,0, , ,j
j j nt t t t t   , 1 1 1d = d d d dj

j jt t t t t   . 
This gives Formulas (1,1.1), where  

4)       ,1; , , ,, , ; ; ;
j kn t j k j k j k

nQ
F f t t u p t p    

    1 1 1 , , ,

1 1 1
= exp , ; d

b b b bj j n j k j k j k

a a a aj j n
f t u p t t 

 
     

is the non-commutative transform by ,j kt ,  
12 2 1r rn    , ,d j kt  is the Lebesgue volume element 

on 1nR  . 

2.24. Theorem 

If a function    nQ
f t t  is original together with its  

derivative     1
n

n nQ
f t t s s    or  

    1
n

n nQ
f t t t t   , where  ;n

uF p   is an image  

function of    nQ
f t t  over the Cayley-Dickson  

algebra rA  with 2 r N  , 12 2 1r rn    , for the 
function  , ;u p t   given by 2(1,2,2.1) or 1(8,8.1), 

=1
= 0,

nn
jj

Q b   , > 0jb  for each j , then  

1)    
1

0 1 21 2
=0

; 1lim
n

mn
e e n e unp m

p p S p S p S F p 




    
  

     
1

1( ) (0,0; )
0 1, 1 1 21 21 < < ; 1 < < ;  ,1

; = 1 0
n m m

nn m l u
j j e j e j e uj j n m jn mj j n l l n l j

p p S p S p S F p f e
 



 
 



 

      

    
 

  

in the rA  spherical coordinates, or  

1.1)    
1

0 1 0 2 01 2
=0

; 1lim
n

mn
e e n e unp m

p p S p p S p p S F p 




              
  

     
1

1( ) (0,0; )
0 0 01 21 21 < < ; 1 < < ;  ,1

; = 1 0
l m

nn m l u
j e j e j e uj j n m jn mj j n l n l jn m

p p S p p S p p S F p f e
 



 
  

      

                
 


 
in the rA  Cartesian coordinates, where  

   , 00 = lim nt Q tf f t  , 
p  tends to the infinity inside the angle  

  < π 2Arg p   for some 0 < < π 2 .  
Proof. In accordance with Theorem 23 we have 

Equalities 23(1,1.1). Therefore we infer that  

2)       ,1; , , ,, , ; ; ;
j kn t j k j k j k

nQ
F f t t u p t p    

      1 1 1
1 1 1

0 1 1 1,

= d d d d exp , ; ,lim
b b b bj j n

j j na a a at j j nj j k

t t t t f t u p t


 
 

   
      

 
where ,1 = = 0j ja , ,2 = > 0j jb , = 1,2k . Mention, 
that 

   
,

2, 21, 1
1 1, ,1

= : = , , =
j l jll

l j j l j
t t t t       

    

for every 1 j n  . Analogously to §  12 we apply 

Formula (2) by induction = 1, ,j n , 12 2 1r rn    , 

to  

     
  

1
1 , ,

, ,

n n j
n j n

n

f t s s s f t s s s

f t s s
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instead of    jf t s s  ,  = ;j js s n t  as in §  2, or 
applying to the partial derivatives  

     1
1 , , , ,n n j

n j n nf t t t f t t t f t t             

instead of   jf t t   correspondingly. If > 0js  for 
some 1j  , then 1 > 0s  for nQ  and  

  , ;
= 0lim

lu p t

p e


  for such ( )lt , where  

 1= , , nt t t ,    1, , nl l l  , 1= nl l l  ,  
 ( ) ( ) ( )

1= , ,l l l
nt t t ,  ( ) =l

j jt a  for = 1jl  and ( ) =l
j jt b   

for = 2jl , 1 2 1rj   . Therefore,  

   

   

( )| | ( ) ( , ; )

{1,2}; =1, ,

(0,0; )

1lim

= 1 0 ,

ll l u p t

p l j nj

n u

f t e

f e







 








  

since    ,0; = 0,0;u p u  , where  

   ( )
( )

;= lim l
l

nt Q t tf f t  . 

In accordance with Note 8 [4]  

       1
,| ( )|<π /2

, , ; ; ; = 0lim
n n

n nQp Arg p
F f t s s t u p t p


  

 
    

in the rA  spherical coordinates and  

       1
,| ( )|<π /2

, , ; ; ; = 0lim
n n

n nQp Arg p
F f t t t t u p t p


  

 
    

 
in the rA  Cartesian coordinates, which gives the state- 
ment of this theorem. 

2.25. Theorem 

Suppose that    nQ
f t t  is an original function,  

 ;nF p   is its image,    | | 1
1

jjj n
n nQ

f t t t t    is 
an original, 1= nj j j  , 10 , , nj j Z  , 

12 2 1r rn    , <k ka b     for each  
= 1, ,k n ,    1= , , nl l l ,  0,1,2kl  , = rW A  for  

bounded nQ . Let   1= : <rW p A a Re p  for  
=kb   for some k  and finite ka  for each k ; 

  1= : <rW p A Re p a  for =ka   for some k  
and finite kb  for each k ;  

  1 1= : < <rW p A a Re p a  when =ka   and 
=lb   for some k  and l ;  ( ) ( ) ( )

1= , ,l l l
nt t t .  

We put ( ) =l
k kt t  and = 0kq  for = 0kl , ( ) =l

k kt a  
for = 1kl , ( ) =l

k kt b  for = 2kl ,    1= , , nq q q , 

1= nq q q  ,  

     | | 1
1 1 1 1= max , : ,0mmm n

n k ka a f a f t t t m j m j k       , 

     | | 1
1 1 1 1= min , : ,0  mmm n

n k ka a f a f t t t m j m j k           if 1 1<a a . 

 
If =ka   and =kb   for nQ  with a given k , 

then = 0kl . If either >ka   or <kb   for a 
marked k , then  0,1,2kl  . We also put  

   = =k k kh h l sign l  for each k , where   = 1sign x   
for < 0x ,  0 = 0sign ,   = 1sign x  for > 0x ,  

 =h h l , 1= nh h h  ,  

      1 1:= , , n nlj l sign j l sign j . 

Let the vector  l  enumerate faces ( )
n
lQ  in 1

n
kQ   

for   = 1h l k  , so that 1 ( )| ( )|=
=n n

k lh l k
Q Q  ,  

( ) ( ) =n n
l mQ Q    for each    l m  (see also more 

detailed notations in §  28).  
Let the shift operator be defined:  

    ( ) 1 1; := ; π 2m n nT F p F p i m i m     ,  

also the operator >ka   

     1
( ) 1

; := ;
mm n

m e en
SO S F p S S F p  ,  

where    1= , , [0, )n n
nm m m R   , ( ) ( )=k

m k mS S  
for each positive number 0 < k R , 0 =S I  is the unit 
operator for   = 0m  (see also Formulas 12(3.1-3.7)). 
As usually let  1 = 1,0, ,0e  ,   ,  = 0, ,0,1ne   be 
the standard orthonormal basis in nR  so that  
  1 1= n nm m e m e  .  

Theorem. Then  

1)            | | 1 21
1 1 2

, , ; ; ; = , ; ;
jj j jjn j nnn

n n ne e enQ Q
F f t t t t u p t p R R R F f t t u p         

 

     
1 |( )|; = ;0 ; 0 ; = ; =0 fo =0, for each =1, , ; ( ) {0,1,2}

|( )| | ( )| | | ( ) ( )1 2 1
11 2

( )

1 , ; ;

n
k k k k k k k k k k k klj m q h j m q h sign l j q r l j k n l

lj m qm m qn h lj q lj ljn n
n ne e en Q lj

R R R F f t t t t u p 
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for  , ;u p t   in the rA  spherical coordinates or the 

rA  Cartesian coordinates over the Cayley-Dickson algebra 

rA  with 2 <r  , where  
1.1) 0 1 22 1 2

:=e e eR p p S p S  ,   , 

0 1 21 2
:=e e e n en n

R p p S p S p S      

in the rA  spherical coordinates, while  

1.2), 0 22 2
:=e eR p p S ,   , 0:=e n en n

R p p S  in  
the rA  Cartesian coordinates, i.e.  =e ej j

R R p  are  

operators depending on the parameter p . If ( ) =l
jt   

for some 1 j n  , then the corresponding addendum 
on the right of (1) is zero.  

Proof. In view of Theorem 23 we get the equality  

2)   1| | 1 ( , ; )1 11
1 1 1 dm m m mmm u p tk k k n

n k k k nQ
f t t t t t t e t  

 
           

          | | ( , ; ) | | ( , ; )1 1
1 11 1= d / d d

bk bm mm mkk m u p t k m u p tn n
n n n nn n k kR Q R Q akak

t f t t t e t f t t t e t t  
  

                  

 
is satisfied for 0 k km j   for each = 1, ,k n  with 

<m j . On the other hand, for p W  additives on the 
right of (2) convert with the help of Formula 23(1). Each 
term of the form  

 

   

( )
| ( )|

| | ( ) ( ) ( , ; )1
1

( )

d l
n h l nR Q

qqq l l u p tn
n nQ l

t

f t t t t e 

 





  
    
  




 

can be further transformed with the help of (2) by the 
considered variable kt  only in the case = 0kl .  
Applying Formula (2) by induction to partial derivatives  

| | 1
1

jjj n
nf t t   , | | 1 2

2
jj j j n

nf t t   ,  ,   
j jn n

nf t  , , nf t   as in §  21 and using Theorem  

14 and Remarks 22 we deduce (1). 

2.26. Theorem 

Let    
1, ,1Uf t t


 be a function-original with values in 
Ar with 2 <r  , 12 2 1r rn    , u  is given by 
2(1,2,2.1) or 1(8,8.1),  

1)    1

0 0
:= d , then

t tng t f x x   

2)   1, ,1
, ; ;n

UF f t u p 


 

    1 2 1, ,1
= , ; ;n

e e e Un
R R R F g t t u p 


  

in the domain    1> max ,0Re p a , where the operators 

e j
R  are given by Formulas 25(1,1,1.2).  

Proof. In view of Theorem 25 the equation  

3)      
1, ,1 1 2

, ; ; = , ; ;n n
U e e en

F f t u p R R R F g t u p  


  

 
    |( )| | ( )| ( )1 2

1 2
1 | |; 0 1; =1; = ; =1, , ; =0, , =01

1 , ; ; ,
k k k k k

l mm m n h l ln
e e en

l m m h h sign l for each k n q qn

R R R F g t u p 

   

 
 

  

 
is satisfied, since     1 1, ,1

=n
n Ug t t t f t  


 ,  

where 1 = 1, , = 1, = 1n jj j l  for each =1, ,j n . Equa- 
tion (3) is accomplished in the same domain  

   1> max ,0Re p a , since  0 = 0g  and  g t  also ful- 
fills conditions of Definition 1, while  

    1 1< max ,0a g a f b  for each > 0b , where 

1a R . On the other hand,  g t  is equal to zero on 

1, ,1U   and outside 1, ,1U   in accordance with formula 
(1), hence all terms on the right side of Equation (3) with 

> 0l  disappear and    1, ,1supp g t U  . Thus we get 
Equation (2). 

2.27. Theorem 

Suppose that  ;kF p   is an image  
    ; , ,1

1, ,1
, ; ;k t tk

UF f t t u p 


 of an original function 

 f t  for u  given by 2(1,2,2.1) in the half space  
  1:= : >rW p A Re p a  with 2 <r  ,  

1 = 0p ,   , 1 = 0jp  ; 1 = π 2 , , 1 = π 2j   for 
each 2j   in the rA  spherical coordinates or  

1 = 0 , , 1 = 0j   for each 2j   in the rA  Car- 
tesian coordinates;  

1) the integral  0 ; d
i j k

p ij j
F p z z


  converges,  

where 0 1 1= k k rp p p i p i A    , jp R  for each 
= 0, , 2 1rj  , 12 2 1r rk    ,  

  1, ,1 1 1:= , , : 0, , 0k
k kU t t R t t     . Let also  

2) the function  ;kF p   be continuous by the va- 
riable rp A  on the open domain W , moreover, for 
each 1>w a  there exist constants > 0wC  and > 0w  
such that  

3)    ; 'expk
w wF p C p    for each ( )R np S ,  

  := : R rS z A Re z w  ,    0 < < 1R n R n   for  

each n N ,   =limn R n  , where 1a  is fixed,  

0 0= k k ri i A      is marked, j R   for each  
= 0, ,j k . Then  

4)  0 ; d =
i j k

p ij j
F p z z


  

    ; ,...,1
1, ,1

, ; ; ,k t tk
e U jj

S F f t t u p   
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where 1 = 0p , , 1 = 0jp   for each 2j  ;  

1 = π 2 , , 1 = π 2j   and  = ;j js k t  in the rA  
spherical coordinates, while 1 = 0 , , 1 = 0j   and  

=j jt  in the Ar Cartesian coordinates correspondingly 
for each 1j  .  

Proof. Take a path of an integration belonging to the 
half space  Re p w  for some constant 1>w a . Then  

    

   
1, ,1

0 1 1
1, ,1

exp , ; d

exp d <

U

kU

f t u p t t

C p a t t t



     









 

converges, where = > 0C const , 0p w . For > 0jt  
for each = 1, ,j k  conditions of Lemma 2.23 [4] (that 
is of the noncommutative analog over rA  of Jordan’s 
lemma) are satisfied. If jt  , then js  , since all 

1, , kt t  are non-negative. Up to a set 1, ,1U   of k  
Lebesgue measure zero we can consider that  

1 > 0, , > 0kt t . If js  , then also 1s  . The 
converging integral can be written as the following limit:  

5)  0 ; d
i j k

p ij j
F p z z


  

   0
0< 0

= ; exp dlim
i j k

p ij j
F p z z z


 




   

for 1 j k  , since the integral  ; d
S k

S
F w z z



 
     

is absolutely converging and the limit  
 0 exp = 1lim z    uniformly by z  on each com- 

pact subset in rA , where S  is a purely imaginary 
marked Cayley-Dickson number with = 1S . Therefore, 
in the integral  

6)  0 ; d =
i j k

p ij j
F p z z


  

    0
1, ,1

exp , ; d d
i j

p i Uj j
f t u p z t t z

        


 

the order of the integration can be changed in accordance 
with the Fubini’s theorem applied componentwise to an 
integrand 0 0= n ng g i g i   with lg R  for each  

= 0, ,l n :  

7)  0 ; d
i j k

p ij j
F p z z


  

    

    0

0
1, ,1

, ;

1, ,1

= d exp , ; d

= d d .

i j

U p ij j

i u p z tj

U p ij j

t f t u p z t z

f t e z t




  

   
 

 
 

 

 





 

Generally, the condition 1 1= 0, , = 0jp p   and  

1 1= π 2, , = π 2j    in the rA  spherical coordi- 
nates or 1 1= 0, , = 0j    in the rA  Cartesian coor- 
dinates for each 2j   is essential for the convergence 
of such integral. We certainly have  

8)  *cos d
b ij j

j j jp ij j
i z z   

 

 

=

=

=

=

= sin

= cos π 2

bj j

j j j j
pj j

bj j

j j j j
pj j









   

   

  

    

 

and  

9)  *sin d
b ij j

j j j jp ij j
i z z   

 

 

=

=

=

=

= cos

= sin π 2

bj j

j j j j
pj j

bj j

j j j j
pj j









   

   

   

    

 

for each > 0j  and < < <j jp b   and  
= 1, ,j k . Applying Formulas (3-9) and 2(1,2,2.1) or 

1(8,8.1) and 12(3.1-3.7) we deduce that:  

 

    

    1

0

1, ,1

; , ,

1, ,1

; d

= exp , ; d

= , ; ; ,k

i j k

p ij j

e jj U

k t t
e U jj

F p z z

S f t u p t t

S F f t t u p



 

  







  

   









 

where  1= , , kt t t , =j j ks t t   for each  
1 <j k , =k ks t , =j js  in the rA  spherical coor- 
dinates or =j jt  in the rA  Cartesian coordinates. 

2.28. Application of the Noncommutative  
Multiparameter Transform to Partial  
Differential Equations 

Consider a partial differential equation of the form:  
1)     =A f t g t , where  

2)        | | 1
1| |

:= ,jjj n
j nj

A f t a t f t t t       

 ja t A  are continuous functions, where 0 Z  , 
 1= , , nj j j , 1:= nj j j  , 0 kj Z  ,   is a 

natural order of a differential operator A , 2 r ,  
12 2 1r rn    . Since  

 = ; =k k k ns s n t t t   for each = 1, ,k n , the 
operator A  can be rewritten in s  coordinates as  

2.1)     A f t s  

     | | 1
1| |

:= .jjj n
j nj

b t f t s s s       

That is, there exists 0jb   for some j  with 
=j   and = 0jb  for >j  , while a function  

   1
1,| |=

jj n
j nj j

b t s s s   is not zero identically on the 
corresponding domain V . We consider that  

(D1) U  is a canonical closed subset in the Euclidean 
space nR , that is   =U cl Int U , where  Int U  
denotes the interior of U and  cl U  denotes the closure 
of U.  

Particularly, the entire space nR  may also be taken. 
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Under the linear mapping    1 1, , , ,n nt t s s    the 
domain U  transforms onto V .  

We consider a manifold W  satisfying the following 
conditions (i-v).  

i). The manifold W  is continuous and piecewise C , 
where lC  denotes the family of l  times continuously 
differentiable functions. This means by the definition that 
W  as the manifold is of class 0

locC C . That is W  is 
of class C  on open subsets 0, jW  in W  and  

 0,\ jj
W W  has a codimension not less than one in 
W .  

ii). 
=0

=
m

jj
W W , where 0 0,= kk

W W , =j kW W   
for each k j , = Rm dim W , =R jdim W m j ,  

1j jW W   .  
iii). Each Wi with = 0, , 1j m  is an oriented C - 

manifold, jW  is open in 
=

m

kk j
W . An orientation of 

1jW   is consistent with that of jW  for each  
= 0,1, , 2j m  . For > 0j  the set jW  is allowed to 

be void or non-void.  
iv). A sequence kW  of C  orientable manifolds 

embedded into nR , 1  , exists such that kW  uni- 
formly converges to W  on each compact subset in nR  
relative to the metric dist .  

For two subsets B  and E  in a metric space X with 
a metric   we put  

3)  , :=dist B E  

      max , , , ,sup supb B e Edist b E dist B e   

where     , := ,inf e Edist b E b e ,  
    , := ,inf b Bdist B e b e , b B , e E .  

Generally, =Rdim W m n . Let     1 , ,k k
me x e x  

be a basis in the tangent space k
xT W  at kx W  con- 

sistent with the orientation of kW , k N .  
We suppose that the sequence of orientation frames 
    1 ,...,k k

k m ke x e x  of kW  at kx  converges to  
    1 , , me x e x  for each 0x W , where  

0=limk kx x W , while    1 , , me x e x  are linearly in- 
dependent vectors in nR .  

v). Let a sequence of Riemann volume elements k  
on kW  (see §  XIII.2 [19]) induce a limit volume ele- 
ment   on W , that is,  
   = lim

k
kB W B W    for each compact cano- 

nical closed subset B  in nR , consequently,  
 0\ = 0W W . We shall consider surface integrals of 

the second kind, i.e. by the oriented surface W (see (iv)), 
where each jW , = 0, , 1j m   is oriented (see also §  
XIII.2.5 [19]).  

vi). Let a vector  w Int U  exist so that -U w  is 
convex in nR  and let U  be connected. Suppose that 
a boundary U  of U  satisfies Conditions (i-v) and,  

vii) let the orientations of kU  and kU  be con- 
sistent for each k N  (see Proposition 2 and Definition 
3 [19]).  

Particularly, the Riemann volume element λk on kU  

is consistent with the Lebesgue measure on kU  induced 
from nR  for each k . This induces the measure   on 

U  as in (v).  
Also the boundary conditions are imposed:  

4)    0= ,
U

f t f t


   

    | | 1
1 ( )=qqq n

n q
U

f t s s f t


    for 1q   ,  

where  1= , , n
ns s s R ,    1= , , nq q q ,  

1= nq q q  , 0 kq Z   for each k , t U  is 
denoted by t , 0f , ( )qf  are given functions. Generally 
these conditions may be excessive, so one uses some of 
them or their linear combinations (see (5.1) below). Fre- 
quently, the boundary conditions  

5)    0= ,
U

f t f t


      =l l
l

U
f t f t


    

for 1 1l     are also used, where   denotes a real 
variable along a unit external normal to the boundary 

U  at a point 0t U . Using partial differentiation in 
local coordinates on U  and (5) one can calculate in 
principle all other boundary conditions in (4) almost 
everywhere on U .  

Suppose that a domain 1U  and its boundary 1U  
satisfy Conditions (D1, i-vii) and 1 1

= Ug g  is an ori- 
ginal on nR  with its support in 1U . Then any original g 
on nR  gives the original 22

=:Ug g  on nR , where  

2 1= \nU R U . Therefore, 1 2g g  is the original on nR , 
when 1g  and 2g  are two originals with their supports 
contained in 1U  and 2U  correspondingly. Take now 
new domain U  satisfying Conditions (D1, i-vii) and 
(D2-D3):  

D2) 1U U  and 1U U   ;  
D3) if a straight line   containing a point 1w  (see 

(vi)) intersects 1U  at two points 1y  and 2y , then 
only one point either 1y  or 2y  belongs to U , where 

1 1w U , 1U w  and 1 1U w  are convex; if   in- 
tersects 1U  only at one point, then it intersects U  
at the same point. That is,  

D4) any straight line   through the point 1w  either 
does not intersect U  or intersects the boundary U  
only at one point.  

Take now g  with  supp g U , then  

  11Usupp g U  . Therefore, any problem (1) on 1U  
can be considered as the restriction of the problem (1) 
defined on U , satisfying (D1-D4, i-vii). Any solution 
f  of (1) on U  with the boundary conditions on U  

gives the solution as the restriction 
1U

f  on 1U  with 
the boundary conditions on U .  

Henceforward, we suppose that the domain U  satis- 
fies Conditions (D1,D4, i-vii, which are rather mild and 
natural. In particular, for nQ  this means that either 

=ka   or =kb   for each k . Another example is: 

1U  is a ball in nR  with the center at zero,  

 1 1 ,1= \nU U R U  , 1 = 0w ; or  
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 1= : n
nU U t R t      with a marked number  

0 < < 1 2 . But subsets ( )lU  in U  can also be spe- 
cified, if the boundary conditions demand it.  

The complex field has the natural realization by 2 2   

real matrices so that 
0 1

=
1 0

i
 
  

, 2 1 0
=

 0 1
i

 
 
 

. The qua-  

ternion skew field, as it is well-known, can be realized 
with the help of 2 2  complex matrices with the gene-  

rators 
10

= 
01

I
 
 
 

, 
01

=
1 0

J
 
  

, 
0

=
0

i
K

i

 
  

,  

0
=

0

i
L

i

 
  

, or equivalently by 4 4  real matrices.  

Considering matrices with entries in the Cayley-Dickson 
algebra vA  one gets the complexified or quaternionified 
Cayley-Dickson algebras  v C

A  or  v H
A  with elements 

=z aI bi  or =z aI bJ cK eL   , where  
, , , va b c e A , such that each va A  commutes with the 

generators i , I , J , K  and L . When = 2r , f  
and g  have values in 2 =A H  and 2 4n   and 
coefficients of differential operators belong to 2A , then  

the multiparameter noncommutative transform operates 
with the associative case so that  

   =n nF af aF f  

for each a H . The left linearity property  
   =n nF af aF f  for any , ,J K La H  is also accom- 

plished for either operators with coefficients in R  or 
=iRC IR iR  or , , =J K LH IR JR KR LR    and 

f  with values in vA  with 1 2 1vn   ; or vice versa 
f  with values in iC  or , ,J K LH  and coefficients a  

in vA  but with 1 4n  . Thus all such variants of ope- 
rator coefficients ja  and values of functions f  can be 
treated by the noncommutative transform. Henceforward, 
we suppose that these variants take place.  

We suppose that  g t  is an original function, that is 
satisfying Conditions 1(1-4). Consider at first the case of 
constant coefficients ja  on a quadrant domain nQ . Let 

nQ  be oriented so that =ka   and =kb   for 
each k n   ; either =ka   or =kb   for each 

>k n  , where 0 n   is a marked integer number. 
If conditions of Theorem 25 are satisfied, then  

6)                1 2

1 2
| |

, ; ; = , ; ;
jj j nn n

j e e e nn Q
j

F A f t u p a R p R p R p F f t t u p


  


    
        

           

 

1 |( )|; = ; 0 ; 0 ; = ( ); =0 =0, =1,..., ; ( ) {0,1,2}

|( )| 1 2 | ( )| | | ( ) ( ) 1
11 2

( )

1 , ; ;

=

k k k k k k k k k k k k
nlj m q h j m q h sign l j q for l j for each k n l

mm m nlj qqn h lj q lj lj n
e e e n nn Q lj

n

R p R p R p F f t t t t u p

F g t

 



     







                 



 

  , ; ;nQ
t u p 

 

 
for  , ;u p t   in the rA  spherical or rA  Cartesian 
coordinates, where the operators  

jeR p  are given by 
Formulas 25(1.1) or 25(1.2). Here  l  enumerates faces 

( )
n
lQ  in 1

n
kQ   for   = 1h l k  , so that  

1 ( )| ( )|=
=n n

k lh l k
Q Q  , ( ) ( ) =n n

l mQ Q    for each  

   l m  in accordance with §  25 and the notation of 
this section.  

Therefore, Equation (6) shows that the boundary con- 
ditions are necessary:  

  | | ( ) 1
1

( )

qqq l n
n nQ l

f t t t


    for j  ,   1lj  ,  

0ja  , = 0kq  for = 0k kl j , =k k k km q h j  ,  

 =k k kh sign l j , = 1, ,k n , ( )
( )

l n
lt Q . But  

= 1n
Rdim Q n   for nQ   , consequently,  

  | | ( ) 1
1

( )

qqq l n
n nQ l

f t t t


    can be calculated if know  

  | | ( ) 1
(1) ( )

( )

l m
m nQ l

f t t t
 


    for = q , where  

 1= , , m   ,  =m h l , a number  k  corres-  

ponds to ( ) > 0kl , since = 0kq  for = 0kl  and  
> 0kq  only for > 0k kl j  and >k n  . That is,  

(1) ( ), , mt t   are coordinates in nR  along unit vectors 
orthogonal to ( )

n
lQ .  

Take a sequence kU  of sub-domains  
1k kU U U   for each k N  so that each  

( )

,=1
=

m kk n
k ll

U Q  is the finite union of quadrants ,
n
k lQ ,  

 m k N . We choose them so that each two different 
quadrants may intersect only by their borders, each kU  
satisfies the same conditions as U  and  

7)  , = 0lim
k

k dist U U .  

Therefore, Equation (6) can be written for more gen- 
eral domain U  also.  

For U  instead of nQ  we get a face ( )lU  instead 
of ( )

n
lQ  and local coordinates (1) ( ), , m    orthogo- 

nal to ( )lU  instead of (1) ( ), , mt t   (see Conditions 
(i-iii) above).  

Thus the sufficient boundary conditions are:  
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5.1)     | | ( ) ( )1
(1) ( ) ,( )( )

( | =lj ljm
m U ljlj

f t t
         

for = q , where  =m h lj , j  ,   1lj  ,  
0ja  , = 0kq  for = 0k kl j , =k k k km q h j  ,  

 =k k kh sign l j , 0 1k kq j    for >k n  ;  
 ( )

,( )
l

l t  are known functions on ( )lU , ( )
( )

l
lt U . 

In the half-space 0nt   only  

5.2)  
=0n tn

f t t     

are necessary for = <q   and q  as above.  
Depending on coefficients of the operator A  and the 

domain U  some boundary conditions may be dropped, 
when the corresponding terms vanish in Formula (6). For 
example, if 2

1 2=A t t   ,  1,1 =U U ,  = 2n ,  then 

0U
f 


   is not necessary, only the boundary condition  

U
f


 is sufficient.  

If = nU R , then no any boundary condition appears. 
Mention that  

5.3)     0 ( , ; ); ; ; = u p aF f a u p f a e   ,  

which happens in (6), when ( )= la t  and   =h l n .  
Conditions in (5.1) are given on disjoint for different (i) 

submanifolds ( )lU  in U  and partial derivatives are 
along orthogonal to them coordinates in nR , so they are 
correctly posed.  

In rA  spherical coordinates due to Corollary 4.1 
Equation (6) with different values of the parameter   
gives a system of linear equations relative to unknown 
functions   ( ) , ; ;n

mS F f t u p  , from which  
  , ; ;nF f t u p   can be expressed through a family  

        | ( )| | | ( ) ( ) 1
( ) ( ) 1

( )

, ; ; ; , ; ; :qqn n h l q l l nn
m m n nQ l

S F g t u p S F f t t t t u p m Z  



  
     
  

  

 
and polynomials of p , where Z  denotes the ring of 
integer numbers, where the corresponding term | ( )|n h lF   
is zero when ( ) =l

jt   for some j . In the rA  Carte- 

sian coordinates there are not so well periodicity proper- 
ties generally, so the family may be infinite. This means 
that   , ; ;nF f t u p   can be expressed in the form:  

8)        ( ) ( )
( )

, ; ; = , ; ;n n
m m

m

F f t u p P p S F g t u p   

      | ( )| | | ( ) ( ) 1
,( ),( ),( ) ( ) 1( )

,( ),( ),|( )| 1,( )

, ; ; ,qqn h lj q lj lj n
j q l m m U nlj

j q l l m

P p S F f t t t t u p 




      

 
where  ( )mP p  and  ,( ),( ),( )j q l mP p  are quotients of 
polynomials of real variables 0 1, , , np p p . The sum in 
(8) is finite in the rA  spherical coordinates and may be 
infinite in the Ar Cartesian coordinates. To the obtained 
Equation (8) we apply the theorem about the inversion of 
the noncommutative multiparameter transform. Thus this 
gives an expression of f  through g  as a particular 
solution of the problem given by (1,2,3.1) and it is pre- 
scribed by Formulas 6.1(1) and 8.1(1).  

For  ; ; ;nF f u p   Conditions 8(1,2) are satisfied, 
since  ( )mP p  and  ,( ),( ),( )j q l mP p  are quotients of poly- 
nomials with real, complex or quaternion coefficients and 
real variables, also nG  and | ( )|n h lF   terms on the right 
of (6) satisfy them. Thus we have demonstrated the 
theorem.  

2.28.1. Theorem 
Suppose that  ; ; ;nF f u p   given by the right side of 
(8) satisfies Conditions 8(3). Then Problem (1,2,3.1) has 
a solution in the class of original functions, when g  
and ,( )l  are originals, or in the class of generalized 
functions, when g  and ,( )l  are generalized func- 
tions.  

Mention, that a general solution of (1,2) is the sum of 
its particular solution and a general solution of the 

homogeneous problem = 0Af . If 1 2
,( ) ,( ) ,( )=l l l     , 

1 2=g g g , 1 2=f f f , =j jAf g  and jf  on jU  
satisfies (5.1) with ,( )

j
l , = 1,j  2, then =Af g  and 

f  on U  satisfies Conditions (5.1) with ,( )l .  

2.28.2. Example 
We take the partial differential operator of the second 
order  

2
,

, =1 =1

= ,
n n

h m h m h h
h m h

A a              

where the quadratic form   ,,
:= h m h mh m

a a    is non- 
degenerate and is not always negative, because otherwise 
we can consider A . Suppose that , ,=h m m ha a R , 

,h h R    for each , = 1, ,h m n , 3A . Then we 
reduce this form  a   by an invertible R  linear ope- 
rator C  to the sum of squares. Thus  

9) 2 2

=1 =1

= ,
n n

h h h h
h h

A a t t         

where    1 1, , = , ,n nt t C    with real ha  and h  
for each h . If coefficients of A  are constant, using a 
multiplier of the type  exp h hh

s  it is possible to 
reduce this equation to the case so that if 0ha  , then 

= 0h  (see §  3, Chapter 4 in [20]). Then we can 
simplify the operator with the help of a linear trans- 



S. V. LUDKOVSKY 

Copyright © 2012 SciRes.                                                                                 APM 

89

formation of coordinates and consider that only n  may 
be non-zero if = 0na . For A  with constant coeffi- 
cients as it is well-known from algebra one can choose a 
constant invertible real matrix  , , =1, ,h m h m k

c


 corresponding 
to C  so that = 1ha  for h k  and = 1ha   for 

>h k , where 0 < k n  . For =k n  and = 0  the 
operator is elliptic, for = 1k n   with = 0na  and 

0n   the operator is parabolic, for 0 < <k n  and 
= 0  the operator is hyperbolic. Then Equation (6) 

simplifies:  

10)            2

=1

, ; ; = , ; ;
n

n n
h e nh Q

h

F A f t u p a R p F f t t u p   
   

           

       

1 ( ) ( ) 1 ( ) ( )

( ) ( ){1,2};( )=

,2 ,11; ,2 ,2 1; ,1 ,1

2

1 , ; ; ( , ; ;

, ; ; , ; ;

l n l l n l lh
n h e nhQ Ql ll l l eh h h

n nn t n n n t n n
n n nQ Q

e en n

F f t t t u p R p F f t t u p

F f t t u p F f t t u p

R

   

    

 

 


 

 

                     
                





              , ; ; , ; ; = , ; ;n n n
e n nn Q Q

p F f t t u p F f t t u p F g t u p        

 

 
in the rA  spherical or rA  Cartesian coordinates, where 

 = 0, ,0,1,0, ,0 n
he R   with 1 on the h -th place, 

0 =S I  is the unit operator, the operators  eh
R p  are 

given by Formulas 25(1.1) or 25(12) respectively.  
We denote by  S x  the delta function of a con- 

tinuous piecewise differentiable manifold S  in nR  
satisfying conditions (i-vi) so that  

         d = dn S mR S
x x x y y       

for a continuous integrable function  x  on nR ,  

where   = <dim S m n ,  dm y  denotes a volume ele- 
ment on the m  dimensional surface S (see Condition (v) 
above). Thus we can consider a non-commutative mul- 
tiparameter transform on U  for an original f  on U 
given by the formula:  

11)     1; , ; ;n t
U UF f t t u p 
   .  

    ;= , ; ;n t
UF f t t u p   

Therefore, terms like 1nF   in (10) correspond to the 
boundary nQ . They can be simplified:  

12)        ,2 ,11; ,2 1; ,1

2

, ; ; , ; ;
n nn t n n t n

n n nQ Q
e en n

F f t t u p F f t t u p     

 

                 
 

      1;= , ; ; ,n t
n nQ Q

F t f t t u p  

 
    

 
where  t   is a piecewise constant function on nQ  
equal to n  on the corresponding faces of nQ  ortho- 
gonal to ne  given by condition: either =n nt a  or  

=n nt b ;   = 0t   is zero otherwise.  
If =ka   or =kb  , then the corresponding term 

disappears. If nR  embed into rA  with  
12 2 1r rn     

as 1 nRi Ri  , then this induces the corresponding 
embedding   of nQ  or U  into rA . This permits to 
make further simplification:  

12.1)            1 ( ) ( ) 1 ( ) ( )

( ) ( )=1 {1,2};( )=

1 , ; ; , ; ;
n

l n l l n l lh
h e n n hh Q Ql lh l l l eh h h

a R p F f t t u p F f t t t u p    

 


                       
   

               1 1

0 0
= , , ; ; ; , ; ; ,n n

n n n nQ Q Q Q
F a t f t t u p t p F P t f t t u p      

   

          
 

 

 
where  = t    denotes a real coordinate along an ex- 
ternal unit normal  M t  to  U   at  t , so that 

 M t  is a purely imaginary Cayley-Dickson number, 
 a t  is a piecewise constant function equal to ha  for 

the corresponding t  in the face n
l eh h

Q  with > 0hl ; 
     , := := eh

P t p P t R p   for n
l eh h

t Q , = 1, ,h n , 
since    sin π = sin    and  

   cos π = cos    for each R  . Certainly the 
operator-valued function  P t  has a piecewise conti- 
nuous extension  P t  on nQ . That is  

13)         1 , , ; ; ;n
U UF t f t t u p t p   
      

        := exp , ; dn UR
t f t t u p t t     
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for an integrable operator-valued function  t  so that 
   t f t    is an original on U  whenever this in- te- 

gral exists. For example, when   is a linear combina- 
tion of shift operators ( )mS  with coefficients  ( ) ,m t p  
such that each  ( ) ,m t p  as a function by t U  for 
each p W  and  f t  are originals or f  and g  
are generalized functions. For two quadrants ,m lQ  and 

,m kQ  intersecting by a common face    

external normals to it for these quadrants have opposite 
directions. Thus the corresponding integrals in 1

,

n
Qm l

F 
  

and 1

,

n
Qm k

F 
  restricted on   summands cancel in  

 
1

, ,

n

Q Qm l m k
F 

 
.  

Using Conditions (iv-vii) and the sequence mU  and 
quadrants ,

n
m lQ  outlined above we get for a boundary 

problem on U  instead of nQ  the following equation:  

14)           
2

=1

, ; ; = , ; ;
n

n n
h e Uh

h

F A f t u p a R p F f t t u p       
  

                 
              

1 1

0 0
) , , ; ; , ; ;

    , ; ; , ; ; = , ; ; ,

n n
U U U U

n n n
n n U U

F t P t p f t t u p F a t f t t u p

F R p f t t u p F f t t u p F g t u p

     

      

 
               

  

 

 

where        =1
, := :=

n

h h hh
P t p P t a R p t        

for each 0t U  (see also Stokes’ formula in §  XIII. 
3.4 [19] and Formulas (14.2,14.3) below). Particularly, 
for the quadrant domain nQ  we have   = ha t a  for 

n
l eh h

t Q  with > 0hl ,   = nt   for n
l en n

t Q  with 
> 0nl  and zero otherwise.  
The boundary conditions are:  

14.1)         1
0 0 00

= , =
U U UU

f t t f t t  
  

  .  

The functions  a t  and  t  can be calculated from 
 : ha h  and n  almost everywhere on U  with the 
help of change of variables from  1, , nt t  to  
 1 1, , ,n ny y y , where  1, , ny y  are local coor- 
dinates in 0U  in a neighborhood of a point 0t U , 

=ny  , since 0U  is of class 1C . Consider the dif- 
ferential form  

  
1 1 1=1

1 d d d = d d
n hn

h h n nh
a t t t a y y


           

and its external product with  =1
d = d

n

h hh
t t   , 

then  

14.2)    =10 0
=  

n

h hhU U
a t a t

 
   and  

14.3)    
0 2 0

=
n n

n U U nU Ue e
t t    

  . 

This is sufficient for the calculation of 1n
UF 
 .  

2.28.3. Inversion Procedure in the Ar Spherical  
Coordinates 

When boundary conditions 28(3.1) are specified, this 
Equation 28(6) can be resolved relative to  

      , , ; ; ;n
UF f t t u p t p   , particularly, for Equa- 

tions 28.2(14,14.1) also. The operators e j
S  and jT  of 

§  12 have the periodicity properties:  

   4 ; = ;
j j

k k
e eS F p S F p   and 

   4 ; = ;k k
j jT F p T F p  , 

   2

1 1
; = ;k k

e eS F p S F p    and 

   2
1 1; = ;k kT F p T F p    

for each positive integer number k  and 1 2 1rj   . 
We put  

6.1)      4 4

1
; := ;j e ej j

F p S S F p 


   

for any 1 2 2rj   ,  

6.2)    4

2 1 2 1
; := ;r e r

F p S F p 
 

.  

Then from Formula 28(6) we get the following equa- 
tions:  

6.3)         1 2
0 1 1 0 1 1 2 2 0 1 1

=0 >| |

... ...  ;
b

j j jn
j n n w

p b wj

a p p T p p T p T p p T p T F p





       

   

        2

| | 1 |( )|; = ; 0 ; 0 ; = ( ); =0 =0, for each =1, , ; 0,1,2

|( )| 1
0 1 1 0 1 1 2 2 0 1 1

=0 >

=

   1

n
k k k k k k k k k k k k

n

b

j
j lj m q h j m q h sign l j q for l j k n l

m m mlj

n n
p b w

a

p p T p p T p T p p T p T

      






      

 


 

 

 
for each = 1, ,w n , where  

      ; = , ; ;n
nQ

F p F f t t u p    and 
      ; = , ; ;n

nQ
G p F g t t u p   . 

These equations are resolved for each = 1, ,w n  as it 
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is indicated below. Taking the sum one gets the result  
6.4)      1; = ; ;nF p F p F p    ,  

Since 

   

   

2 2 , ;4 4 4
=1 1 2 1

, ; , ;4

1
= =

r
u p t

e e ej j j r

u p t u p t
e

S S S e

S e e



 

 

 

 

       


. 

The analogous procedure is for Equation (14) with the 
domain U  instead of nQ .  

From Equation (6.3) or (14) we get the linear equation:  
15) ( ) ( )

( )

= ,l l
l

x   

where   is the known function and depends on the 
parameter  , ( )l  are known coefficients depending 
on p , ( )lx  are indeterminates and may depend on  , 

1 = 0,1l  for = 1h , so that ( ) 2 ( )1
=l e lx x  ; = 0,1,2,3hl  

for > 1h , where ( ) 4 ( )=l e lh
x x  for each > 1h  in ac- 

cordance with Corollary 4.1,    1= , , nl l l .  
Acting on both sides of (6.3) or (14) with the shift 

operators ( )mT  (see Formula 25(SO)), where 1 = 0,1m , 
= 0,1,2,3hm  for each > 1h , we get from (15) a system 

of 1 2( 1)2 k   linear equations with the known functions 

( ) ( ):=m mT   instead of  ,  :  
15.1) ( ) ( ) ( ) ( )( )

=l m l ml
T x   for each (m).  

Each such shift of   left coefficients ( )l  intact and 
 ( ) ( ) ( )= 1l m lx x


   with  1 1 1=   2l l m mod  ,  

 =   4h h hl l m mod   for each > 1h , where = 1  for 

1 1 1 = 2l m l  , = 2  otherwise. This system can be 
reduced, when a minimal additive group  

   
 



1:= ( ) :   2 ,   4  2 ;

generated by all with non-zero

coefficients in Equation (15)

jG l l mod l mod j k

l

  

 

is a proper subgroup of 1
2 4

kg g  , where  :=hg Z hZ  
denotes the finite additive group for 0 < h Z . Gene- 
rally the obtained system is non-degenerate for 1n   
almost all   1

0= , , n
np p p R   or in W , where  

1n   denotes the Lebesgue measure on the real space 
1nR  .  

We consider the non-degenerate operator A  with 
real, complex iC  or quaternion , ,J K LH  coefficients. 
Certainly in the real and complex cases at each point p , 
where its determinate  = p   is non-zero, a solution 
can be found by the Cramer’s rule.  

Generally, the system can be solved by the following 
algorithm. We can group variables by 1 2, , , kl l l . For a 
given 2 , , hl l  and 1 = 0,1l  subtracting all other terms 
from both sides of (15) after an action of ( )mT  with 

1 = 0,1m  and marked hm  for each > 1h  we get the 
system of the form  

16) 1 2 1=x x b  , 1 2 2=x x b   , 

which generally has a unique solution for 1n   almost 
all p :  

17)      1 12 2 2 2
1 1 2=x b b     

 
   ;  

     1 12 2 2 2
2 2 1=x b b     

 
   ,  

where 1 2, rb b A , for a given set  2 , nm m .  
When hl  are specified for each 1 h k   with 

0h h , where 01 < h k , then the system is of the type:  
18) 1 2 3 4 1=ax bx cx dx b   ,  

1 2 3 4 2=dx ax bx cx b   ,  

1 2 3 4 3=cx dx ax bx b   ,  

1 2 3 4 4=bx cx dx ax b   ,  

where , , ,a b c d R  or iC  or , ,J K LH , while  

1 2 3 4, , , rb b b b A . In the latter case of , ,J K LH  it can be 
solved by the Gauss’ exclusion algorithm. In the first two 
cases of R  or iC  the solution is:  

19) =j jx   , where  

1 2 3 4

1 1 1 2 2 3 3 4 4

2 1 4 2 1 3 2 4 3

3 1 3 2 4 3 1 4 2

4 1 2 2 3 3 4 4 1

3 2 2 2
1

2 2 3 2
2

2 3 2 2
3

2 3 2 2
4

= ,

= ,

= ,

= ,

= ,

= 2 ,

= 2 ,

= 2 ,

= 2

a d c b

b b b b

b b b b

b b b b

b b b b

a b c cd ac abd

a b bc d b d acd

ab c ad a c bcd

a d b c d bd

   
   
   

   
   









   

   

    
   

    

   

   

   

    .abc

  

Thus on each step either two or four indeterminates are 
calculated and substituted into the initial linear algebraic 
system that gives new linear algebraic system with a 
number of indeterminates less on two or four respe- 
ctively. May be pairwise resolution on each step is 
simpler, because the denominator of the type  2 2   
should be 

2r  almost everywhere by rp A  positive 
(see (6), (14) above). This algorithm acts analogously to 
the Gauss’ algorithm. Finally the last two or four inde- 
terminates remain and they are found with the help of 
Formulas either (17) or (19) respectively. When for a 
marked h  in (6) or (14) all  = 0  2hl mod  (remains 
only 1x  for = 1h , or remain 1x  and 3x  for > 1h ) 
or for some > 1h  all  = 0  4hl mod  (remains only 

1x ) a system of linear equations as in (13,13.1) 
simplifies.  

Thus a solution of the type prescribed by (8) generally 

1n   almost everywhere by p W  exists, where W  
is a domain  

  1 1= : < < , = 0 >r jW p A a Re p a p j n   

of convergence of the noncommutative multiparameter 
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transform, when it is non-void, 12 2 1r rn    ,  
  0=Re p p , 0 0= n np p i p i  .  

This domain W  is caused by properties of g  and 
initial conditions on U  and by the domain U  also. 
Generally U  is worthwhile to choose with its interior 

 Int U  non-intersecting with a characteristic surface 
 1, , = 0nx x  , i.e. at each point x  of it the condition 

is satisfied  

       1
1| |=

= 0
jj n

j nj
CS a t x x x        

and at least one of the partial derivatives   0kx    
is non-zero.  

In particular, the boundary problem may be with the 
right side =g f  in (2,2.1,14), where   is a real or 
complex iC  or quaternion , ,J K LH  multiplier, when 
boundary conditions are non-trivial. In the space either  

 ,n
rD R A  or  ,n

rB R A  (see §  19) a partial diff- 
erential problem simplifies, because all boundary terms  

disappear. If  , ,n
rf B R A  then  

  : 0r fp A Re p W   . For  ,n
rf D R A   

certainly =f rW A  (see also §  9).  

2.28.4. Examples 
Take partial differential equations of the fourth order. In 
this subsection the noncommutative multiparameter trans- 
forms in rA  spherical coordinates are considered. For  

20) 3 3 4 4
1 =2

=
n

j jj
A s s       

with constants  , , \ 0j J K LH   on the space either  
 ,n

rD R A  or  ,n
rB R A , where 2n  , Equation (6) 

takes the form:  

21)           
42

2
0 0 1 1

=2

, ; ; = 3 , ; ;
n

n n
e j j e j

j

F A f t u p p p p S p S F f t u p  
     

  
  

       
2

2
1 0 1 1 1

3 , ; ; = , ; ;n n
e ep p p S S F f t u p F g t u p    

 
 

 
due to Corollary 4.1. In accordance with (16,17) we get:  

22)       
12 2; = ;w wF p G p    


  

    
12 2

1 ;wT G p   


   

for each = 1, ,w n ,  
where  

 

 

2 2 4
0 0 1 =2

=0 >

2 2
1 0 1

=0 >

= = 3 ,

= = 3 .

n

w j jj
p b wb

w
p b wb

p p p p

p p p

  

 





   




 

From Theorem 6, Corollary 6.1 and Remarks 24 we infer  

that:  

23)      = 2π ;
n

nR
f t F a p    

   1exp , ; d d nu p t p p   

supposing that the conditions of Theorem 6 and Cor- 
ollary 6.1 are satisfied, where  

    ; = , ; ;nF p F f t u p  .  

If on the space either  ,k
rD R A  or  ,k

rB R A  an 
operator is as follows:  

24) 4 2 2 4 4
1 2 =3

= ,
n

j jj
A s s s        

where  , , \ 0j J K LH  , where 3n  , then (6) reads as:  

25)        
2

2 2 2
2 0 1 1 2

, ; ; = , ; ;n n
e eF Af t u p p p p S S F f t u p   

 
  

          
4

2 2
0 1 2 =31 2

2 , ; ; , ; ; = , ; ;
nn n n

e e j j ej j
p p p S S F f t u p p S F f t u p F g t u p      

 
   

If on the same spaces an operator is:  

26) 3 2 4 4
1 2 =3

= ,
n

j jj
A s s s       where 3n  , then (6) takes the form:  

27)      2 2
0 2 2

, ; ; = , ; ;n n
eF Af t u p p p S F f t u p   

          
4

2 2
1 2 1 2

=3

, ; ; , ; ; = , ; ; .
n

n n n
e e j j e j

j

p p S S F f t u p p S F f t u p F g t u p      

 
To find   , ; ;nF f t u p   in (23) or (27) after an 

action of suitable shift operators (0,2,0, ,0)T  , (1,0, ,0)T   and 
(1,2,0, ,0)T   we get the system of linear algebraic equa- 

tions:  

28) 1 3 4 1=ax bx cx b  , 1 2 3 2=bx cx ax b  , 2 3 4 3=ax cx bx b  , 1 2 4 4=cx bx ax b     
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with coefficients a , b  and c , and Cayley-Dickson numbers on the right side 1 4, , rb b A , where 

 1 = ;wx F p  ,  2 1= ;wx T F p  ,  2
3 2= ;wx T F p  ,  2

4 1 2= ;wx T T F p  , 

     1 = ; = , ; ;n
w w

b G p F g t u p  ,  2
2 2= ;wb T G p  ,  3 1= ;wb T G p  ,  2

4 1 2= ;wb T T G p  . 

Coefficients are:  

4
, ,=3

=0 >
= = ,

n

w j j J K Lj
p b wb

a a p H


      2 2 2
2 0 1= = ,wb b p p p R   2

0 1 2 =0 >
= = 2 ,w p b wb

c c p p p R


  

for A  given by (24);  

4
, ,=3

=0 >
= =

n

w j j J K Lj
p b wb

a a p H


    , 2
0 2 =0 >

= =w p b wb
b b p p R


 , 2

1 2 =0 >
= =w p b wb

c c p p R


  

 
for A  given by (26), = 1, ,w n . If = 0a  the system 
reduces to two systems with two indeterminates  1 2,x x  
and  3 4,x x  of the type described by (16) with so- 

lutions given by Formulas (17). It is seen that these 
coefficients are non-zero 1n   almost everywhere on 

1nR  . Solving this system for 0a   we get:  

29)    
121 2 2 2 2 2 1

1; = 4wF p a b a b c b c a


       
  

       2 2 2 2 2 2 2
1 2 3 4 1 2 3 42 2 2a b c c b b abb bcb acb bc bcb acb c b b abb             .  

 
Finally Formula (23) provides the expression for f  

on the corresponding domain W  for suitable known 
function g  for which integrals converge. If > 0j  for 
each j , then > 0a  for each 2 2

3 > 0wp p  .  

For (21,24) on a bounded domain with given boundary 
conditions equations will be of an analogous type with a 
term on the right   , ; ;nF g t u p   minus boundary 
terms appearing in (6) in these particular cases.  

For a partial differential equation  
30)        1 1 1 1 1 1 1 1, , , , = , ,n n n n na t Af t t f t t t g t t          

 
with octonion valued functions ,f g , where A  is a 
partial differential operator by variables 1, , nt t  of the 
type given by (2,2.1) with coefficients independent of 

1, , nt t , it may be simpler the following procedure. If a 

domain V  is not the entire Euclidean space 1nR   we 
impose boundary conditions as above in (5.1). Make the 
noncommutative transform ; , ,1n t tnF   of both sides of 
Equation (30), so it takes the form:  

31)        ; , , ; , ,1 1
1 1 1 1 1 1, , , ; ; , , , ; ;n t t n t tn n

n n n na t F Af t t u p F f t t u p t          

  ; , ,1
1 1= , , , ; ; .n t tn

nF g t t u p 
   

In the particular case, when  

     1 2

1 ( , ; ) ( , ; )
1 1 , , ,| | 0 1 1

1

=
k

u p t u p t
n j n k j jj k j

j
a t a t S e e

k
 


 

   

 
 
 

     

for each 1nt  , p , t  and  , with the help of (6,8) one can deduce an expression of  

          1 1 1

0 0 0
1 0 0 0 0; ; = exp , , ; d , , ; exp , , ; d dn n nt t tn

n n n nF p t b p p C Q p p b p p
  

        


           

through  

    ; , ,1
1 1 1; ; := , , , ; ;n t tn n

n nG p t F g t t u p  
   

and boundary terms in the following form:  

       0 1 1 1 1 0 1, , ; ; ; ; ; = , , ; ,n n
n n n n n n nb p p t F p t F p t t Q p p t          
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where  0 1, , ;n nb p p t   is a real mapping and  
 0 1, , ;n nQ p p t   is an octonion valued function. The 

latter differential equation by 1nt   has a solution ana- 

logously to the real case, since 1nt   is the real va- riable, 
while R  is the center of the Cayley-Dickson algebra 

rA . Thus we infer:  

33)           1 1 1

0 0 0
1 0 0 0 0; ; = exp , , ; d , , ; exp , , ; d dn n nt t tn

n n n nF p t b p p C Q p p b p p
  

        


           

 
since the octonion algebra is alternative and each equa- 
tion =bx c  with non-zero b  has the unique solution 

1=x b c , where 0C  is an octonion constant which can 
be specified by an initial condition. More general partial 

differential equations as (30), but with 1
l l

nf t   , 2l  , 
instead of 1nf t    can be considered. Making the 
inverse transform  1

1; , , nn t tF
  of the right side of (33) 

one gets the particular solution f .  

2.28.5. Integral Kernel 
We rewrite Equation 28(6) in the form:  

34)    , ; ; = , ; ;n n
S n nQ Q

A F f u p F g u p     

 

      

| | 1 |( )|, 0 , 0 , = , = ; =0 =0; =1, , ; ( ) {0,1,2}

|( )| ( )| ( )| | | ( )1
1

( )

1 , ; ; ,

n
k k k k k k k k k k k k

j
j lj m q h sign l j m q h j q for l j k n l

lj lj qqm n h lj q ljn
n nQ lj

a

S F f t t t t u p



 

       







 
    

 

 



 

 
where 

34.1)    := :=k k ek
S p S R p   

in the rA  spherical or rA  Cartesian coordinates res- 
pectively (see also Formulas 25(1.1,1.2)), for each  

= 1, ,k n ,  

34.2)   1
1:= := mmm m n

nS p S S S ,  

35)  | |
:= j

S jj
A a S p .  

Then we have the integral formula:  

36)  , ; ;n
S nQ

A F f u p    

    = exp , ; dn SQ
f t A u p t t    

in accordance with 1(7) and 2(4). Due to §  28.3 the 
operator SA  has the inverse operator for 1n   almost  

all  0 , , np p  in 1nR  . Practically, its calculation may 
be cumbersome, but finding for an integral inversion for- 
mula its kernel is sufficient. In view of the inversion 
Theorem 6 or Corollary 6.1 and §  §  19 and 20 we 
have  

37)     2π exp , ;
n

nR
u a p t     

    1exp , ; d d = ; ,nu a p p p t      

where  

38)         1, = ; d d =n nR
f f t t t t f        

at each point nR  , where the original  f   satisfies 
Hölder’s condition. That is, the functional  ;t   is Ar 
linear. Thus the inversion of Equation (36) is:  

39)             1exp , ; , , ; d d d = ,n n n S nR R Q
f t t A u p a t p a t t p p f             

so that  

40)             exp , ; , , ; = 2π exp , ; exp , ;
n

SA u p a t p a t u p a t u p a               ,  

 
where the coefficients of SA  commute with generators 

ji  of the Cayley-Dickson algebra rA  for each j . Con- 
sider at first the alternative case, i.e. over the Cayley- 
Dickson algebra rA  with 3r  .  

Let by our definition the adjoint operator *
SA  be 

defined by the formula  

41)    * * *

| |
, ; = , ;j

S jj
A p t a S p t   

   

for any function : n
r r rA R A A    , where nt R ,  

p  and rA  ,    
** , ; := , ;j jS p t S p t      . Any 

Cayley-Dickson number vz A  can be written with the 
help of the iterated exponent (see §  3) in vA  spherical 
coordinates as  

42)   = exp 0,0;z z u  ,  

where v r , vA  , vu A ,   = 0Re  . Certainly 
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the phase shift operator is isometrical:  
43） 1

1 =kk n
nT T z z   

for any 1, , nk k R , since   exp( 0,0; = 1u Im   for 
each vA  , while  

     
(0,0; ( ))1

1

1 1

=

exp 0,0; π 2

kk u Imn
n

n n

T T e

u Im k i k i







   




 

(see §  12).  
In the rA  Cartesian coordinates each Cayley-Dickson 

number can be presented as:  
42.1)  = expz z M , where R   is a real para- 

meter, M  is a purely imaginary Cayley-Dickson num- 
ber (see also §  3 in [5,6]). Therefore, we deduce that  

44)   exp , ;SA u p a t    

  
     

0 1 0= exp

exp , ;S

p a s

A u Im p t Im





  


,  

since R  is the center of the Cayley-Dickson algebra  

vA  and 0 0 1, , , p a s R  ,  1 1=s s t , where particularly  
(0,0; )

=0
1:= u

S SA A e 



  (see also Formulas 12(3.1-3.7).  

Then expressing   from (40) and using Formulas 
(41,42,42.1,44)  we infer, that  

45)  , , ;p t     

       
        
     

*

2

= 2π exp , ;

   exp , ; exp , ;

   exp , ;

n

S

S

A u Im p t Im

uI m p t Im u p

A u Im p t Im



  







  
  



,  

since 
21 *=z z z  for each non-zero Cayley-Dickson 

number vz A , 1v  , where   1 1= n nIm p p i p i  , 

0 0= n np p i p i  ,  0 =p Re p .  
Generally, for 4r  , Formula (45) gives the integral 

kernel  , , ;p t    for any restriction of   on the 
octonion subalgebra  1 2 4, ,Ralg N N N  embedded into 

rA . In view of §  28.3   is unique and is defined by 
(45) on each subalgebra  1 2 4, ,Ralg N N N , conse- 
quently, Formula (45) expresses   by all variables 

, rp A   and , nt R  . Applying Formulas (39,45) 
and 28.2    to Equation (34), when Condition 8(3) is 
satisfied, we deduce, that  

46)              1= exp , ; , , ; d d dn nn n nR RQ Q
f g t t u p a t p a t t p p              

 

       

|( )|

| | 1 |( )|, 0 , 0 , = ( ); = ; =0 for =0,  =1,..., ; ( ) {0,1,2}

| | ( ) ( ) ( ) ( )1
1 1

( )

1

( exp , ; , , ; d d

n
k k k k k k k k k k k k

lj

j
j lj m q h sign l j m q h j q l j k n l

qqq lj m lj lj ljn
n n nR Q lj

a

f t t t S p u p a t p a t t p



   

       



 

              

 

   d ,np

 

 
where  ( ) =n

R ljdim Q n h lj  , ( )
( )

lj n
ljt Q  in accordance 

with §  28.1,  mS p  is given by Formulas (34.1, 34.2) 
above.  

For simplicity the zero phase parameter = 0  in (46) 
can be taken. In the particular case =n nQ R  all terms  

with 
( )
nQ lj  vanish.  

Terms of the form  

       

1

exp , ; , , ;

d d

m
nR

n

S p u p a t p a t

p p

       


 

in Formula (46) can be interpreted as left rA  linear 
functionals due to Fubini's theorem and §  §  19 and 20, 
where 0 =S I .  

For the second order operator from (14) one gets:  

47)     2

=1
=

n

S h h n nh
A a S p S p       

and  

48)              1= exp , ; , , ; d d dn nU U nR R
f t g t t u p a t p t t p p            

             
          

1
0

1
0

, exp , ; , , ; d d d

[exp , ; , , ; ] d d .

n nR U

n nR U

f t t P t p u p a t p t t p p

a t f t u p a t p t dt p p

    

    





         

       

 

 




 

 
For a calculation of the appearing integrals the ge- 

neralized Jordan lemma (see §  §  23 and 24 in [4]) and 
residues of functions at poles corresponding to zeros  

     exp , ; = 0SA u Im p t Im   by variables  

1, , np p  can be used.  
Take    = ;g t y t , where y  Rn is a parameter, then   
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49)         1; exp , ; , , ; d d dn n nR R

y t u p a t p a t t p p            

      1= exp , ; , , ; d d =: ;n nR
u p a y p a y p p E y           

 
is the fundamental solution in the class of generalized 
functions, where  

50)    ; = ;tA E y t y t ,  

51)      ; d =nR
y t f t t f y   

for each continuous function  f t  from the space 
 2 ,n

rL R A ; tA  is the partial differential operator as 
above acting by the variables  1= , , nt t t  (see also §  
§  19, 20 and 33-35). 

2.29. The Decomposition Theorem of Partial  
Differential Operators over the  
Cayley-Dickson Algebras 

We consider a partial differential operator of order u :  

1)      
| |

= ,
u

Af x a x f x


 

  

where  | | 0
0= n

nf f x x x      , 0 0= n nx x i x i , 

jx R  for each j , 1 = 2 1rn  ,  0= , , n   ,  

0= n    , 0 j Z  . By the definition this 
means that the principal symbol  

2)  0
| |=

:=
u

A a x 



  

has   so that = u  and   ra x A   is not iden- 
tically zero on a domain U  in rA . As usually  

 ,k
rC U A  denotes the space of k  times continuously 

differentiable functions by all real variables 0 , , nx x  
on U  with values in rA , while the x -differentiability 
corresponds to the super-differentiability by the Cayley- 
Dickson variable x .  

Speaking about locally constant or locally differen- 
tiable coefficients we shall undermine that a domain U  
is the union of subdomains jU  satisfying conditions 
28(D1,i-vii) and =j k j kU U U U    for each  
j k . All coefficients a  are either constant or diffe- 

rentiable of the same class on each  jInt U  with the 
continuous extensions on jU . More generally it is up to 
a uC  or x-differentiable diffeomorphism of U  res- 
pectively.  

If an operator A  is of the odd order = 2 1u s  , then 
an operator E  of the even order 1 = 2u s  by vari- 
ables  ,t x  exists so that  

3)    
=0

, = 0,
t

Eg t x Ag x   

for any   1 , ,u
rg C c d U A  , where  ,t c d R  ,  

0 <c d , for example,     , = ,Eg t x tAg t x t  .  
Therefore, it remains the case of the operator A  of 

the even order = 2u s . Take  

0 0 2 1 2 1
= v v vz z i z i A

 
   , jz R . Operators depend- 

ing on a less set 
1
, ,l ln

z z  of variables can be consi- 

dered as restrictions of operators by all variables on 
spaces of functions constant by variables sz  with  

 1, , ns l l  .  
Theorem. Let = uA A  be a partial differential ope- 

rator of an even order = 2u s  with locally constant or 
variable sC  or x -differentiable on U coefficients  

  ra x A   such that it has the form  

4)    ,1 ,1 , ,= u u u k u kAf c B f c B f  ,  

where each  
5) , , ,0 1,=u p u p u pB B Q    

is a partial differential operator by variables  

1,1 , 1 ,1 ,
, ,m m m mu u p u u p

x x       and of the order u ,  

,0 = 0um ,  ,u k rc x A  for each k , its principal part  

6)   2
, ,0 ,2| |=

=u p ps
B a x 

    

is elliptic with real coefficients  ,2 0pa x  , either 
0 3r   and  ,u

rf C U A , or 4r   and  
 ,uf C U R . Then three partial differential operators 

s  and 1
s  and Q  of orders s  and p  with  

1p u   with locally constant or variable sC  or x - 
differentiable correspondingly on U  coefficients with 
values in vA  exist, r v , such that  

7)  1= s sAf f Qf   .  

2.30. Corollary 1 

Let suppositions of Theorem 29 be satisfied. Then a 
change of variables locally constant or variable 1C  or 
x-differentiable on U  correspondingly exists so that the 
principal part 2,0A  of 2A  becomes with constant 
coefficients, when ,2 > 0pa   for each p ,   and x .  

2.31. Corollary 2 

If two operators 2= sE A  and 2 1= sA A   are related by 
Equation 29(3), and 2sA  is presented in accordance 
with Formulas 29(4,5), then three operators s , 1s  
and Q  of orders s , 1s   and 2 2s   exist so that  

1) 1
2 1 = s s

sA Q
    .  

2.32. Products of Operators 

We consider operators of the form:  

1)     :=k
rI f z    

        0<| | k
f z z f z z

  

   

with   vz A  ,  0 2 1
= , , r  


 , 0 k N   for each 

k , 0 2 1
= r  


  ,    :=rI f z f z  ,  
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   | | 0 2 1
0 2 1

:=
r

rf z f z z z
  


    , 2 <r v   ,  

  vz A  , 0 2 1
, , rz z R


 , 0 0 2 1 2 1

= r rz z i z i
 

  .  

Proposition. The operator    *k k      is ellip- 

tic on the space  2 2 ,
rk

vC R A .  

2.33. Fundamental Solutions 

Let either Y  be a real = vY A  or complexified  
 = v C

Y A  or quaternionified  = v H
Y A  Cayley-Dick- 

son algebra (see §  28). Consider the space  ,nB R Y  
(see §  19) supplied with a topology in it is given by the 
countable family of semi-norms  

1)      , := 1sup
k

nk x Rp f x f x
    ,  

where = 0,1,2,k  ;  1= , , n   , 0 j Z  . On 
this space we take the space  ' ,n

l
B R Y  of all Y valued 

continuous generalized functions (functionals) of the 
form  

2) 0 0 2 1 2 1
= v vf f i f i

 
   and  

0 0 2 1 2 1
= v vg g i g i

 
  ,  

where jf  and  ' ,n
jg B R Y , with restrictions on  

 ,nB R R  being real or iC  or , ,J K LH -valued gene- 
ralized functions 0 02 1 2 1

, , , , ,v vf f g g
 

   respectively. 
Let 0 0 2 1 2 1

= v vi i  
 

   with  

 0 2 1
, , ,n

v B R R 

 , then  

3)   2 1

, =0
, = ,

v

j k k jk j
f f i i   .  

We define their convolution as  

4)     2 1

, =0
* , = * ,

v

j kj k
f g f g i i    

for each  ,nB R Y  . As usually  
5)           * = * = *f g x f x y g y f y g x y    

for all , nx y R  due to (4), since the latter Equality (5) 
is satisfied for each pair jf  and kg . Thus a solution of 
the equation  

6)   =s f g   in  ,nB R Y  or in the space  
 ' ,n

l
B R Y  is:  

7) = *sf E g
 

, where sE
 

 denotes a funda- 
mental solution of the equation  

8)   =s E    ,    , = 0   .  

The fundamental solution of the equation  
9) 0 =A V   with   1

0 1 1= ssA        

using Equalities 32(2-4) can be written as the con- 
volution  

10) 
0 1

11

=: = * .A s sV V E E
    

 

More generally we can consider the equation  
11) =Af g  with  0 2 2=A A    ,  

where   0 1 1=A      , 1 2, ,     are operators 
of orders s, 1s  and 2s  respectively given by 32(1) with 
z-differentiable coefficients. For 2 2 = 0   this equa- 
tion was solved above. Suppose now, that the operator 

2 2   is non-zero.  
To solve Equation (11) on a domain U  one can write 

it as the system:  
12)  1 1 1=f g  ,    1 2 2=g g f      .  

Find at first a fundamental solution AV  of Equation 
(11) for =g  . We have:  

13)   1 11 1 2 2
= * = *f E g E g g         ,  

consequently,  

13. 1)   1 11 1 2 2 2 2
* * = *E g E g E g          .  

In accordance with (3-5) and 32(1) the identity is satisfied:   

       1 0 1 02 2 2 2
* , = * ,E g E g       

      .  

Thus (13) is equivalent to  

14)   1 11 1 2 2 2 2
* * =E g E g E            

for =g  , since 
2 2 2 2

* =E E     .  
We consider the Fourier transform F  by real vari- 

ables with the generator i  commuting with ji  for each 
= 0, , 2 1vj   such that  

      ( , )
11 = d di y x

n nR
F Fg y e g x x x    

for any  1 ,n
vg L R A , i.e.   1d d <n nR

g x x x   ,  

where : ng R Y  is an integrable function,  
  1 1, = n ny x x y x y  ,  1= , , n

nx x x R , jx R  
for every j . The inverse Fourier transform is:  

        1 ( , )
12 = 2π d d

n i y x
n nR

F F g y e g x x x
   .  

For a generalized function f  from the space 
 ' ,n

l
B R Y  its Fourier transform is defined by the 
formula  

         1 13 , = , , , = ,F Ff f F F f f F     . 

In view of (2-5) the Fourier transform of (14) gives:  

15)    11 1
F E F g 
        

  
   

2 1

=0 2 2

1 2 2
=

v

j j

j

F E

F g i F E






 

 

    

  


 

for =g  . With generators 0 02 1 2 1
, , , , ,v vi i i i i i

 
   the 

latter equation gives the linear system of 12v  equations 
over the real field, or 22v  equations when  = v H

Y A . 
From it  1F g  and using the inverse transform 1F   a 
generalized function 1g  can be found, since  

     0 0 2 1 2 1
= v vF g F g i F g i

 
   and  

     1 1 1
0 0 2 1 2 1

= v vF g F g i F g i  

 
   (see also the  

Fourier transform of real and complex generalized func- 
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tions in [1,21]). Then  
16) 11 1

= *AV E g   and = *Af V g  gives the  

solution of (11), where 1g  was calculated from (15).  

Let    π :v
r v r HH

A A  be the R -linear projection  

operator defined as the sum of projection operators  

0 2 1
π π r 

  , where  π :j v jH
A Hi ,  

17)  π =j j jh h i , 
2 1

=0
 =

v

j jj
h h i

 , , ,j J K Lh H , that  

gives the corresponding restrictions when j ih C  or  

jh R  for = 0, ,2 1rj  . Indeed, Formulas 2(5,6) have 
the natural extension on  v H

A , since the generators J 
K  and L  commute with ji  for each j .  

Finally, the restriction from the domain in vA  onto 
the initial domain of real variables in the real shadow and 
the extraction of πv

r rf A  with the help of Formulas 
2(5,6) gives the reduction of a solution from vA  to rA .  

 Theorems 29, Proposition 32 and Corollaries 30, 31 
together with formulas of this section provide the algo- 
rithm for subsequent resolution of partial differential equa- 
tions for , 1, , 2s s   , because principal parts of ope- 
rators 2A  on the final step are with constant coeffi- 
cients. A residue term Q  of the first order can be inte- 
grated along a path using a non-commutative line inte- 
gration over the Cayley-Dickson algebra [5,6]. 

2.34. Multiparameter Transforms of Generalized  
Functions 

If  ,nB R Y   and  ' ,n

l
g B R Y  (see §  §  19 and 

33) we put  

1)   2 1

=0
; ; ; ,

v
n

j jj
F g u p i    

 2 1

=0
:= , ; ; ;

v
n

j jj
g F u p i    

or shortly  

2)  2 1 2 1( ; ; ) ( ; ; )
=0 =0

, = ,
v v

u p t u p t
j j j jj j

g e i g e i        .  

If the support  supp g  of g  is contained in a 
domain U , then it is sufficient to take a base function 
  with the restriction  ,

U
B U Y   and any  

ss
\nR U

C  .  

2.35. Examples 

Let  

1)     2 2
=1

=
n

j jj
Af t f t t c    

be the operator with constant coefficients j rc A ,  
= 1jc , by the variables 1, , nt t , 2n  . We suppose 

that jc  are such that the minimal subalgebra  
 ,R j kalg c c  containing jc  and kc  is alternative for  

each j  and k  and   1/2 1/2 1/2
1 2 = 1nc c c  . Since  

2)       =1
=

n

j k k jk
f t t f t s s s t       

  =1
=

j

kk
t s s  ,  

the operator A  takes the form  

3)     2
=1 1 ,

= ,
n

k b jj k b j
Af f t s s s c

 
      

where =j j ns t t   for each j . Therefore, by 
Theorem 12 and Formulas 25  SO  and 28(6) we get:  

4)      
2

=1
; ; ; = ;

nn n
e u jj j

F Af u p R p F p c       
   

for  , ;u p t   either in rA  spherical or rA  Cartesian 
coordinates with the corresponding operators  e j

R p  
(see also Formulas 25(1.1,1.2)).  

On the other hand,  

5)      ,0; 0,0;; ; ; = =u p unF u p e e       

in accordance with Formula 20(2). The delta function 
 t  is invariant relative to any invertible linear ope- 

rator : n nC R R  with the determinant  
 det = 1C , since  

         

   

1

1

d = det d

= 0 = 0 .

n nR R
Cx x x y C y C y

C

   

 





 
 

Thus  

    ; ; ; = ; ; ;n nF C Af u p F Af u p    

for any Fundamental solution f , where  
   :=Cg t g Ct , =Af  . If : n nC R R  is an in- 

vertible linear operator and = Ct , =q Cp ,  
= C  , then 1=t C  , 1=p C q  and 1= C   . In 

the multiparameter noncommutative transform nF  there 
are the corresponding variables  , ,j j jt p  . This is ac- 
complished in particular for the operator  
   1 1, , = , ,n nC t t s s  . The operator 1C  transforms 

the right side of Formula (4), when it is written in the 

rA  spherical coordinates, into  

   
2

0=1
; .

n n
j e u jj j

p q S F q c  
 

  The Cayley-Dickson  

number 0 1 1= n nq q q i q i    can be written as  

0= Mq q q M , where = 1M , M  is a purely imagi- 
nary Cayley-Dickson number, Mq R ,  

1 1=M n nq M q i q i  , since  0 =q Re q . After a suit- 
able automorphism : r rA A   we can take  
  0 1= Mq q q i  , so that   =x x  for any real number.  

The functions 2 2
=1

n

j e jj j
q S c 

    and 2 2
=1

n

j e jj j
p S c 

    are  

even by each variable jq  and jp  respectively. 
Therefore, we deduce in accordance with (5) and 2(3,4) 
and Corollary 6.1 with parameters 0 = 0p  and = 0  
and  1,1jc    for each J that  
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6)   1nF


  

  


=1 1 ,

([ ],[ ])

1 / ; ; ;

= ,

n

k e b e jj k b j k b

N y q

p S p S c u y

g e


 

 
 

 

 
 

in the rA  spherical coordinates, where  
2

=1
= 1/

n

j jj
g q c 

  , or  

6.1)    1 2 2
=1

1/ ; ; ;
nn

j e jj j
F p S c u y 

          

   1 2 2
=1

1/ ; ; ;
nn

j e jj j
F p S c u y 

         

in the rA  Cartesian coordinates, where  
2

=1
= 1/

n

j jj
g p c 

  , =N y y  for 0y  , 1=N i  for  

= 0y , 1 1= n n ry y i y i A   ,    1, , n
ny y y R  ,  

  =1
[ ],[ ] =

n

j jj
y q y q , since  

     2 cos = cos π = cose k k kk
S            

and  

     2 sin = sin π = sine k k kk
S             

for each k .  
Particularly, we take = 1jc  for each = 1, ,j k  and 
= 1jc   for any = 1, ,j k n   , where  

1 k n  . Thus the inverse Laplace transform for  

0 = 0q  and = 0  in accordance with Formulas 2(1-4) 
reduces to  

7)     1

=1 1 ,
1 ; ; ;

nn
k e b e jj k b j k b

F p S p S c u y 


 
 
     

     2 2
1 1 1=1 = 1

= 2π exp 1 d d
n k n

n n n j j nj j kR
i q y q y q q q q

 


   
       

in the rA  spherical coordinates and  

7.1)          1 2 2 2 2
1 1 1=1 =1 = 1

1 ; ; ; = 2π exp ... 1 d d
nn k nn

nj e j n n j j nj j j kj R
F p S c u y i p y p y p p p p

  


               

 
in the Ar Cartesian coordinates, since for any even func- 
tion its cosine Fourier transform coincides with the Fou- 
rier transform.  

The inverse Fourier transform  
       1 = 2π =:

n

nF g x Fg x
    of the functions  

 2
=1

= 1
n

jj
g z  for 3n   and   2 2

=1
1 jj

P z  for  

= 2n  in the class of the generalized functions is known 
(see [21] and §  §  9.7 and 11.8 [1]) and gives  

8)    1 /2
2

1 =1
, , =

nn

n n n jj
z z C z


    

for 3 n , where  = 1 2n nC n     ,  
  /2= 4π 2 1n

n n    denotes the surface of the unit 
sphere in nR ,  x  denotes Euler’s gamma-function, 
while  

9)    2 2
2 1 2 2 =1

, = ln jj
z z C z    

for = 2n , where  2 = 1 4πC .  
Thus the technique of §  2 over the Cayley-Dickson 

algebra has permitted to get the solution of the Laplace 
operator.  

For the function  

10)   2 2
=1 = 1

=
k n

j jj j k
P x x x


    

with 1 <k n  the generalized functions   0P x i


  
and   0P x i


  are defined for any =C R iR    

(see Chapter 3 in [21]). The function P  has the cone 
surface  1, , = 0nP z z  of zeros, so that for the correct 

definition of generalized functions corresponding to P  
the generalized functions  

11)       /22 2
0< , 00 = lim cP x ci P x


      

   exp i arg P x ic   

with either = 1c   or = 1c  were introduced. There- 
fore, the identity  

12)   ,k n kF x 
   

    
2

2 2
,=1 = 1

=
k n

j j k n kj j k
x x F x

  
       

or  

13)     = 1 0F P x ci     

follows, where = 1c   or = 1c .  
The inverse Fourier transform in the class of the ge- 

neralized functions is:  

14)     1
10 , , nF P x ci z z

     

    

    

2 /2

/2) 1/2

1

= exp π 2 2 π 2

  , , 0

n n

n

n

c n k i n

Q z z ci D












 

   

    
 

for each C   and 3n   (see §  IV.2.6 [21]), where 

 ,= det j kD g  denotes a discriminant of the quadratic 

form   ,, =1
=

n

j k j kj k
P x g x x , while  
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  ,
, =1

=
n j k

j kj k
Q y g x x  is the dual quadratic form so that 

,
,=1

=
n j k j

k l lk
g g   for all ,j l ; = 1j

l  for =j l  and  

= 0j
l  for j l . In the particular case of = 2n  the 

inverse Fourier transform is given by the formula:  

15)     11
1 20 ,F P x ci z z

   

  
  

1/21

1

= 4 exp π 2

   ln , , 0 .n

D c n k i

Q z z ci


  


 

Making the inverse Fourier transform 1F   of the 
function   1 0P x i   in this particular case of  

= 1   we get two complex conjugated fundamental 
solutions  

16)  , 1, ,k n k nz z 
   

     
    1 ( /2) /2

1

= exp π 2 2 1

   , , 0 4π
n n

n

c n k i n

Q z z ci





   


 

for 3 n  and 1 <k n , while  
17)  1,1 1 2, =z z  

     1
1 24 exp π 2 ln , 0c n k i Q z z ci

   

for = 2n , where either = 1c  or = 1c  .  
Generally for the operator A  given by Formula (1) 

we get      0= iP x P x P x , where  

   2
0 =1

=
n

j jj
P x x Re c  and    2

=1
=

n

i j jj
P x x Im c  are  

the real and imaginary parts of P ,    =Im z z Re z  
for any Cayley-Dickson number z . Take 

2
= rl i  and 

consider the form  P x cl  with 0   and either  
= 1c  or = 1c  , then   0P x cl   for each nx R . 

We put  

18)       /22 2
0< , 00 = lim cP x cl P x


      

   exp .i Arg P x lc   

Consider R  , the generalized function  

      
/22 2 expP x i Arg P x lc


     

is non-degenerate and for it the Fourier transform is 
defined. The limit 0< , 0lim c   gives by our definition 
the Fourier transform of   0P x cl


 . Since  

19)  1
1 , =1

=
n

j j j k k j jk n k j j
c c c c  

  
    

for all j R   and any 1 j n   in accordance with 
the conditions imposed on jc  at the beginning of this 
section and =j jiN N i  for each j , the Fourier trans- 
form with the generator i  can be accomplished sub- 
sequently by each variable using Identity (19). The 
transform  1/2

j j jx c x  is diagonal and  

  1/2 1/2 1/2
1 2 = 1nc c c  , so we can put = 1D . Each  

Cayley-Dickson number can be presented in the polar 
form = Mz z e , R  , π  , M  is a purely 
imaginary Cayley-Dickson number = 1M ,  

   = 2πArg z k M   has the countable number of va- 
lues, k Z  (see §  3 in [5,6]). Therefore, we choose  

the branch   1/21/2 = exp 2z z Argz , 
1/2

> 0z  for  

0z  , with   πArg z  ,   = π 2Arg M M  for each 
purely imaginary M  with = 1M .  

 We treat the iterated integral as in §  6, i.e. with the 
same order of brackets. Taking initially jc R  and con- 
sidering the complex analytic extension of formulas 
given above in each complex plane jR N R  by jc  
for each j  by induction from 1 to n , when jc  is not 
real in the operator A ,  j jIm c RN , we get the 
fundamental solutions for A  with the form  

  0P x cl


  instead of   0P x ci


  with multi-  

pliers   /2 /2 /2
1 2
c c c

nc c c   instead of  

  exp π 2c n k i  as above and putting = 1D . Thus  

20)             
*1 ( /2)* /2 /2 /2 /2

1 1 1 2, , = 2 1 , , 0 4π
n c c c n

n n nz z n P z z cl c c c
             

for 3 n , while  

21)     *1 /2 /2 *
1 2 1 2 1 2, = 4 , 0c cz z c c Ln P z z cl      for = 2n ,  

since * 1=j jc c  for = 1jc ,  */2 1/2= c
j j j j j jy q y c q c , while  

     /2 /2 /2 /2 /2 /2
1 1 2 2 1 1 2d d d = d dc c c c c c

n n n nc q c q c q q q c c c   
         and   /2 /2 /2

1 2 = 1c c c
nc c c  . 

 
2.36. Noncommutative Transforms of Products  

and Convolutions of Functions in the Ar  
Spherical Coordinates 

For any Cayley-Dickson number 0 0 2 1 2 1
= r rz z i z i

 
   

we consider projections  

1)   =j jz z , jz R  or iC  or , ,J K LH ,  

= 0, , 2 1rj  ,     *= πj j jz z i ,  

given by Formulas 2(5,6) and 33(17). We define the 
following operators   
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2)        1 1 ,
, 0 1 1 ,

; := , 1 , , 1 ,n n j j n
j j j n

R F p F p p p
  

   
     

    1 1 ,
2 0 1 1 1 1 2, , , ,

, ; , 1 / 2, , 1 π 2, , ,j j n
j n j j j nj n j n j n j n

p p
  

          
              

 
on images nF , 12 2 1r rn    , = 0, ,j n . For j  
and {0,1}j   their sum j j   is considered by 
(  2)mod , i.e. in the ring  2 = 2Z Z Z , for two vectors 
  and 2 1{0,1}

r
   their sum is considered com- 

ponentwise in 2Z . Let  

3)      
2 1

=0 =0

; ; ; = ; ; ; ,
rn

n n
j k k j

j k

F f u p F f u p i i   


  

also  

     2 1

=0
; := ; ; ;

r
n n
j j k kk

F p F f u p i     

for an original f , where  , ;u p t   is given by For- 
mulas 2(1,2,2.1). If f  is real or iC  or , ,J K LH -valued, 
then  =n n

j jF F .  
Theorem. If f  and g  are two originals, then  

4)          (1 )1 1,
, 0 , 0 0=0 , {0,1}

; ; ; = 1 ; * ( ; ,
nn n nj j n

n j j j j jj
F fg u p R F p q R G p q p i

 
      


        

4.1)           (1 )1 1,
, ,=0 , {0,1}

* ; ; ; = 1 ; ; ,
nn n nj j n

n j j j j jj
F f g u p R F p R G p i

 
      


     

 
whenever  nF fg ,  nF f ,  nF g  exist, where  
1 2 1rn   , 2 r ; = 1 (  2)k k mod   for k j  
or = 1 =k j n , = 0 (  2)k k mod   for  

= 1 <k j n  and = = 0k k   for > 1k j   in the 
J-th addendum on the right of Formulas (4,4.1); the 
convolution is by  1, , np p  in (4), at the same time 

0q R  and rA   are fixed.  

Proof. The product of two originals can be written in 
the form:  

5)          2 1

=0 , : =
=

r

k l jj k l i i ik l j
f t g t f t g t i   .  

The functions  k f  and  l g  are real or iC  or 

, ,J K LH  valued respectively. The non-commutative trans- 
form of fg  is:  

6)                  0 1
1 1 1 0; = exp , ; d = cos dp sn

n nR R
F fg p f t g t u p t t f t g t e p s i t      

          

        

1
0 1

1 1 1 1 1 1 1
=2

0 1
1 1 1

sin sin cos d

sin sin d .

n
p s

n j j j j j j jR
j

p s
n n n n nR

f t g t e p s p s p s i t

f t g t e p s p s i t

  

 




   



 
    
 

  








 

On the other hand,  

7)    
 

 
    

 
0 1 0 0 0 1 ( )1

=1 =1 =1d = d d d ,

k k k

p s i p s p q s i p q s q s i q sj j j j j j j j j j j j j j
j j j

n n n nR R R R
f t g t e t f t e t g t e t q

                 
  
  
  
  
  
  

  
     

 
where = 1, 2, ,k n ,  { 1,1}j   . Therefore, using 
Euler’s formula    = cos sinie i    and the trigo- 
nometric formulas  

         cos = cos cos sin sin       , 

         sin = sin cos cos sin        

for all , R   , and Formulas (6,7), we deduce ex- 

pressions for   n
j F fg . We get the integration by  

1, , nq q , which gives convolutions by the 1, , np p  
variables. Here 0q R  and rA   are any marked 
numbers. Thus from Formulas (5-7) and 2(1,2,2.1,4) we 
deduce Formula (4).  

Moreover, one certainly has  

8)    
 

   
0 1 0 1 0 1( ) ( )

=1 =1 =1* d = d d

k k k

p s i p s p s i p s p s i p sj j j j j j j j j j j j j
j j j

n n nR R R
f g t e t f t e t g t e t
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for each 1 k n  ,  1,1j   , since  

     =j j js t s t s    for all = 1, ,j n  and  
, nt R  . Thus from Relations (6,8) and 2(1,2,2.1,4 and 

Euler’s formula one deduces expressions for  
  *n

j F f g  and Formula (4.1).  

2.37. Moving Boundary Problem 

Let us consider a boundary problem  
1) =Af g  in the half-space  n nt t , where  

 0 = 0  and   <n nt t  for each 0 .nt R   Suppose 
that the function    =:n n nt t t   is differentiable 
and bijective. For example, if 0 < < 1v  and  
  =n nt vt , then the boundary is moving with the speed 

v . Make the change of variables  

 =n ny t , 1 1 1 1= , , =n ny t y t  , 

then  

 1=n nt y   and  d = d = d d dn n n n nt s t y y  

and due to Theorem 25 we infer that  

2)    0 0,
| | | | ,0 1

; ; = 1n
s yn n

m m qn n

F b f t p b
  

  
  

    

 
  

 
   

       
        

1 1 1,12
0 1 2 1 ( 1)1 1 1

1 2
0 1 2 01 1 1

| |

, , ; ; ;

; ; = ;

n qq n y nnn n n
e n n e q e tn n n

n nn
e n e yn

m

p S p p p p S F w y u p y p

b p S p p p S F y w y p G p

  
 

 
  



 

  

  
   

 


 

 




 

in the rA  spherical coordinates and  

2.1)    0 0,
| | | | ,0 1

; ; = 1n
t yn n

m m qn n

F a f t p a
  

  
  

    

 
  

 
   

             
            

111 2 1,
0 1 0 2 0 1 01 2 1

1 2

0 1 0 2 0 01 2
| |

, , ; ; ;

; ; = ;

q nn n n qn y nn
e e n e n e tn n n

n n n
e e n e yn n

m

p S p p p S p p S p p S F w y u p y p

a p S p p p S p p S F y w y p G p

  

 




 

  

  
 




    

   




 

 
in the rA  Cartesian coordinates, where  
     := d dn nw y f t y t y .  

Expressing     0 ; ;n
yn

F y w y p   through  

 ;nG p   and the boundary terms  

     1, , , ; ; ;
n qn y nn

tn
F w y u p y p    

as in §  28.3 and making the inverse transform 8(4) or 
8.1(1), or using the integral kernel   as in §  28.5, one 
gets a solution  w y  or  
       = d dn n nf t w y t y t t  (See reference [21-30]). 

2.38. Partial Differential Equations with  
Discontinuous Coefficients 

Consider a domain U  and its subdomains  

1 kU U U    satisfying Conditions 28(D1,D4,i-vii) 
so that coefficients of an operator A  (see 28(2)) are 
constant on  kInt U  and on  1 1= \V U Int U ,  

 2 1 2= \V U Int U ,  ,  1= \k k kV U Int U  and are 
allowed to be discontinuous at the common borders  

j jV U   for each = 1, ,j k . Each function U j
f   

is an original on U  or a generalized function with the 
support  U jj

supp f U   if f  is an original or a 
generalized function on U . Choose operators jA  with 
constant coefficients on jU  and  | = 0

j

j

Int V
A , where 

0 =U U , so that =
k

k

U
A A , , =

j

j k

U
A A A  , , 

0= k

U
A A A  . Therefore, in the class of originals or 

generalized functions on U  the problem (see 28(1,2)) 
can be written as  

1) =Af g , or  

2) 0

1 1
=V VA f g  , , 1 =k

V Vk k
A f g  ,  

= ,k
U Uk k

A f g    

since 
1

=V V U Uk k
      . Thus the equivalent pro- 

blem is:  

3) 0 0 0=A f g , 1 1 1=A f g , , =k k kA f g   

with =k
Uk

f f  , =k
Uk

g g , also 
1

=j
V j

f f 


,  

1
=j

V j
g g


 for each = 0, , 1j k  . On U  take the 

boundary condition in accordance with 28(5.1). With any 
boundary conditions in the class of originals or gene- 
ralized functions on additional borders \jU U   given 
in accordance with 28(5.1) a solution jf  on jU  exists, 
when the corresponding condition 8(3) is satisfied (see 
Theorems 8 and 28.1).  

Each problem =j j jA f g  can be considered on jU , 
since  j

jsupp g U . Extend jf  by zero on \ jU V  
for each 0 1j k   . When the right side of 28(6) is 
non-trivial, then jf  is non-trivial. If 1jf   is cal- 
culated, then the boundary conditions on \jU U   can 
be chosen in accordance with values of 1jf   and its  
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corresponding derivatives    
1

\j

j

U U
f 

 
   for  

some  < jord A  in accordance with the operator Aj 
and the boundary conditions 28(5.1) on the boundary 

\jU U  . Having found jf  for each = 0, ,j k  one 
gets the solution 0= kf f f   on U  of Problem 
(1) with the boundary conditions 28(5.1) on .U  
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