
Applied Mathematics, 2018, 9, 1351-1359
http://www.scirp.org/journal/am

ISSN Online: 2152-7393
ISSN Print: 2152-7385

DOI: 10.4236/am.2018.912088 Dec. 20, 2018 1351 Applied Mathematics

Fast Algorithm for the Travelling Salesman
Problem and the Proof of P = NP

Jinliang Wang

Research Institute for ESMD Method and Its Applications, College of Science, Qingdao University of Technology,
Qingdao, China

Abstract

In the theory of computational complexity, the travelling salesman problem is
a typical one in the NP class. With the aid of a brand-new approach named
“maximum-deleting method”, a fast algorithm is constructed for it with a po-
lynomial time of biquadrate, which greatly reduces the computational com-
plexity. Since this problem is also NP-complete, as a corollary, P = NP is
proved to be true. It indicates the crack of the well-known open problem
named “P versus NP”.

Keywords

Travelling Salesman Problem, P versus NP Problem, NP-Complete,
Computational Complexity, Maximum-Deleting Method

1. Introduction

The travelling salesman problem asks the following question: “Given a list of
cities and the distances between each pair of cities, what is the shortest possible
route that visits each city and returns to the origin city?” [1]. In the theory of
computational complexity, this problem is a typical one in the NP class [1] [2].
The closely related suspense is the well-known “P versus NP problem”, that is, to
determine whether every language accepted by some nondeterministic algorithm
in polynomial time is also accepted by some deterministic algorithm in poly-
nomial time [3] [4]. If it is true then P = NP, otherwise, P ≠ NP. Here P denotes
the class of decision problems solvable by some algorithm within a number of
steps bounded by some fixed polynomial in the length of the input. The notation
NP stands for “nondeterministic polynomial time” and the class of questions for
which an answer can be verified in polynomial time is called NP.

How to cite this paper: Wang, J.L. (2018)
Fast Algorithm for the Travelling Salesman
Problem and the Proof of P = NP. Applied
Mathematics, 9, 1351-1359.
https://doi.org/10.4236/am.2018.912088

Received: November 26, 2018
Accepted: December 17, 2018
Published: December 20, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2018.912088
http://www.scirp.org
https://doi.org/10.4236/am.2018.912088
http://creativecommons.org/licenses/by/4.0/

J. L. Wang

DOI: 10.4236/am.2018.912088 1352 Applied Mathematics

The proof of P = NP is associated with an important concept, named “NP-
complete”, which was firstly proposed by Cook in 1971 [5]. The NP-complete
problems are a set of problems to each of which any other NP-problem can be
reduced in polynomial time, and whose solution may still be verified in poly-
nomial time. That is, any NP problem can be transformed into any of the NP-
complete problems [3] [4]. Hence, to prove the including relationship NP ⊆ P it
only requires the consideration of a single arbitrarily-chosen NP-complete pro-
blem (P ⊆ NP is naturally satisfied). The precise expression is given by Cook in
[3] as follows:

Proposition 1. Let L be a language over a finite alphabet. If L is NP-complete
and L belongs to P then P = NP.

It follows from [1] [2] [4] [6] that the travelling salesman problem is NP-
complete, and Proposition 1 indicates that the proof of P = NP only requires the
seeking of a language L in P for it, that is, a fast algorithm which can be executed
on computer with a polynomial time rather than an exponential time. Many
researchers had already tried on it, and a lot of “optimizing” or “searching”
approaches were developed (please see the list in [1]). But the associated compu-
tational-complexity problem is still suspended till now. Just as indicated by
Devlin in [2], to solve this it requires an unusual but wonderful thinking!

From October 2018, I began to think about this, and a fresh idea suddenly
appeared when I deleted the longest one among the total 15 paths (which
connect 6 cities separately) by a pen on a paper (see Figure 1). Since the
candidate for the concerned route is always composed by 6 segments and each
one of them has several choices, to shorten the total length the longest path
should be avoided. Without path-deleting this problem requires a selection
among 5! 5 4 3 2 1 120= × × × × = choices. Yet the deleting of one path implies
the avoiding of 4! 24= choices. Among the left paths, we can continue to
delete the maximum one, only if there are more than two paths connecting each
city. To repeat this process with 4 times (that is, 4 paths are deleted), the number
of the left choices is merely 5! 4 4! 24− × = . The effect is very considerable! It

Figure 1. Example for the travelling salesman problem with 6 cites.

https://doi.org/10.4236/am.2018.912088

J. L. Wang

DOI: 10.4236/am.2018.912088 1353 Applied Mathematics

may greatly reduce the computational complexity, particularly for the problem
with large number of cities. This “maximum-deleting method” had thrown some
lights on the travelling salesman problem and the P versus NP problem. The
subsequent endeavor on the preciseness lifted the mysterious veils of them. The
present paper is a report on these.

2. Maximum-Deleting Method

There is a necessity to re-express the travelling salesman problem in mathe-
matical language. Let n be the total number of the concerned cities (include
the origin city, 4n ≥), which are expressed as a series of nodes kC specified by
the two-dimensional coordinates (),k kx y (1 k n≤ ≤) (the order of the nodes is
arbitrarily chosen). The path between every pair of cities is abstracted as a
line-segment (in the following we call it by “line” for short) and the one between
the i -th and the j -th notes is denoted by ,i jl (1 ,i j n≤ ≤ with i j≠).
Notice that ,j il and ,i jl denote the same line, only the case i j< is considered
in the following. All these lines compose a set:

{ }*
, :1 , , ,i jD l i j n i j= ≤ ≤ <

whose number of elements is

() () ()1

1

1
1 2 2 1 .

2

n

k

n n
N n n k

−

=

−
= − + − + + + = =∑� (1)

The concerned route that visits each city and returns to the origin city can be
expressed as a closed loop Q which connects all the n nodes with two require-
ments:

1) Each node has two connections (that is, it only connects two lines);
2) The journey length of Q (that is, the sum of the lengthes for the selected n

lines in *D) should be shortest among all the choices.
Under the frame of maximum-deleting method, the first requirement is a

criterion and the second requirement is a strategy.
To demonstrate the strategy in a clear way, we arrange the elements in *D by

comparing their lengthes defined by the Euclidean distance

() ()2 2
,i j i j i jl x x y y= − + − (2)

and get

() () () () () (){ }0 , , 1 , 1:1 , for all 1 1 ,p k q k p r q r p r q rD l k N l l r N+ += ≤ ≤ ≥ ≤ ≤ −

where N is given in Equation (1) and the subscripts ()p k and ()q k are
two mappings. For example, in case 2,5l has the biggest length in *D then it
reads () ()1 , 1p ql in 0D . For a candidate of Q, its journey-length reads

1 2
1

,
n

n k
k

S s s s s
=

= + + + = ∑� (3)

where the chosen lines are also arranged according to the length, and ks
denotes the length of the k -th line with 1k ks s +≥ for all 1 1k n≤ ≤ − . To put

https://doi.org/10.4236/am.2018.912088

J. L. Wang

DOI: 10.4236/am.2018.912088 1354 Applied Mathematics

the connectivity aside, the upper and lower bounds of S accord with the choice
of the first n terms and the last n terms in 0D , respectively. Since the
candidate of Q is always composed by n segments and each one of them has
many choices, to shorten the total length the longest line should be avoided.
Precisely, if the length 1s in Equation (3) corresponds to the first line () ()1 , 1p ql
in 0D , then the substitution of this line by another one in 0D with a shorter
length 1s′ should be beneficial for shortening the possible length S. After
deleting () ()1 , 1p ql one can continue to delete () ()2 , 2p ql , () ()3 , 3p ql , � , only if the
line to be deleted has more than two connections on each endpoint. This is an
ensemble compressing strategy which squeezes the candidate set for Q close to
the last n terms of 0D . General speaking, it seldom occurs for the last n
terms composing a single closed loop (the lower bound of S is seldom achieved).
So there always exists some lines () (),p k q kl with k N n≤ − in the left set, that is,
some shorter lines are deleted. This leaves a certain leeway for modifications in
the last process where the shortest principle should be obeyed. We note that,
when the deleting process is finished, the left lines usually compose many small
loops which need to be connected into a single one.

3. Fast Algorithm with Polynomial Time

Notice that requirement (I) for Q only needs 2 of the 1n − (≥3) connections for
each node, it is always possible for executing the maximum-deleting strategy.
The maximum-deleting algorithm for the travelling salesman problem is as
follows:

Step 1. To input n nodes kC and generate all the lines in *D .
Step 2. To calculate the corresponding line lengths by Equation (2) and

arrange them in the form of 0D [the mapping from *D to 0D needs to be
saved].

Step 3. To delete the lines in 0D one by one from the beginning (see Figure
1), only if the line to be deleted has more than two connections on each
endpoint. If there are only two connections left on one of the two endpoints,
then skip this line and continue to delete the subsequent smaller one1.

Step 4. If there are some particular nodes, to transform them into the normal
ones. For the case in Figure 2, for example, one can delete ,t rl (that is, the line
between the nodes tC and rC) and ,t sl and substituted them by adding a
single line ,r sl . To follow the shortest principle, it needs to compare the lengthes
of , , ,r s t p t ql l l+ + , , , ,s p t q t rl l l+ + , , , ,p q t r t sl l l+ + and , , ,q r t s t pl l l+ +
and select the shortest one to substitute. For the case in Figure 3, the com-
parison is done on the last three lengthes. For example, in case , , ,q r t s t pl l l+ +
is the shortest, one can delete ,t ql and ,t rl and add ,q rl . If there are some

1After the deleting process, except some particular nodes with 2 m (m ≥ 2) connections, all the
others are the normal nodes which have 2 connections. The reason is that, originally all the nodes
have the same number of connections and all the deleted lines connect pairs of nodes, it is impossi-
ble for a sole node who remains odd number of connections. In addition, a particular node only
connects the normal nodes in its neighborhood, since if it connects another particular one at least
two lines between them should be deleted.

https://doi.org/10.4236/am.2018.912088

J. L. Wang

DOI: 10.4236/am.2018.912088 1355 Applied Mathematics

Figure 2. One case with particular node.

Figure 3. Another case with particular node.

particular nodes who own 2 m (3m ≥) connections, one can repeat this
processing and delete the lines pair by pair until only a pair of connections are
left2.

Step 5. If there are two crossed lines as in Figure 4 (responding to a twisted
loop), to substitute them by the shortest pair of opposite sides of the quadri-
lateral3. That is, if , , , ,p q r s s p q rl l l l+ < + , then delete ,s ql and ,p rl and add

,p ql and ,r sl . For the case in Figure 5, to delete ,s ql , ,p rl and add ,q rl , ,s pl in
a direct way. Other crossed cases can be dealt with in the same way4.

Step 6. If the left n lines compose many isolated closed loops, to connect
them in the following way: For the cases in Figure 6 and Figure 7, to find the
nearest two neighboring pair of points and make the substitution. Specifically, if

, ,s p r ql l+ is the shortest length among all the choices, then delete ,s rl , ,p ql
and add ,s pl , ,r ql .

2After Step 4 all the left nodes are the normal ones and the number of left lines is n .
3

, , , , , ,,s q p r s r p q p q r s s p q rl l OC OC OC OC l l l l+ = + + + > + + .
4After Step 5 The left n lines compose either a single closed loop or some isolated closed loops
without twists.

https://doi.org/10.4236/am.2018.912088

J. L. Wang

DOI: 10.4236/am.2018.912088 1356 Applied Mathematics

Figure 4. A case with crossed lines.

Figure 5. Another case with crossed lines.

Figure 6. One positional relation for two isolated loops.

Step 7. To modify the unique closed loop according the shortest principle.

Firstly, to re-number the nodes from 1C along this loop in an anticlockwise
order; Secondly, to follow this order and search from 1C for the triangle
determined by three neighboring nodes who owns a shortest boundary which is
not on the loop, and then make the possible substitution. For example, in Figure
8 the triangle determined by kC , 1kC + and 2kC + (1k ≥) has a shortest
boundary , 2k kl + which is not on the loop. If , 2 1, 3 , 1 2, 3k k k k k k k kl l l l+ + + + + ++ < + ,
then delete , 1k kl + , 2, 3k kl + + and add , 2k kl + , 1, 3k kl + + . To continue searching for
this kind of triangles along the loop and do the processing one by one until it
returns back to 1C .

https://doi.org/10.4236/am.2018.912088

J. L. Wang

DOI: 10.4236/am.2018.912088 1357 Applied Mathematics

Figure 7. Another positional relation for two isolated loops.

Figure 8. The possible case in the final modifying process.

According to this algorithm, when Step 3 is finished all the possible longer

lines are deleted and the left ones compose either a single closed loop or many
small closed loops. The determined thing is that the firstly generated normal
node only remains two shortest connections. For the subsequent generated
normal nodes, in the sake of connectivity each of them either remains two
shortest connections or share one or two lines with the previously generated
nodes (it doesn't matter whether they connect a particular node). Since the
deleting processing is done from the longest one, it reduces all the possible
longer connections respect to all the n nodes, and, to insure the connectivity,
there are no other choices for a given node possessing a relatively shorter
connection. So the closed loop to be found is based on the left lines with the
shortest sum of lengths. In the subsequent steps, the small loops are opened and
connected together. During this process the shortest principle is obeyed and the
total length of the candidate loop is reduced to the maximum extent. So the final
closed loop has the shortest length among all the choices. It is the anticipated
solution for the travelling salesman problem.

https://doi.org/10.4236/am.2018.912088

J. L. Wang

DOI: 10.4236/am.2018.912088 1358 Applied Mathematics

Theorem 1. The maximum-deleting algorithm for the travelling salesman
problem has a polynomial time of order ()4O n .

Proof: It follows from the definition of *D that the first step of this
algorithm costs computation time of about () ()2

1 1 1 2K N K n n O n= × − = ,
where 1K is a constant. To select the longest line in *D it needs to make

1N − times comparison. To select the second longest line it needs to make
2N − times comparison � . So the arranging process for all the lines in the

second step needs a computation time:

() () () ()
1 22 4

1

1 1 11 1 .
2 8 4

N

k

N N
k n n n n O n

−

=

−
= = − − − =∑

The corresponding saving process needs a time of about () ()2O N O n= . The
deleting process in Step 3 also needs a time of about () ()2O N O n= . From Step
4 to Step 7, only some of the lines are adjusted. In each step, the number of
involved lines is no more than 2 n . To include the judgements and substitutions,
all the calculating process costs computation time of about ()O n . Hence, the
computational complexity of this algorithm is determined by the second step,
and all the process requires a polynomial time of order ()4O n . The proof is
finished.

Corollary 1. P = NP.
Proof: On the one hand, it follows from [1] [2] [4] [6] that the travelling

salesman problem is NP-complete; On the other hand, we have found a fast
algorithm for the travelling salesman problem which can be executed on
computer with a polynomial time. In another word, we have found a language
L for a NP-complete problem in P. It follows from Proposition 1 that P = NP.
The proof is finished.

4. Conclusion

By using a new approach named “maximum-deleting method”, we have cons-
tructed a fast algorithm for the travelling salesman problem with a polynomial
time of order ()4O n , which will greatly reduce the computational complexity.
Notice that this problem is NP-complete, as a corollary, we have also solved the
well-known open problem named “P versus NP”. The result indicates that P =
NP which will result in a surprise to all, since great majority of people have
believed that P ≠ NP.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Wikipedia (the Free Encyclopedia), Travelling Salesman Problem.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

[2] Devlin, K.J. (2003) The Millennium Problems: The Seven Greatest Unsolved Ma-

https://doi.org/10.4236/am.2018.912088
https://en.wikipedia.org/wiki/Travelling_salesman_problem

J. L. Wang

DOI: 10.4236/am.2018.912088 1359 Applied Mathematics

thematical Puzzles of Our Time. Basic Books, New York.

[3] Cook, S. (2018) Official Problem Description: The P versus NP Problem.
http://www.claymath.org/millennium-problems/p-vs-np-problem

[4] Wikipedia (the Free Encyclopedia), P versus NP Problem.
https://en.wikipedia.org/wiki/P_versus_NP_problem

[5] Cook, S. (1971) The Complexity of Theorem-Proving Procedures. Conference
Record of Third Annual ACM Symposium on Theory of Computing, ACM, New
York, 151-158.

[6] Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco.

https://doi.org/10.4236/am.2018.912088
http://www.claymath.org/millennium-problems/p-vs-np-problem
https://en.wikipedia.org/wiki/P_versus_NP_problem

	Fast Algorithm for the Travelling Salesman Problem and the Proof of P = NP
	Abstract
	Keywords
	1. Introduction
	2. Maximum-Deleting Method
	3. Fast Algorithm with Polynomial Time
	4. Conclusion
	Conflicts of Interest
	References

