The Solution of Yang-Mills Equations on the Surface

Peng Zhu, Liyuan Ding

Department of Mathematics, Yunnan Normal University, Kunming, China
Email: zhupengfive@icloud.com

Abstract
We show that Yang-Mills equation in 3 dimensions is local well-posedness in H^s if the norm is sufficiently. Here, we construct a solution on the quadric that is independent of the time. And we also construct a solution of the polynomial form. In the process of solving, the polynomial is used to solve the problem before solving.

Keywords
H^s-Space, Well-Posedness, Polynomial, Quadric

1. Introduction and Preliminaries
This paper is concerned with the solution of the Yang-Mills equation.

We shall denote g-valued tensors define on Minkowski space-time $A_\alpha : R^{3+1} \to g$ by bold character A_α, where α ranges over $0,1,2,3$. We use the usual summation conventions on α, and raise and lower indices with respect to the Minkowski metric $\eta^{\alpha\beta} := \text{diag}(-1,1,1,1)$; for more details, see [1] [2] [3]. Given an arbitrary g-valued tensor $F_{\alpha\beta} : R^{3+1} \to g$.

The curvature of a connection $F_{\alpha\beta}$ by

$$F_{\alpha\beta} := \partial_\alpha A_\beta - \partial_\beta A_\alpha + [A_\alpha, A_\beta]$$

Here $[,]$ denotes the Lie bracket of g. It appears in calculations whenever we commute covariant derivatives [4] [5], or more precisely that

$$\partial_\alpha F_{\alpha\beta} + [A_\alpha, F_{\alpha\beta}] = 0$$

We can expand this as

$$\square A^\alpha - \partial_\alpha (\partial_\beta A^\beta) + [A_\alpha, \partial_\beta A^\beta] - [A_\alpha, \partial_\beta A^\beta] + [A_\alpha, [A^\alpha, A^\beta]] = 0$$

where $\square = -\partial^2 + \Delta, \alpha, \beta = 0,1,2,3$.

DOI: 10.4236/am.2017.81004 January 23, 2017
The Cauchy problem for Yang-mills equation is not well-posed because of
gauge invariance (see [6] [7]). However, if one fixes the connection to lie in the
temporal gauge \(A_0 = 0 \), the Yang-Mills equations become essentially hyperbolic
[8] [9], and simplify to
\[
\partial_j \left(\text{div} A \right) + \left[A_i, \partial_j A \right] = 0
\]
and
\[
\Box A_j - \partial_j \left(\text{div} A \right) + \left[A_i, \partial_j A \right] - \left[A_j, A_i \right] + \left[A_i, A_j \right] = 0
\]
where \(i, j = 1, 2, 3 \).

The local well-posedness of the Equations (1) and (2) have already proved in
[10]. Here in not described in detail. This paper will show that the solution of
operator and polynomial type.

2. Exact Solution of Equation

Below we will construct the exact solution of the equation on the general quadric
that denotes by
\[
A_i = \partial_{x_i} + a_i, \quad i = 1, 2, 3.
\]
where \(a_i = a_i(x_i, x_2, x_3) \).

We bring (3) to Equation (2), because the equation is used in the two general
surfaces, we define the general quadric by
\[
f = \sum a_i a_j x_i x_j x_k
\]
\(\alpha_i, \alpha_j, \alpha_k = 0, 1, 2, c_{\alpha_1 \alpha_2 \alpha_3} \) as coefficient and \(c_{\alpha_1 \alpha_2 \alpha_3} \in \mathbb{R} \). So we calculate the equation. The first calculation can be
\[
\left(\Box A_j \right) f = \left(\Delta - \partial_i^2 \right) \left(\partial_j + a_j \right) f = \left[\Delta \partial_{x_j} + \left(\Delta a_j \right) + a_j \Delta - \partial_i \partial_j a_i - \partial_i^2 a_j - a_j \partial_i^2 \right] f
\]
\[
= \left[\left(\Delta a_j \right) + a_j \Delta \right] f = \left(\Delta a_j \right) f + 2 a_j \left(c_{000} + c_{002} + c_{000} \right)
\]
Divergence terms can be
\[
\left[\partial_j \left(\text{div} A \right) \right] f = \left[\partial_{x_j} \left(\partial_{x_j} + a_j \right) + \partial_{x_j} a_j + \partial_{x_j} a_{x_k} + \partial_{x_j} a_{x_k} \right] \left[a \right] f
\]
\[
= \left[\partial_{x_j} a_j + \partial_{x_j} a_{x_k} + \partial_{x_j} a_{x_k} + \partial_{x_j} a_{x_k} \right] \left[a \right] f
\]
Finally, the sections of Lie bracket can be
\[
\left[A_i, \partial_j, A_j \right] f = \left[\left(A_i \cdot \partial_j, A_j - \partial_j, A_i \cdot A_j \right) \right] f
\]
\[
= \left(\partial_x + a_i \right) \left(\partial_j, \partial_x + a_i \partial_j \right) - \left(\partial_j, \partial_x + a_i \partial_j \right) \left(\partial_x + a_i \right)
\]
\[
= \left(\frac{\partial^2 a_j}{\partial x^2} + \frac{\partial a_j}{\partial x} \right) \left(\partial_x + a_i \right)
\]
\[
= -\frac{\partial a_j}{\partial x} \left(c_{100} + c_{110} x_2 + c_{101} x_3 + 2 c_{200} x_2 \right)
\]
\[
+ \frac{\partial a_j}{\partial x} \left(c_{001} + c_{011} x_2 + 2 c_{020} x_2 \right) + \left(a_i \frac{\partial a_j}{\partial x} + a_i \frac{\partial a_i}{\partial x}, \frac{\partial a_j}{\partial x} \right)
\]
\[
\left[A_i, \left[A_i, A_j \right] \right] f = \left[A_i, A_i, A_j - A_j, A_i \right] f
\]
\[
= A_i \left(\partial_x + a_i \right) \left(\partial_j, \partial_x + a_j \right) - \left(\partial_j, \partial_x + a_j \right) \left(\partial_x + a_i \right)
\]
\[
= \left(\frac{\partial^2 a_j}{\partial x^2} + \frac{\partial a_j}{\partial x} \right) f
\]
\[
= \left(\partial_x + a_i \right) \left(\frac{\partial a_j}{\partial x} - \frac{\partial a_j}{\partial x} \right)
\]
\[
= \left(\frac{\partial^2 a_j}{\partial x^2} - \frac{\partial^2 a_j}{\partial x^2} \right) f
\]

Combining the above calculations we have
\[
2 a_j \left(c_{200} + c_{020} + c_{002} \right) + \left[\Delta a_j - \frac{\partial^2 a_j}{\partial t^2} + 2 \frac{\partial^2 a_j}{\partial x^2} \right] + \frac{\partial a_j}{\partial t} \left(a_j, \frac{\partial a_j}{\partial x} \right) + \frac{\partial a_j}{\partial x} \left(a_j, \frac{\partial a_j}{\partial t} \right)
\]
\[
+ 2 c_{200} x_2 \left(c_{100} + c_{110} x_2 + c_{101} x_3 \right) + \left(c_{001} + c_{011} x_2 + 2 c_{020} x_2 \right) + \left(c_{001} + c_{011} x_2 \right)
\]
\[
= 0
\]
We will use the properties of polynomials to list the coefficient equations in order to solve the (3). For the cross terms and square terms coefficient, we have

$$\Delta a_j - \frac{\partial^2 a_j}{\partial t^2} + 2 \frac{\partial^2 a_j}{\partial x_1^2} + 2 \left(\frac{\partial^2 a_1}{\partial x_1 \partial x_j} + \frac{\partial^2 a_2}{\partial x_2 \partial x_j} + \frac{\partial^2 a_3}{\partial x_3 \partial x_j} \right)$$

$$+ a_j \left(\frac{\partial a_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2} + \frac{\partial a_3}{\partial x_3} \right) + a_1 \frac{\partial a_1}{\partial x_j} + a_2 \frac{\partial a_2}{\partial x_j} + a_3 \frac{\partial a_3}{\partial x_j} = 0$$ (4)

First, we consider $j = 1$.

The constant coefficient equation is

$$2a_1 (c_{200} + c_{020} + c_{002}) + \Delta a_1 - \frac{\partial^2 a_1}{\partial t^2} + 2 \frac{\partial^2 a_1}{\partial x_1^2} + 2 \left(\frac{\partial^2 a_1}{\partial x_1 \partial x_2} + \frac{\partial^2 a_1}{\partial x_1 \partial x_3} \right)$$

$$+ a_1 \left(\frac{\partial a_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2} + \frac{\partial a_3}{\partial x_3} \right) + a_1 \frac{\partial a_1}{\partial x_1} + a_2 \frac{\partial a_2}{\partial x_1} + a_3 \frac{\partial a_3}{\partial x_1} + \frac{\partial a_1}{\partial x_1} c_{100}$$

$$+ \frac{\partial a_2}{\partial x_2} c_{101} + \frac{\partial a_3}{\partial x_3} c_{101} - \left(\frac{\partial a_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2} + \frac{\partial a_3}{\partial x_3} \right) c_{100} = 0$$

The coefficient equation of x_1 is

$$\frac{\partial a_1}{\partial x_1} c_{110} + \frac{\partial a_1}{\partial x_3} c_{101} - 2 \frac{\partial a_2}{\partial x_2} c_{200} - 2 \frac{\partial a_3}{\partial x_3} c_{200} = 0$$ (5)

The coefficient equation of x_2 is

$$2 \frac{\partial a_1}{\partial x_2} c_{202} + \frac{\partial a_1}{\partial x_3} c_{201} - \frac{\partial a_2}{\partial x_2} c_{110} - \frac{\partial a_3}{\partial x_3} c_{110} = 0$$ (6)

The coefficient equation of x_3 is

$$\frac{\partial a_1}{\partial x_2} c_{201} + \frac{\partial a_1}{\partial x_3} c_{202} - \frac{\partial a_2}{\partial x_2} c_{110} - \frac{\partial a_3}{\partial x_3} c_{110} = 0$$ (7)

Because of the (4), the coefficient equation of constant can be

$$2a_1 (c_{200} + c_{020} + c_{002}) + \frac{\partial a_1}{\partial x_2} c_{201} + \frac{\partial a_1}{\partial x_3} c_{201} - \frac{\partial a_2}{\partial x_2} c_{110} - \frac{\partial a_3}{\partial x_3} c_{110} = 0$$ (8)

$$(6) \times c_{110} \times c_{101} - (7) \times c_{200} \times c_{101} - (8) \times c_{200} \times c_{110} \text{ we have}$$

$$\frac{\partial a_2}{\partial x_2} \left(c_{101} c_{110} c_{101} - 2 c_{202} c_{200} c_{101} - c_{011} c_{200} c_{110} \right)$$

$$+ \frac{\partial a_3}{\partial x_3} \left(c_{101} c_{110} c_{101} - c_{011} c_{200} c_{110} - 2 c_{202} c_{011} c_{200} \right) = 0$$ (9)

Deformation by (6), we have

$$\frac{\partial a_2}{\partial x_2} + \frac{\partial a_3}{\partial x_3} = 2 \frac{\partial a_1}{\partial x_2} c_{202} + \frac{\partial a_1}{\partial x_3} c_{202} / c_{110}$$ (10)

Simulaneous (8) and (10), we have

$$2a_1 (c_{200} + c_{020} + c_{002}) + \frac{\partial a_1}{\partial x_2} \left(c_{201} - 2 \frac{c_{020} c_{110}}{c_{110}} \right) + \frac{\partial a_1}{\partial x_3} \left(c_{201} - \frac{c_{011} c_{200} c_{110}}{c_{110}} \right) = 0$$ (11)

First, for (9) we can use mathematica to get
\[a_i = C_1 \left[x_i \right] \]
\[\left[-\left(c_{01}c_{110}c_{101} - c_{012}c_{200}c_{200} - 2c_{020}c_{011}c_{200} \right)x_2 + \left(c_{110}c_{110}c_{101} - 2c_{020}c_{012}c_{200} - c_{01}c_{200}c_{110} \right)x_3 \right] \]

where \(C_1 \) is a constant, \(\left[\right] \) denotes the arbitrary combination of functions represented as independent variables in square brackets. For example, \(\left[x \right] \) is represented as \(x \sin x \) or \(e^t \ln x \cos x \) and so on.

Next, from (11) we can obtain
\[a_i = C_2 e^{2c_{010}c_{100}c_{110}/10} \left[x_i \right] \]
\[\left[-\left(c_{001} - c_{010}c_{100}/c_{110} \right)x_2 + \left(c_{001} - 2c_{020}c_{010}/c_{110} \right)x_3 \right] \]

where \(C_2 \) is a constant.

We can observe the above \(a_i \) and the general properties of two surfaces, \(a_i \) is irrelevant to the \(x_2 \) and \(x_3 \), so \(a_i = a_i(x_i) \).

Because of \(a_i = a_i(x_i) \), we take \(a_i \) into the (11) can be obtain
\[2a_i(c_{200} + c_{020} + c_{002}) = 0 \]

By two surfaces we can obtain
\[a_i = 0 \]

Similarly, we can prove that \(j = 2, 3 \), we have
\[a_2, a_3 = 0 \]

In summary, when the Equation (2) is acting on the quadric, we have
\[\begin{align*}
A_1 &= \partial_n \\
A_2 &= \partial_{x_2} \\
A_3 &= \partial_{x_3}
\end{align*} \]

3. Polynomial Solutions

3.1. First Order Polynomial Solution

Below we construct a polynomial solution. First, the constant must satisfy the equation so that all constant are the solutions of the Equation (1) and (2). Then we define the solution of a polynomial form on a surface by
\[A_i = a_i x_1 + b_i x_2 + c_i x_3 + d_i \]

where \(i = 1, 2, 3 \), \(A_i \) is satisfied the (1) because of not contain time \(t \). Then we just need to bring \(A_i \) into (2). We have
\[\Delta A_j - \partial_j \left(\text{div} A \right) + \sum_{i=1}^{3} \left(\partial_j A_i, A_i - A_i \partial_j A_i \right) = 0 \] (12)

Equation (12) is composed of three equations. First we consider the case of \(j = 1 \). So the constant coefficient equation is
\[b_2 d_2 - b_2 d_4 + a_2 d_3 - c_2 d_1 = 0 \]

The coefficient equation of \(x_1 \) is
\[a_1 b_2 - a_1 b_2 + a_1 a_3 - a_1 c_3 = 0 \]

The coefficient equation of \(x_2 \) is
The coefficient equation of x_3 is
\[b_2 b_3 - b_1 b_2 + a_1 b_3 - b_1 c_3 = 0 \]
The coefficient equation of x_3 is
\[b_2 c_3 - b_1 c_1 + a_1 c_1 - c_1 c_1 = 0 \]
When $j = 2$, the relationship of the coefficients are
\[
\begin{align*}
 b_d d_1 - a_b d_1 + c_d d_1 - c_i d_1 &= 0 \\
 a_b b_1 - a_b d_2 + a_1 c_1 - a_1 c_1 &= 0 \\
 b_d h_1 - a_b b_2 + b_3 c_1 - b_1 c_3 &= 0 \\
 b_1 c_1 - a_1 c_2 + c_2 c_2 - c_2 c_3 &= 0
\end{align*}
\]
When $j = 3$, the relationship of the coefficients are
\[
\begin{align*}
 c_d d_1 - a_d d_1 + c_2 d_2 - b_d d_2 &= 0 \\
 a_1 c_1 - a_1 d_3 + a_2 c_2 - a_1 d_3 &= 0 \\
 b_1 c_1 - a_2 b_3 + b_2 c_2 - b_2 b_3 &= 0 \\
 c_3 c_1 - a_3 c_2 + c_3 c_2 - c_3 c_3 &= 0
\end{align*}
\]
There exist 12 equations. By solving the above equations, we can obtain
\[
\begin{align*}
 a_1 &= a_2 = a_3 = b_1 &= b_2 = b_3 = c_1 &= c_2 &= c_3 \\
 d_1 &= d_2 = d_3
\end{align*}
\]
Therefore
\[
A_i = ax_i + ax_2 + ax_3 + b
\] (13)
where $a, b \in R \quad i = 1, 2, 3$.

In summary, the solution of the polynomial form of Yang-Mills equation is expressed in the form of (13).

3.2. The Quadratic Polynomial Solution

In this section, we mainly discuss the solution of the quadratic polynomial form of the Yang-Mills equation on the two surfaces. We define by
\[
\begin{align*}
 A_1 &= \sum_{a_1, a_2, a_3, a_4} a_{a_1 a_2 a_3 a_4} x_1^{a_1} x_2^{a_2} x_3^{a_3} \\
 A_2 &= \sum_{\beta_1, \beta_2, \beta_3} b_{\beta_1 \beta_2 \beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \\
 A_3 &= \sum_{\gamma_1, \gamma_2, \gamma_3} c_{\gamma_1 \gamma_2 \gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3}
\end{align*}
\]
where $\alpha_i, \beta_i, \gamma_i \in \mathbb{N} \quad i = 1, 2, 3$, $a_{a_1 a_2 a_3 a_4}, b_{\beta_1 \beta_2 \beta_3}, c_{\gamma_1 \gamma_2 \gamma_3} \in R$ are coefficients. So A_1, A_2, A_3 must satisfy the Equation (1), therefore, it just needs to take A_1, A_2, A_3 into (12), we have
\[
\begin{align*}
 \Delta A_1 - \partial_{x_1} \left(\sum_{a_1, a_2, a_3, a_4} a_{a_1 a_2 a_3 a_4} x_1^{a_1} x_2^{a_2} x_3^{a_3} \right) - \partial_{x_2} \left(\sum_{\beta_1, \beta_2, \beta_3} b_{\beta_1 \beta_2 \beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \right) \\
- \partial_{x_3} \left(\sum_{\gamma_1, \gamma_2, \gamma_3} c_{\gamma_1 \gamma_2 \gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3} \right) + [\partial_{x_1} \left(\sum_{a_1, a_2, a_3, a_4} a_{a_1 a_2 a_3 a_4} x_1^{a_1} x_2^{a_2} x_3^{a_3} \right) \cdot \sum_{a_1, a_2, a_3, a_4} a_{a_1 a_2 a_3 a_4} x_1^{a_1} x_2^{a_2} x_3^{a_3}] \\
- A_1 \left[\partial_{x_1} \left(\sum_{a_1, a_2, a_3, a_4} a_{a_1 a_2 a_3 a_4} x_1^{a_1} x_2^{a_2} x_3^{a_3} \right) + \partial_{x_2} \left(\sum_{\beta_1, \beta_2, \beta_3} b_{\beta_1 \beta_2 \beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \right) \right] \cdot \sum_{\beta_1, \beta_2, \beta_3} b_{\beta_1 \beta_2 \beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3}
\end{align*}
\]
There exist 30 equations and 30 unknowns. Solving the equations we can obtain the following results

\[
\begin{align*}
ap_{00} &= a_{00} = a_{00} = a_{00} = a_{00} = 0 \\
b_{00} &= b_{00} = b_{00} = b_{00} = b_{00} = 0 \\
c_{00} &= c_{00} = c_{00} = c_{00} = c_{00} = 0 \\
ap_{100} &= a_{100} = a_{100} = b_{100} = b_{100} = c_{100} = c_{100} = c_{100} = c_{100} = R \\
ap_{00} &= b_{00} = c_{00} \in R
\end{align*}
\]

So the solution of the equation can be written

\[
A_i = ax_i + ax_i + ax_i + b
\]

where \(a, b \in \mathbb{R}\) \(i = 1, 2, 3\).

In summary, the solution of the quadratic polynomial form of Yang-Mills equation is (14). It obvious that (13) is equal to (14). So we conjecture that the solution of n-degree polynomial on n-sub surface is also (14). In the next section, we will proof the hypothesis.

3.3. Solution of N-Degree Polynomial

In this section, we mainly use mathematical induction to prove the hypothesis.

We define that by

\[
\begin{align*}
A_1 &= \sum_{\alpha_1 + \alpha_2 + \alpha_3 \leq n} a_{\alpha_1 \alpha_2 \alpha_3} x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \\
A_2 &= \sum_{\beta_1 + \beta_2 + \beta_3 \leq n} b_{\beta_1 \beta_2 \beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \\
A_3 &= \sum_{\gamma_1 + \gamma_2 + \gamma_3 \leq n} c_{\gamma_1 \gamma_2 \gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3}
\end{align*}
\]

where \(\alpha_i, \beta_i, \gamma_i \in \mathbb{N}\) \(i = 1, 2, 3\), \(a_\alpha, b_\beta, c_\gamma \in R\) are coefficients.

In the front two sections, it is easy for us to conclude that when \(n = 1, 2\) the solutions are the same. So we will use mathematical induction to prove that when \(n \geq 2\) the solution is also (14).

First, we assume that when \(n(n \geq 2)\) the solution of the equation is

\[
A_i = ax_i + ax_i + ax_i + b
\]

where \(a, b \in \mathbb{R}\) \(i = 1, 2, 3\).

Now when \(n + 1\), we have

\[
\Delta A_i - \partial_{\gamma_1} \left(\sum_{\alpha_1 + \alpha_2 + \alpha_3 \leq n} a_{\alpha_1 \alpha_2 \alpha_3} x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \right) - \partial_{\gamma_2} \left(\sum_{\beta_1 + \beta_2 + \beta_3 \leq n} b_{\beta_1 \beta_2 \beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \right) \\
- \partial_{\gamma_3} \left(\sum_{\gamma_1 + \gamma_2 + \gamma_3 \leq n} c_{\gamma_1 \gamma_2 \gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3} \right) + \left(\sum_{\alpha_1 + \alpha_2 + \alpha_3 \leq n} a_{\alpha_1 \alpha_2 \alpha_3} x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \right) - \sum_{\alpha_1 + \alpha_2 + \alpha_3 \leq n} a_{\alpha_1 \alpha_2 \alpha_3} x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3}
\]
To further simplify (15), we have

\[
\begin{align*}
A_1 &= \sum_{a_1+a_2+a_3=n} a_{a_1,a_2,a_3} x_1^{a_1} x_2^{a_2} x_3^{a_3} + \sum_{a_1+a_2+a_3=n+1} a_{a_1,a_2,a_3} x_1^{a_1} x_2^{a_2} x_3^{a_3} \\
A_2 &= \sum_{\beta_1+\beta_2+\beta_3=n} b_{\beta_1,\beta_2,\beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} + \sum_{\beta_1+\beta_2+\beta_3=n+1} b_{\beta_1,\beta_2,\beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \\
A_3 &= \sum_{\gamma_1+\gamma_2+\gamma_3=n} c_{\gamma_1,\gamma_2,\gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3} + \sum_{\gamma_1+\gamma_2+\gamma_3=n+1} c_{\gamma_1,\gamma_2,\gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3}
\end{align*}
\]

To bring into the equation, we have

\[
\Delta J = -\partial_{J_1} \left(\sum_{a_1+a_2+a_3=n} a_{a_1,a_2,a_3} x_1^{a_1} x_2^{a_2} x_3^{a_3} \right) - \partial_{J_2} \left(\sum_{\beta_1+\beta_2+\beta_3=n} b_{\beta_1,\beta_2,\beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \right)
\]

\[
-\partial_{J_3} \left(\sum_{\gamma_1+\gamma_2+\gamma_3=n+1} c_{\gamma_1,\gamma_2,\gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3} \right)
\]

\[
+ \left[\partial_{J_1} \left(\sum_{a_1+a_2+a_3=n} a_{a_1,a_2,a_3} x_1^{a_1} x_2^{a_2} x_3^{a_3} \right) \right] \cdot \sum_{a_1+a_2+a_3=n+1} a_{a_1,a_2,a_3} x_1^{a_1} x_2^{a_2} x_3^{a_3}
\]

\[
- A_1 \cdot \partial_{J_2} \left(\sum_{\beta_1+\beta_2+\beta_3=n} b_{\beta_1,\beta_2,\beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \right)
\]

\[
+ A_2 \cdot \partial_{J_3} \left(\sum_{\gamma_1+\gamma_2+\gamma_3=n} c_{\gamma_1,\gamma_2,\gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3} \right)
\]

\[
+ A_3 \cdot \partial_{J_4} \left(\sum_{\gamma_1+\gamma_2+\gamma_3=n+1} c_{\gamma_1,\gamma_2,\gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3} \right) = 0
\]

where \(J_j \) is

\[
\begin{align*}
J_1 &= \sum_{a_1+a_2+a_3=n} a_{a_1,a_2,a_3} x_1^{a_1} x_2^{a_2} x_3^{a_3} \\
J_2 &= \sum_{\beta_1+\beta_2+\beta_3=n} b_{\beta_1,\beta_2,\beta_3} x_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \\
J_3 &= \sum_{\gamma_1+\gamma_2+\gamma_3=n+1} c_{\gamma_1,\gamma_2,\gamma_3} x_1^{\gamma_1} x_2^{\gamma_2} x_3^{\gamma_3}
\end{align*}
\]

On the number of \(x \) in the above equation is either less than \(n \), or more than \(n+1 \). When the number of \(x \) is less than \(n \), the solution of the equation is

\[
A_i = ax_1 + ax_2 + ax_3 + b
\]
And the number of more than \(n+1 \) of the items in the \(n \)-sub surfaces is always equal to zero.

4. Conclusion

In summary, we can get the solution of the polynomial type of Yang-Mills equation by mathematical induction is

\[
A_i = ax_i + ax_2 + ax_3 + b
\]

where \(a, b \in \mathbb{R} \ i = 1, 2, 3 \).

References

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact am@scirp.org