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Abstract

The links between low temperature and the incidence of disease have been studied by many re-
searchers. What remains still unclear is the exact nature of the relation, especially the mechanism
by which the change of weather effects on the onset of diseases. The existence of lag period be-
tween exposure to temperature and its effect on mortality may reflect the nature of the onset of
diseases. Therefore, to assess lagged effects becomes potentially important. The most of studies on
lags used the method by Lag-distributed Poisson Regression, and neglected extreme case as ran-
dom noise to get correlations. In order to assess the lagged effect, we proposed a new approach,
i.e.,, Hidden Markov Model by Self Organized Map (HMM by SOM) apart from well-known regres-
sion models. HMM by SOM includes the randomness in its nature and encompasses the extreme
cases which were neglected by auto-regression models. The daily data of the number of patients
transported by ambulance in Nagoya, Japan, were used. SOM was carried out to classify the me-
teorological elements into six classes. These classes were used as “states” of HMM. HMM was used
to describe a background process which might produce the time series of the incidence of diseases.
The background process was considered to change randomly weather states, classified by SOM.
We estimated the lagged effects of weather change on the onset of both cerebral infarction and
ischemic heart disease. This fact is potentially important in that if one could trace a path in the
chain of events leading from temperature change to death, one might be able to prevent it and
avert the fatal outcome.

Keywords

Hidden Markov Model, Self Organized Map, Stroke, Cerebral Infarction, Ischemic Heart Disease

How to cite this paper: Morimoto, H. (2016) Hidden Markov Models to Estimate the Lagged Effects of Weather on Stroke
and Ischemic Heart Disease. Applied Mathematics, 7, 1415-1425. http://dx.doi.org/10.4236/am.2016.713122



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.713122
http://dx.doi.org/10.4236/am.2016.713122
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

H. Morimoto

1. Introduction

The association between low temperature and morbidity of disease is well recognized (e.g., [1] [2]). The exact
mechanism of this association is not described well. In this direction, to estimate the length of the lag period
(delay) between exposure to temperature and its effect on the onset of diseases becomes important.

Many works have been done to clarify the lagged effects, and most of them used Poisson regression model
with certain spline functions or some smoothing technique. This direction resulted to neglect all of the extreme
cases in order to get “stochastically significant” correlation.

For example, in [3], lagged effects of 3 to 5 days for hot temperature were observed for respiratory and car-
diovascular deaths in 12 U.S. cities. They used smooth functions for distributed lag model. The shape of the
mortality-temperature relation was examined by fitting cubic spline models ([4]). In [5], daily temperatures and
daily mortality on successive days before and after a reference day were regressed on the temperature of the ref-
erence day using high pass filtered data. The increases in deaths were maximal at 3 days after the peak in cold
for IHD (Ischemic Heart Disease), at 12 days for RES (Respiratory Disease), and at 3 days for all cause mortal-
ity. Poisson regression and distributed lag models were used with a cubic regression spline of apparent tempera-
ture in [6].

Thus, many works used Poisson regression model with certain smoothing functions to address the lagged ef-
fects. These methods inevitably neglected the existence of extreme case as exceptional cases or as random noise.
However, such exceptional cases (e.g. combination of a rise in temperature and an increase in risk) were recog-
nized to be important and not negligible for cerebral infarction by [7] and for ischemic heart disease by [8].
Therefore, the effects of lags must be estimated by models without use of regression models with spline func-
tions. For this purpose we proposed, in this paper, a new method, i.e., Hidden Markov Models by Self-
Organized Maps (HMM by SOM).

2. Method
2.1. Data

This study was carried out for the data from Nagoya city, Japan. Its population is over 2,260,000 inhabitants. It
is situated in the middle of Japan, facing the Pacific Ocean. The climate in the city is that known as a typical
mild Japanese climate, representing the change of four seasons.

The daily number of patients was obtained from Nagoya City Fire Department. The data contained the num-
ber of patients who were first transported by ambulance to a hospital and then diagnosed, at the hospital, as ce-
rebral infarction, ischemic heart disease, myocardial infarction, angina pectoris and so on. The data contained all
ages. These data was taken among two periods. One was from 2002 to 2005 and the other from 2009 to 2012.

As for meteorological data, we selected a daily data supplied by Japan Meteorological Agency. The data con-
sisted of temperature (mean, maximum and minimum temperature) and the hours of sunshine and so on.

2.2. Self-Organized Map (SOM)

Self-Organizing Map (SOM) is a kind of “cluster mapping”, and was first introduced by [9]. It gives us an over-
view of multivariate data sets (called input layer), and supplies visualization on graphical map displays (called
target layer). See [11] [12] for the details of application of SOM to the problem of links between diseases and
weather.

SOM uses artificial neural networks to find a continuous mapping from input space or layer to a target layer
or lattices in two-dimensional space. These lattices are considered as “neurons”. These points in lattices in plane
were also called “units”. The map was realized so that as much as possible of the original structure of the mea-
surement vectors in the n-dimensional space are to be conserved in lattice structure in plane. As a result, if the
points in original data are “near” (or “distant”), then they were mapped to “near” (or “distant™) units in plane.
Thus SOM visualizes cluster tendency of the data.

2.3. Hidden Markov Model (HMM)

A hidden Markov model was a tool for representing random change of states over time series of observations.
The method was applied broadly to many fields, for example, to DNA profiles ([12]) and to a statistic model for
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precipitation ([13]). Here in this paper, observation data were supposed to be the daily data of numbers of pa-
tients of cerebral infarction or ischemic heart disease, transported by ambulance in Nagoya city.

The “states” in HMM were considered as a representation of a process in “background”. One can suppose
there was a sort of “background” even for the incidence of diseases. Here we supposed that such background
states were a kind of randomly changing weather states. In this article, such states were given by the classifica-
tion due to Self-Organized Map (SOM) which was applied to meteorological elements. This idea realized the
links between the change of weather patterns and the change of the risk of cerebral infarction and ischemic heart
disease. For basic elements of HMM, see [14] in general or [10] [11] for this field of application.

3. Results
3.1. Results by Self-Organized Map (SOM)

In this article, SOM was carried out to the daily data of eight weather elements (such as maximum temperature,
minimum temperature, precipitation, humidity, local pressure, wind velocity, the hours of daylight and solar
radiation) in Nagoya city. The data were supplied by Japan Meteorological Agency and were collected during
two periods, i.e., from 2002 to 2005 and from 2009 to 2012. Here we used the so-called “standard” SOM, based
on unsupervised neural learning algorithms. The obtained units or classes were used as the states of Hidden
Markov Models (described later).

As a target layer, lattices of 3 times 2 units (totally 6 units) were selected. Thus, we obtained our classification
of meteorological data to just six classes of “weather states”. See Figure 1, where the classified classes were
denoted by (a)-(f). The range of the scales varied from 0 to 1, because all the data were scaled so as to have
mean 0 and variance 1. In Figure 1, the classes were roughly divided into two groups: (a) (b) were the group of
high pressure of local atmosphere, and (c)-(f) were the group of low pressure. The group of high pressure was
further divided into two classes: the class (a) was a type of warm weather with high pressure, and (b) a type of
cold weather with high pressure. The low pressure group was divided into four classes: the class (c) expressed
cold and windy weather, (d) rainy weather, (e) warm weather and (f) humid weather.

Thus these six classes were named “(a) high pressure (warm), (b) high pressure (cold), (c) low pressure (cold,
windy), (d) low pressure (rainy), (e) low pressure (warm), and (f) low pressure (humid)”, according to the cha-
racter of each class.

3.2. Hidden Markov Model

HMMs consist of two kinds of elements: one is the set of “states”, the other is series of “observation”. Both
“states” and “observations” change randomly as times go by and the “states” were supposed to generate “obser-
vations” by some mechanism.

To understand links between the incidence of diseases and the weather, the variability of weather could be
thought as a s “background” bringing the incidence of diseases such as stroke incidence and ischemic heart dis-
ease. Here we supposed that such background states of weather changed randomly and formed a set of states in
HMM. The “states” were those classes obtained by the above SOM which express six weather patterns; “high
pressure (warm), high pressure (cold), low pressure (cold, windy), low pressure (rainy), low pressure (warm),
and low pressure (humid)”.

The “observation” was the daily data of numbers of patients who were once transported by ambulance in Na-
goya city and were diagnosed later as cerebral infarction or ischemic heart diseases.

The observation at time t(day)is represented by the variable R(t) (the number of patients). The observation R(t)
at time t is generated randomly by some process whose state S(t) (one of the six weather states given by SOM).
HMM assumes that the state S(t) is determined randomly from the state S(t — 1) of the previous day. Both ran-
dom processes are assumed to be Markov process. See Figure 2.

Each state is supposed to change to another state with some probability. The collection of all of these proba-
bilities formes a “Transition Matrix” P, where j-th state changes to i-th state with probability P;. Each state (e.qg.,
j-th state) at time t generates an observed value, according to some distribution Q;. The collection of such distri-
bution formes a “distribution matrix” Q, where j-th column of Q is equal to Q;. As a consequence, we have a set

{S,R,P,Q},

where S and R are the sets of states and observation. This set defines a Hidden Markov Model. We calculated
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(a) high pressure (warm)
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localpress

(c) low pressure (cold, windy)
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Figure 1. The results of SOM; six patterns of weather states.

(b) high pressure (cold)

max_temp

min_temp

rain

humidity

localpress

(c) low pressure (rainy)

localpress
(f) low pressure (humid)

max_temp
5

localpress

these two matrices P and Q by analyzing the data from 2002 January to 2004 December, and also from the data

from 2009 to 2012, separately. See for details [12].

3.3. How to Find Lags

Cold exposure is not generally associated with an immediate increase of patients or death with respect to cerebral
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State

Observed Value

Figure 2. Sequences of states and observations in a hidden
Markov model without delay.

infarction and ischemic heard disease. There appears to be some interval between the incidence of temperature
change and the onset of these diseases. Such interval is called “lag” or “delay”.

Many studies used Poisson regression and distributed lag models. In this article, we applied our hidden Mar-
kov model to find “lag” or “delay”. For this purpose, hidden Markov model was shifted according to the amount
of delay. This procedure was illustrated by the comparison of Figure 2 and Figure 3.

Figure 2 showed the non-shifted normal hidden Markov model (with delay = 0) with six states of weather
patterns (classified by SOM). The observed value R(t) corresponds to the state S(t). Figure 3 described “shifted”
HMM. The amount of shift was equal to “delay” (equal to 1 in this figure). For general delay d, the observed
value R(t) corresponds to the state S(t — d).

To estimate the “lag”, the simulation was carried out for several times (500 or 1000 times) for this shifted
hidden Markov model for the given delay. The comparison between the original observed values and these si-
mulated sequences was performed by calculating the root mean square errors (RMSESs) of these two sequences.
We first fixed the delay = d (days) and considered shifted HMM of delay d. Then, starting from certain day (e.g.
15-th of January in 2005), we let the HMM generate simulated sequences of the risk R(t) during T days:

r(2),r(2), -, r*(T)
Here, T was taken to be equal to one of the numbers 3, 5 or 7 days.
We compared this simulated sequence with the original sequence of the number of patients:

q(1).a(2).-+a(T)

and calculated the Root Mean Square Error of these two sequences:

JXlat)-r f

We repeated this process 500 times to get the 500 sequences of r®(1),r®(2),---,r*(T) and the corres-
ponding RMSEs. By taking the average of these RMSEs, we thus associated the delay d with the mean of
RMSEs. If we make delay d to vary like 0,1,2,---, and collect the corresponding values of RMSE, then we get
the graph of RMSE versus delay d.

For example, in Figure 4, we had the graph of RMSE versus lagged days in winter for cerebral infarction.
Simulations were performed during 3 days and 5 days from 15-th of January 2005. RMSEs were the mean of
RMSEs during winter season.

The next example was described in Figure 5. Here, the graph of RMSE versus lagged days was calculated for
summer and the other conditions were supposed to be same as Figure 4. Again, the delay of 3 days was ob-
served.

The calculations of RMSE versus delay were similarly performed for the data from 2009 to 2012 with respect
to the incidence of both Cerebral Infarction (CI) and Ischemic Heart Disease (IHD). We fixed the month, and
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State

Observed Value

Figure 3. Shifted hidden Markov model with delay of one day, i.e., d = 1.
Here, the weather state of time t affects the risk of the next day t + 1.
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Figure 4. The graph of RMSE between simulations and observed data
(cerebral infarctions) versus lagged days in winter. Simulations began
from 15-th of January 2005, The duration T was taken to be 3 days or 5
days. Here, the delay of 2 or 3 days was observed.

calculated transition matrix and distribution function looking at all the months from 2009 to 2012. Then we con-
structed the HMM by the transition matrix and distribution. By shifting this HMM according to each delay, we
could get the graphs of RMSE versus delay for each month. The results were illustrated in Figure 6 for cerebral
infarction and in Figure 7 for ischemic heart disease.

The existence of lags was shown by both graphs. The lags of 4 - 6 days were observed for the months, Janu-
ary, February, March, April, August, October and December for CI. The lags of 2 - 6 days were observed for the
months, January, February, April, June, July, August, September, November and December for IHD.

The 4 - 6 days of delay were observed for the months 1, 2, 3, 4, 8, 10, 11 and 12. No delay was found for the
months 5, 6, 7 and 9.

The 2 - 6 days of delay were observed for the months 1, 2, 4, 6, 7, 8,9, 11 and 12. No delay was found for the

months 3, 5 and 10.
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Figure 5. The graph of RMSE versus lagged days in summer, from 2002 to 2005. The duration T was taken to be 3
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Figure 7. The graphs of RMSE versus delay (days) plot for all months from 2009 to 2012, for ischemic heart disease.

3.4. Stochastic Significance

The t-test and Wilcoxon-test were used to test the stochastic significance of the existence of lagged effects. To
illustrate this process, we selected, for example, the case of cerebral infarction in August from 2009-2012 from
Figure 6, and described it as Figure 8.

The lag of 4 days was observed in Figure 8. By setting d = 4, we calculated RMSEs of 500 sequences of si-
mulated series of risk, during five days from 15-th of August in 2012. For the delay d = 0, we similarly got 500
RMSEs. Thus we had two groups of RMSEs. We compared these RMSESs of two groups and tested whether the
difference of RMSE (more precisely the square of RMSE) was stochastically significant. The result was de-
scribed in Table 1. Both t-test and Wilcoxon-test assured the stochastic significance. The stochastic significance
of the existence of lags was assured for our HMM by SOM.

4. Discussion

The lagged effects of weather state on the onset of cerebral infarction (CI) and ischemic heart disease (IHD)
were investigated using shifted hidden Markov model with weather states given by self-organized maps. We
found the delay of 2 - 6 days both for Cl and IHD. The existence of delay was examined by the graphs of root
mean squared error (RMSE) versus delay. The stochastic significance of the existence of delay was assured by

t-test and Wilcoxon-test.
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Figure 8. RMSE versus delay (days) in August from 2009 to 2012, extracted from
Figure 6.

Table 1. p-values of t-test and Wilcoxon. Test for the comparison of RMSE of delay = 0
with that of delay = 5 by Hidden Markov Model for cerebral infarction during De-

cember from 2009 to 2012.

t-test Wilcoxon-test

p-value 0.005 0.008

4.1. Comparison with Regression Models

The existence of delay was already well-known, but most of researchers used regression models by excluding
exceptional cases as noise and by smoothing with spline functions. The present paper proposed a use of hidden
Markov models with weather states as a new method for this direction.

To compare regression models and our HMM, we performed to calculate the lagged effects by usual Poisson
regression models. For this purpose, we selected “Residual standard error (RSE)” which were the standard index
of errors for auto-regression models. Figure 9 showed Residual Standard Error versus delay for August from
2009 to 2012 with respect to cerebral infarction.

The delay of 3 - 4 days was seen from Figure 9. It might appear rigorous at first glance. However, if we fo-
cused on stochastic significance of auto-regressions themselves, we observed that all the coefficients of mean
temperature failed to reduce effective p-values with resect to all the values of delay. See Table 2.

This result showed that regression models were not statistically significant if they did not use the spline or
smoothing function, whereas our HMM included exceptional cases as randomness innature, which had been ex-

cluded by regression model.

4.2. The Mechanism of Delay

In [15], they examined data in England and Wales and found that the temperature over the previous 3 - 4 days
was relevant in deaths caused by cerebrovascular accident, and that temperature over the previous 2 days was of
most critical relevance for deaths due to myocardial infarction. They suggested that cold exposure resulted an
increase in arterial blood pressure and platelet viscosity.
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Figure 9. The plot of RSE (Residual standard error) versus delay by the regression
model for the data in August from 2009 to 2012.

Table 2. The p-values of poisson auto-regression in August, from 2009 to 2012 for
each delay 0, 1, ---, 7.

Delay 0 1 2 3 4 5 6 7

Intercept 0.01 0.02 0.004 0004 026 027 0.03 0019
Mean temperature 0.23 0.31 0.11 0.13 0.9 0.88 0.4 0.29

In [16], a positive effect of cold on blood pressure was described. The blood pressure became 3 - 5 mm Hg
higher in the coldest month. There was seen the association to fibrinogen and thrombosis. They found signifi-
cant increases in platelet counts, neurophil counts, plasma and whole blood viscosity. The most striking effect of
cold seemed to be on plasma fibrinogen concentration.

In [17], they showed that the exposure to cold in young healthy subjects caused changes in hematological
factors known to be associated with the promotion of thrombo-genesis. The cold exposure was associated with
an increase in plasma viscosity, leading increase in the risk for thrombosis. They observed also that cold expo-
sure induced increases of hematocrit and brought the fluid loss from plasma which resulted hemo-concentration.
Cold exposure might be responsible for initiating a mild inflammatory response.

All these evidences suggest that cold exposure does not direct the onset of Cl or IHD immediately, and that it
needs more time to lead to the thrombosis through the state of increase of plasma and whole blood viscosity.

5. Conclusion

In conclusion, our hidden Markov model is more natural than regression model to assess the lagged effects of
weather states on the incidence of cerebral infarction and ischemic heart disease. While regression models are
not statistically significant without use of spline or smoothing functions, our hidden Markov model encompasses
exceptional cases (as random possibility) which were excluded normally by regression models. Our HMM could
show the existence of lags for the effect of weather changes on cerebral infarctions and ischemic heart disease.
This finding may make it possible to take precautionary measures against the fatal outcome after heat shock in-

cluding cold exposure.
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