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Abstract 
The existence condition of the solution of special nonlinear penalized equation of the linear com-
plementarity problems is obtained by the relationship between penalized equations and an abso-
lute value equation. Newton method is used to solve penalized equation, and then the solution of 
the linear complementarity problems is obtained. We show that the proposed method is globally 
and superlinearly convergent when the matrix of complementarity problems of its singular values 
exceeds 0; numerical results show that our proposed method is very effective and efficient. 
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1. Introduction 
Given a matrix n nA R ×∈  and a vector nb R∈ , the problem of finding vectors nx R∈  such that 

( )T0, 0, 0x Ax b x Ax b≤ − ≤ − =                              (1.1) 

is called the linear complementarity problem (LCP). We call the problem the LCP (A, b). It is well known that 
several problems in optimization and engineering can be expressed as LCPs. Cottle, Pang, and Stone [1] [2] 
provide a thorough discussion of the problem and its applications, as well as providing solution techniques.  

There are a large number of general purpose methods for solving linear complementarity problems. We can 
divide these methods into essentially two categories: direct methods, such as pivoting techniques [1] [2], and 
iterative methods, such as Newton iteration [2] [3] and interior point algorithms [4]. 

The penalty method has been used an LCP (or, equivalently, a variational inequality) [5] [6]. The paper [7] [8] 
constructed a nonlinear penalized Equation (1.2) corresponding to variational inequality.  
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Find nx Rλ ∈  such that 

[ ]Ax x bλ λλ
+

+ =                                    (1.2) 

where 1λ >  is the penalized parameter, [ ] { }max ,0u u
+
= .  

The nonlinear penalized problems (1.2) corresponding to the linear complementarity problem (1.1), which its 
research has achieved good results. Wang [9] [10], Yang [11] and Li [12] [13] was extended to a general form of 
(1.2) to present a power penalty function 

[ ]
1
kAx x bλ λλ
+

+ =                                    (1.3) 

approach to the linear complementarity problem. For the penalty Equation (1.2) Li [14] proved the solution to 
this equation converges to that of the linear complementarity problem when the singular values of A exceed 1 
and Han [15] the interval matrix [ ], kA A Iλ+  is regular. It is worth mentioning that the penalty technique has 
been widely used solving nonlinear programming, but it seems that there is a limited study for LCP. 

Some words about our notation: I refers to the identity matrix, and ny R∈  are column vectors, yT refers to 
the transpose of the y, we denote by y  the Euclidian norm. [ ] { }max ,0y y

+
= , that generalized Jacobian 

[ ] ( )y D y
+

∂ = , where ( )D y  denotes diagonal matrix, On the diagonal elements with component 1, 0 or 
[ ]0,1σ ∈  corresponding to the component of y which is positive , negative or zero, respectively. 

2. Generalized Newton Method  
In this section, we will propose that a new generalized Newton method based on the nonlinear penalized Equa-
tion (1.2) for solving the linear complementarity problem.  

Proposition 1 [15]. [ ]Ax x bλ λλ
+

+ =  equivalent to 0 0z Mz q≤ ⊥ + ≥ , where  

( ) 1 1, ,z Ax b M A I A q A bλ λ λ− −= − = + =  

Proposition 2. [ ]Ax x bλ λλ
+

+ =  has a unique solution if the singular values of A exceed 0. 
Proof: Since the singular values of A exceed 0, then A is a positive definite matrix，and A Iλ+  is positive 

definite, then ( ) 1M A I Aλ −= +  is positive definite, then 0 0z Mz q≤ ⊥ + ≥  has a unique solution.        □ 
Let us note  

( ) [ ] , 1F x Ax x bλ λ λλ λ
+

= + − >                             (2.1) 

Thus, nonlinear penalized Equation (1.2) is equivalent to the equation ( ) 0F xλ = . 
A generalized Jacobian ( )F xλ∂  of ( )F xλ  is given by 

( ) ( )F x A D xλ λλ∂ = + . 

where ( ) [ ]D x xλ λ +
= ∂  is a diagonal matrix whose diagonal entries are equal 1, 0 or a real number [ ]0,1σ ∈  

depending on whether the corresponding component of xλ  is positive, negative, or zero. The generalized 
Newton method for finding a solution of the equation ( ) 0F xλ =  consists of the following iteration: 

( ) ( )( )1 0i i i iF x F x x xλ λ λ λ
++ ∂ − =  

equavelently 

( ) 1i i
kA D x x qλ λλ + + =                                  (2.2) 

Algorithm 1 
Step 1: Choose an arbitrary initial point 

0

0 nx Rλ ∈ , 0ε >  and given 0 1λ > , 1µ > , [ ]0,1σ ∈ , let : 0k = ; 
Step 2: for the kλ , computer 1

k

ixλ
+  by solving (2.2). 

Step 3: If ( ) ( )1
k k

i iD x D xλ λ
+ = , terminate. Otherwise, 1i i= +  go to step 2. 

Step4: If 1
k

ixλ ε+ < , terminate, 1
k

ix xλ
+=  is solution of LCP. Otherwise let 1k kλ µλ+ = , 

1

0
k kx xλ +

=  let 
: 1k k= + , go to 2. 
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3. The Convergence of the Algorithm 

We will show that the sequence { }
1k

i

i
xλ

∞

=
 generated by generalized Newton iteration (2.2) converges to an ac-  

cumulation point kx  associated with kλ . First, we establish boundness of the sequence { }k

ixλ  for any 
0kλ >  generated by the Newton iterates (2.2) and hence the existence of accumulation point at each genera-

lized Newton iteration. 
Theorem 1: Suppose the singular values of M exceed 0. Then, the sequence { }k

ixλ  generated by Algorithm 
1 is bounded. Consequently, there exits an accumulation points kx  such that ( )k k kA D x x bλ + =  . 

Proof. Suppose that sequence { }k

ixλ  is unbounded, Thus, there exists an infinite nonzero subsequence 
{ } { }j

k k

i ix xλ λ⊂  such that 

{ }j
k

ixλ →∞ , ( )j
k

iD x Dλ =   and [ ]0,D I∈  

where D  is main diagonal element of diagonal matrix which is [ ]1,0, 0,1σ ∈ . 

We know subsequence 
j
k

j
k

i

i

x

x
λ

λ

 
 
 
  

 is bounded. Hence, exists convergence subsequence and assume that con-

vergence point is x , and satisfy  

( )
j
k

j j
k k

i

k i i

x bA D
x x
λ

λ λ

λ+ = . 

Letting j →∞  yields 

( ) 0, 1.kA D x xλ+ = =

   

Since the singular values of A exceed 0, then A is regular, and A Iλ+  is regular, we know that ( ) 1

kA Dλ
−

+   
is exists and hence 0x = , contradicting to the fact that 1x = . Consequently, the sequence { }k

ixλ  is bounded 
and there exists an accumulation point kx  of { }k

ixλ  such that  

( )( ) 1
k k kx M D x bλ

−
= + .                                 □ 

Under a somewhat restrictive assumption we can establish finite termination of the generalized Newton itera-
tion at a penalized equation solution as follows. 

Theorem 2: Suppose the singular values of A exceed 0 and ( )( ) 1 1
2k

i
k

k

A D xλλ
λ

−
+ <  holds for all suffi-  

ciently large kλ , then the generalized Newton iteration (2.2) linearly converges from any starting point 0
k

xλ  to 
a solution kx  of the nonlinear penalized Equation (1.2). 

Proof. Similar to the proof of Theorem 4 in [15].                                               □ 

Theorem 3: Suppose the singular values of A exceed 0 and ( )( ) 1 1
2k

i
k

k

A D xλλ
λ

−
+ <  holds, then Algorithm  

1 linearly converges from any starting point 
0

0xλ  to a solution x∗  of the ( ),LCP M q  (1.1). 
Proof. Similar to the proof of Theorem 5 in [15].                                               □ 

4. Numerical Experiments 
In this section, we give some numerical results in order to show the practical performance of Algorithm 2.1 
Numerical results were obtained by using Matlab R2007(b) on a 1G RAM, 1.86 Ghz Intel Core 2 processor. 
Throughout the computational experiments, the parameters were set as 810ε −= , 0 10λ = , 2µ = . 

Example 1: The matrix A of linear complementarity problem ( ),LCP A b  of as follows (This example ap-
pears in the Geiger and Kanzow [16], Jiang and Qi [17], YONG Long-quan, DENG Fang-an, CHEN Tao [18] 
and Han [15]): 
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Table 1. Result from example 1. 

n x0 k m ( )T*
1 2, , , nx x x x=   

6 ( )T0,0,0,0,0,0  3 2 ( )T0.3659, 0.4634, 0.4878, 0.4878, 0.4634, 0.3659− − − − − −  

6 ( )T2,0, 2, 2,0, 2− − − −  3 2 ( )T0.3659, 0.4634, 0.4878, 0.4878, 0.4634, 0.3659− − − − − −  

7 ( )T0,0,0,0,0,0,0  3 2 ( )T0.3659, 0.4639, 0.4896, 0.4948, 0.4896, 0.4639, 0.3660− − − − − − −  

7 ( )T1,1,1,1,1,1,1  3 2 ( )T0.3659, 0.4639, 0.4896, 0.4948, 0.4896, 0.4639, 0.3660− − − − − − −  

 
Table 2. Result from example 2. 

x0 k m ( )*
1 2 49 50, , , ,x x x x x=   

( )T1, 1,1, 1, ,1, 1− − −  1 26 

1 2.23517 9x e= −  2 0.25x = −  

3 9.68575 9x e= −  4 0.25x = −  

5 9.68575 9x e= −  6 0.25x = −  

7 9.68575 9x e= −  8 0.25x = −  

9 9.68575 9x e= −  10 0.25x = −  

11 9.68575 9x e= −  12 0.25x = −  

13 9.68575 9x e= −  14 0.25x = −  

15 9.68575 9x e= −  16 0.25x = −  

17 9.68575 9x e= −  18 0.25x = −  

19 9.68575 9x e= −  20 0.25x = −  

21 9.68575 9x e= −  22 0.25x = −  

23 9.68575 9x e= −  24 0.25x = −  

25 9.68575 9x e= −  26 0.25x = −  

27 9.68575 9x e= −  28 0.25x = −  

29 9.68575 9x e= −  30 0.25x = −  

31 9.68575 9x e= −  32 0.25x = −  

33 9.68575 9x e= −  34 0.25x = −  

35 9.68575 9x e= −  36 0.25x = −  

37 9.68575 9x e= −  38 0.25x = −  

39 9.68575 9x e= −  40 0.25x = −  

41 9.68575 9x e= −  42 0.25x = −  

43 9.68575 9x e= −  44 0.25x = −  

45 9.68575 9x e= −  46 0.25x = −  

47 9.68575 9x e= −  48 0.25x = −  

49 9.68575 9x e= −  50 0.25x = −  

( )T1, 0, 1, 0, , 1, 0− − −  2 26 Results are as above. 

( )T1,1,1,1, ,1,1  2 26 Results are as above. 
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Table 3. Result from example 3. 

n x0 k m ( )T*
1 2, , , nx x x x=   

6 ( )T1, 1,1, 1,1, 1− − −  3 2 ( )T6, 3, 2, 1.5, 1.2, 1− − − − − −  

6 ( )T0,0,0,0,0,0  3 2 ( )T6, 3, 2, 1.5, 1.2, 1− − − − − −  

8 ( )T0,0,0,0,0,0,0,0  3 2 ( )T8, 4, 2.67, 2, 1.6, 1.34, 1.14, 1− − − − − − − −  

8 ( )T1, 1,1, 1,1, 1,1, 1− − − −  3 2 ( )T8, 4, 2.67, 2, 1.6, 1.34, 1.14, 1− − − − − − − −  

16 ( )T1, 1,1, 1, ,1, 1− − −  3 2 
(

)T

16, 8, 5.3, 4, 3.2, 2.67, 2.28, 2, 1.78,

1.6, 1.45, 1.34, 1.23, 1.14, 1.06, 1

− − − − − − − − −

− − − − − − −
 

16 ( )T0,0,0,0,0,0,0,0  3 2 
(

)T

16, 8, 5.3, 4, 3.2, 2.67, 2.28, 2, 1.78,

1.6, 1.45, 1.34, 1.23, 1.14, 1.06, 1

− − − − − − − − −

− − − − − − −
 

 

4 1 0 0 0
1 4 1 0 0

0 1 4 0 0

0 0 0 4 1
0 0 0 1 4

A

− 
 − − 
 −

=  
 
 −
  − 







     





, ( )T1, 1, , 1, 1b = − − − −  

The computational results are shown in Table 1. This 0x  is initial point, k is number of inner iterations, the 
outer iteration number is m, x∗  is iteration results. 

Example 2: The matrix A of linear complementarity problem ( ),LCP A b  of as follows: 

4, 1, 2,3, ,50
1, 1, 1, 2, , 49

10, 1, 2,3, ,50
ij

i j
a j i i

j i i

= =
= − = + =
 = − =







, ( )1, 1,1, 1, ,1, 1b = − − −  

Optimal solution of this problem is ( )T2.23517 9, 0.25,9.68575 9, , 0.25,9.68575 9, 0.25x e e e∗ = − − − − − − . 
The computational results are shown in Table 2. This 0x  is initial point, k is number of inner iterations, the 
outer iteration number is m, x∗  is iteration results. 

Example 3: The matrix A of linear complementarity problem ( ),LCP A b  of as follows (This example ap-
pears in the Geiger and Kanzow [16], Jiang and Qi [17], YONG Long-quan, DENG Fang-an, CHEN Tao [18] 
and Han [15]): 

1 2diag , , ,1A
n n

 =  
 

 , ( )T1, 1, 1, ,1, 1b = − − − −  

The computational results are shown in Table 3. This 0x  is initial point, k is number of inner iterations, the 
outer iteration number is m, x∗  is iteration results. 
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