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Abstract 
Sim and Forger have proposed a mathematical model of circadian pacemaker neurons in the su-
prachiasmatic nucleus (SCN). This model, which has been formulated on the Hodgkin-Huxley mo- 
del, is described by a system of nonlinear ordinary differential equations. An important feature of 
the SCN neurons observed in electrophysiological recording is spontaneous repetitive spiking, which 
is reproduced using this model. In the present study, numerical simulation analysis of this model 
was performed to evaluate variations in two system parameters of this model: the maximal con-
ductance of calcium current (gCa) and the maximal conductance of sodium current (gNa). Simula-
tion results revealed the spontaneous repetitive spiking states of the model in the (gCa, gNa)-pa- 
rameter space. 
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1. Introduction 
Repetitive spiking activity is an important feature of excitable cells such as neurons and muscle cells. In the field 
of applied mathematics, this activity can be extensively analyzed using various mathematical models, which are 
described by a system of nonlinear ordinary differential equations (ODEs). One example is the Hodgkin-Huxley 
model, which can generate repetitive spiking because of an interaction between the sodium conductance and the 
potassium conductance (page 25 in [1]). In this model, the sodium conductance plays an excitatory role, whereas 
the potassium conductance plays an inhibitory role. The other example is the Morris-Lecar model, which can 
also generate repetitive spiking because of an interaction between the calcium conductance and the potassium 
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conductance (page 49 in [1]). In this model, the calcium conductance and not the sodium conductance plays an 
excitatory role. 

Another type of mathematical model of the repetitive spiking activity is the one in which the repetitive spik-
ing is generated by an interaction among sodium, calcium, and potassium conductances. One example is a ma-
thematical model of circadian pacemaker neurons in the suprachiasmatic nucleus (SCN) [2], which is described 
by a system of nonlinear ODEs (see the Materials and Methods in [2] as well as the Materials and Methods of 
this manuscript). Considering the Hodgkin-Huxley and Morris-Lecar models described above, it is assumed that 
both the sodium and calcium conductances play excitatory roles in the circadian pacemaker neuron model. How- 
ever, the difference in the contribution to the repetitive spiking between the sodium and calcium conductances 
was not clarified in detail in a previous study [2]. In particular, the influence of variations in these two conduc-
tance values on the repetitive spiking was not studied in detail in that study [2]. Taking into consideration that it 
is not only interesting but also very important to analyze the ionic conductance in detail (page 26 in [3]), it is 
necessary to investigate the influence of variations in these two conductance values and reveal the difference 
between these two conductances. Therefore, in the present study, we focused on two system parameters of the 
circadian pacemaker neuron model, namely the maximal conductance of calcium current (gCa) and the maximal 
conductance of sodium current (gNa), and we performed numerical simulation analysis. 

2. Materials and Methods 
A mathematical model of the circadian pacemaker neuron, which has been used in the present study, was a 
model developed by Sim and Forger [2]. This model is described by a system of nonlinear ODEs and contains 
six state variables: a membrane potential of the circadian pacemaker neuron [V(mV)] and five gating variables 
of ionic currents (m, h, n, r, and f). The time evolution of the six state variables is described as follows: 

( ) ( ) ( ) ( )d , , , , ,
d app Na K L Ca
VC I I V m h I V n I V I V r f
t
= − − − −                  (1) 

( ) ( )( ) ( )d 1 , , , ,
d X

X X V X X m h n r f
t Vτ ∞= − =                           (2) 

where C is membrane capacitance (5.7 pF); INa(V, m, h), IK(V, n), IL(V), and ICa(V, r, f) are a sodium current, a 
potassium current, a leak current, and a calcium current, respectively, which are defined in Equations (3)-(6) 
below, in this order; τX(V) (ms) and X∞(V) are time constants of activation/inactivation and steady-state activa-
tion/inactivation functions, respectively, which are defined in Equations (7)-(16) below, in this order; and Iapp is 
applied current. 

( ) ( )3, ,Na Na NaI V m h g m h V E= −                             (3) 

( ) ( )4,K K KI V n g n V E= −                                  (4) 

( ) ( )L L LI V g V E= −                                      (5) 

( ) ( ), ,Ca Ca CaI V r f g rf V E= −                               (6) 

where gNa, gK, gL, and gCa are the maximal conductances of a sodium current (the gNa value was varied in the 
present study; the default value was 229 nS), a potassium current (14 nS), a leak current (1/11 nS), and a cal-
cium current (the gCa value was varied in the present study; the default value was 65 nS), respectively; ENa, EK, 
EL, and ECa are the reversal potentials of a sodium current (45 mV), a potassium current (−97 mV), a leak cur-
rent (−29 mV), and a calcium current (61 mV), respectively. 

( ) ( )286 160e V
m Vτ − +=                                       (7) 

( ) ( )26.6 7.10.51 e V
h Vτ − += +                                  (8) 

( ) ( )67 68e V
n Vτ − −=                                        (9) 
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3.1rτ =                                            (10) 

( ) ( )444 220e V
f Vτ − −=                                  (11) 

( ) ( )35.2 7.9

1
1 e V

m V∞ − +
=

+
                              (12) 

( ) ( )62 5.5

1
1 e V

h V∞ +
=

+
                                (13) 

( )
( )( )0.2514 17

1

1 e V
n V∞

− −
=

+
                            (14) 

( ) ( )25 7.5

1
1 e V

r V∞ − +
=

+
                                (15) 

( ) ( )260 65

1
1 e V

f V∞ +
=

+
                                (16) 

Detailed explanations of the model equations have been described previously [2]. 
The free and open source software Scilab (http://www.scilab.org/) was used to numerically solve ODEs (ini-

tial conditions: V = −80 mV, m = 0.34, h = 0.045, n = 0.54, r = 0.01, f = 0.04). 

3. Results 
The time courses of the membrane potential of the SCN neuron model under different parameter values are 
shown in Figure 1. At default parameter values, the model showed spontaneous repetitive spiking (Figure 1(a)), 
as reported previously (Figure 2(a) in [2]). When only gCa was completely blocked, the model showed the stable 
steady state instead of the spontaneous spiking state (Figure 1(b)). When only gNa was completely blocked, the 
model showed a similar pattern, as illustrated in Figure 1(b) (Figure 1(c)). When both gCa and gNa were set to 
be values larger than the default values, the model showed the stable steady state (Figure 1(d)). However, the 
steady state membrane potential value shown in Figure 1(d) was more depolarized than that shown in Figure 
1(b) and Figure 1(c). 

Figure 2 illustrates the phase diagram of the model in the (gCa, gNa)-parameter space. The dynamical states of 
the model were classified into three states: the hyperpolarized steady state (white circle), the spontaneous spik-
ing state (black circle), and the depolarized steady state (double circle). A decrease in gNa induced a decrease in 
the gCa range in which repetitive spiking occurred, and finally, the gCa range disappeared. Therefore, it is con-
cluded that when gNa is zero, repetitive spiking cannot occur, no matter how large the gCa value is. An increase 
in gNa induced a decrease in the gCa threshold required to induce the transition from the hyperpolarized steady 
state to the spiking state. For example, even when gCa greatly decreased to 30 nS, repetitive spiking occurred 
under conditions in which gNa greatly increased to 1603 nS (a seven-fold increase from the default value) 
(Figure 3(a)). In addition, even when gCa was zero, repetitive spiking occurred under conditions in which gNa 
was 1603 nS (Figure 3(b)). 

4. Discussion 
The present study revealed the sensitivity of the model dynamics to variations in gCa and gNa of circadian pace-
maker neurons. Although Sim and Forger revealed the difference in time courses between the calcium and so-
dium currents (Figure 2(c) and Figure 2(d), respectively, in [2]), they did not clarify whether the calcium and 
sodium conductances are indispensable to repetitive spiking under the default condition. The present results 
(Figures 1(a)-(c)) resolved this issue; both gCa and gNa were indispensable to repetitive spiking under the default 
condition. Interestingly, the present study also revealed the difference between the two conductances. When 
we considered repetitive spiking under the condition in which the gCa value was smaller than its default value 
but the gNa value was much larger than its default value, the sodium conductance was indispensable but the  

http://www.scilab.org/


T. Shirahata 
 

 
1217 

 

2 2.2 2.4 2.6 2.8 3.2 3 3.4 3.6 3.8 4 
Time (s) 

−100  
−80  
−60  
−40  
−20  

0  
20  
40  

2 2.2 2.4 2.6 2.8 3.2 3 3.4 3.6 3.8 4 
Time (s) 

−100  
−80  
−60  
−40  
−20  

0  
20  
40  

2 2.2 2.4 2.6 2.8 3.2 3 3.4 3.6 3.8 4 
Time (s) 

−100  
−80  
−60  
−40  
−20  

0  
20  
40  

2 2.2 2.4 2.6 2.8 3.2 3 3.4 3.6 3.8 4 
Time (s) 

−100  
−80  
−60  
−40  
−20  

0  
20  
40  

M
em

br
an

e 
po

te
nt

ia
l (

m
V

) 
M

em
br

an
e 

po
te

nt
ia

l (
m

V
) 

M
em

br
an

e 
po

te
nt

ia
l (

m
V

) 
M

em
br

an
e 

po
te

nt
ia

l (
m

V
) 

(a) gCa = 65 nS, gNa = 229 nS 

(b) gCa = 0 nS, gNa = 229 nS 

(c) gCa = 65 nS, gNa = 0 nS 

(d) gCa = 80 nS, gNa = 350 nS 

 
Figure 1. Time courses of the simulated membrane potential of circadian pacemaker neurons 
under several (gCa, gNa) conditions. (a) The spontaneous repetitive spiking state at (gCa, gNa) = 
(65 nS, 229 nS). (b) The hyperpolarized steady state at (gCa, gNa) = (0 nS, 229 nS). (c) The 
hyperpolarized steady state at (gCa, gNa) = (65 nS, 0 nS). (d) The depolarized steady state at (gCa, 
gNa) = (80 nS, 350 nS). 
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Figure 2. The sensitivity of the dynamical states of the circadian pacemaker neuron model to gCa 
and gNa variations. Black circle: the spontaneous repetitive spiking state, white circle: the hyper- 
polarized steady state, white double circle: the depolarized steady state. 
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Figure 3. Time courses of the simulated membrane potential of circadian pacemaker neurons 
under (gCa, gNa) conditions different from those in Figure 1. (a) The spontaneous repetitive spiking 
state at (gCa, gNa) = (30 nS, 1603 nS). (b) The spontaneous repetitive spiking state at (gCa, gNa) = (0 
nS, 1603 nS). 
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calcium conductance was dispensable to this type of repetitive spiking (Figure 2 and Figure 3(a) and Figure 
3(a)). 

Previous studies have reported the relationship between ionic conductances and neuronal spiking in various 
types of mathematical models [4]-[7]. In particular, similar to the circadian pacemaker neuron model analyzed in 
the present study, a mathematical model of midbrain dopaminergic neurons included the sodium and calcium 
conductances [4]. In the midbrain dopaminergic neuron model (Figure 4 in [4]), (1) an increase in gNa induced a 
decrease in the gCa threshold required to induce the transition from the nonpacemaking state to the pacemaking 
state and (2) the pacemaking occurred in the absence of the calcium conductance under conditions in which the 
sodium conductance was set to a large value. The present circadian pacemaker neuron model also exhibited 
these two characteristics. However, the present results revealed two important differences between these two 
models: (1) the (gCa, gNa)-parameter space was divided into only two states (the pacemaking and nonpacemaking 
states) in the midbrain dopaminergic neuron model (Figure 4 in [4]), whereas the (gCa, gNa)-parameter space was 
divided into three states (the depolarized steady state, the repetitive spiking state, and the hyperpolarized steady 
state) in the circadian pacemaker neuron model (Figure 2), and (2) pacemaking occurred in the absence of the 
sodium conductance under the condition in which the calcium conductance was set to a large value in the mid-
brain dopaminergic neuron model (Figure 4 in [4]), whereas pacemaking did not occur in the absence of the so-
dium conductance even when the calcium conductance was set to a large value in the circadian pacemaker neu-
ron model (Figure 2). 

5. Conclusion 
The present investigation focused on a mathematical model of circadian pacemaker neurons, performed numer-
ical simulation analysis, and compared this numerical result with that of the previous studies. The important and 
novel findings of the present study are as follows: 1) there was a difference in the contribution to repetitive 
spiking under certain conditions between the sodium and calcium conductances: for the generation of repetitive 
spiking under certain conditions, the sodium conductance played an indispensable role, whereas the calcium 
conductance was not necessarily essential, and 2) the (gCa, gNa)-parameter space of the circadian pacemaker 
neuron model showed a different pattern compared with that of the midbrain dopaminergic neuron model. These 
findings can contribute to our in-depth understanding of the influence of the sodium and calcium conductances 
on neuronal repetitive spiking. 
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