Characterization of Self Dual Lattices in \mathbb{R}, \mathbb{R}^2 and \mathbb{R}^3

Comlan de Souza¹, David W. Kammler²

¹Department of Mathematics, California State University at Fresno, Fresno, USA
²Department of Mathematics, Southern Illinois University at Carbondale, Carbondale, USA
Email: csouza@csufresno.edu, dkammler@siu.edu

Received 19 March 2014; revised 19 April 2014; accepted 26 April 2014

Abstract

This paper shows that the only self dual lattices in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ are rotations of $\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

Keywords

Self Dual Lattice

1. Introduction

Let

$$A := [a_1, \cdots, a_n], B := [b_1, \cdots, b_n],$$

be nonsingular $n \times n$ real matrices with column vectors a_1, \cdots, a_n and b_1, \cdots, b_n, respectively. Let

$$\mathcal{L}_A := \{ \sum_{i=1}^{n} m_i a_i : m_1, \cdots, m_n \in \mathbb{Z} \},$$

$$\mathcal{L}_B := \{ \sum_{i=1}^{n} m_i b_i : m_1, \cdots, m_n \in \mathbb{Z} \}.$$

be the lattices in \mathbb{R}^n that are generated by the columns of A, B. The lattice \mathcal{L}_A will be a subset of the lattice \mathcal{L}_B if and only if the generators a_1, \cdots, a_n of \mathcal{L}_A all lie in \mathcal{L}_B, i.e.,

$$a_k = \sum_{i=1}^{n} m_i b_i, k = 1, 2, \cdots, n.$$
for suitably chosen integers m_{ik}. Equivalently,

$$
\begin{bmatrix}
 a_1, \ldots, a_n \\
\end{bmatrix} =
\begin{bmatrix}
 b_1, \ldots, b_n \\
\end{bmatrix}
\begin{bmatrix}
 m_{11} & m_{12} & \cdots & m_{1n} \\
 m_{21} & m_{22} & \cdots & m_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{n1} & m_{n2} & \cdots & m_{nn}
\end{bmatrix}
$$

i.e.,

$$
M := B^{-1}A
$$
is a matrix of integers. Analogously, the lattice L_B is a subset of L_A if $A^{-1}B$ is a matrix of integers. In this way we see that

$$
L_A = L_B
$$

if and only if both $M = B^{-1}A$ and

$$
A^{-1}B = (B^{-1}A)^{-1} = M^{-1}
$$

are matrices with integer elements. When this is the case, $\det M$ and $\det M^{-1}$ are both integers and since

$$
\det M \det M^{-1} = \det MM^{-1} = \det I = 1,
$$

this implies that

$$
\det M = \det M^{-1} = \pm 1.
$$

Such a matrix is said to be unimodular. The above analysis (that can be found in [1]) is summarized as follows.

Theorem 1 The lattices L_A, L_B are identical if and only if

$$
M := A^{-1}B
$$
is a matrix of integers with

$$
\det M = \pm 1
$$

Corollary 1 Lattices are preserved under integer column operations.

Proof 1 Let $A = [a_1, \ldots, a_n]$ generate the lattice L_A, and let

$$
K =
\begin{bmatrix}
 0 & k_{12} & k_{13} & \cdots & k_{1n} \\
 0 & 0 & k_{23} & \cdots & k_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & k_{n-1,n} \\
 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
$$

be a strictly upper triangular matrix of integers. Then $I + K$ is an upper triangular matrix of integers with a unit diagonal, and we can write

$$
(I + K)^{-1} = I + L
$$

where

$$
L := -K + K^2 - K^3 + \cdots + (-1)^{n-1} K^{n-1}
$$
is a strictly upper triangular matrix of integers. The columns of

$$
B := A(I + K)
$$
i.e.,

$$
a_1, k_{12}a_1 + a_2, k_{13}a_1 + k_{23}a_2 + a_3, \ldots
$$
generate the same lattice as the columns of A. To see this we observe that
is a matrix of integers with unit determinant.

2. Dual Lattices

Definition 1 Two linearly independent sets of real n (column) vectors a_1, \cdots, a_n and b_1, \cdots, b_n are said to be biorthogonal if
\[
\langle a_i, b_l \rangle := a_i^T b_l = \delta_{il}, k, l = 1, 2, \cdots, n
\]
where δ_{il} is the Kronecker’s delta, T denotes the transpose and $\langle \rangle$ denotes the usual inner product. When the columns of
\[
A := [a_1, \cdots, a_n]
\]
and
\[
B := [b_1, \cdots, b_n]
\]
are biorthogonal, we find
\[
A^T B = I
\]
so that
\[
B = (A^T)^{-1} = A^{-T}.
\]
This being the case, given linearly independent vectors a_1, \cdots, a_n we can form A and then obtain the biorthogonal vectors b_1, \cdots, b_n as the columns of A^{-T}.

The lattice \mathcal{L}_A generated by vectors biorthogonal to a_1, \cdots, a_n is said to be the dual of the lattice \mathcal{L}_A. More generally, \mathcal{L}_B is dual to \mathcal{L}_A if and only if B generates the same lattice as A^{-T}, i.e.,
\[
(A^{-T})^{-1} B = A^T B
\]
is a matrix of integers with determinant ± 1.

Suppose now that A_1, A_2 generate the same lattice, i.e.,
\[
\mathcal{L}_{A_1} = \mathcal{L}_{A_2}.
\]
Let
\[
B_1 = A_1^{-T}, B_2 = A_2^{-T}
\]
be the generators of lattices $\mathcal{L}_{A_1}, \mathcal{L}_{A_2}$ dual to $\mathcal{L}_{A_1}, \mathcal{L}_{A_2}$, respectively. Since
\[
B_2^{-1} B_1 = (A_2^{-T})^{-1} A_1^{-T} = A_2^T A_1^T = (A_1^{-1} A_2)^T
\]
we see that $A_1^{-1} A_2$ will be a matrix of integers with determinant ± 1 if and only if the same is true of $B_2^{-1} B_1$.

Thus $\mathcal{L}_{B_1} = \mathcal{L}_{B_2}$ if and only if $\mathcal{L}_{A_1} = \mathcal{L}_{A_2}$.

We are interested in characterizing those lattices \mathcal{L}_A that are self dual, i.e.,
\[
\mathcal{L}_A = \mathcal{L}_{A^{-T}}.
\]
This will be the case if and only if
\[
(A^{-T})^{-1} A = A^T A
\]
is a matrix of integers with determinant ± 1. Since
\[
\det A^T A = (\det A)^2,
\]
this will be the case only if
In this way we see that a lattice \mathcal{L}_d is self dual if and only if $A^T A$ is a matrix of integers with unit determinant. The parallelopiped in \mathbb{R}^n with vertices $0, a_1, a_2, \cdots, a_n, a_1 + a_2, a_1 + a_3, \cdots, a_1 + a_2 + \cdots + a_n$, i.e., the unit cell of the lattice has the volume

$$V(a_1, a_2, \cdots, a_n) = |\det A|,$$

[2] [3]. Thus a lattice can be self dual only if each of its primitive cells, has unit volume.

Self dual lattices are preserved under orthogonal transformations. Indeed, let Q be an orthogonal transformation on \mathbb{R}^n, i.e.,

$$Q^T Q = I,$$

and let $\mathcal{L}_A, \mathcal{L}_B$ be the lattices generated by the columns of a nonsingular $n \times n$ matrix A and $B := A^T$. The matrix

$$A' := QA$$

has columns

$$a'_1 = Qa_1, a'_2 = Qa_2, \cdots, a'_n = Qa_n$$

that generate the lattice $\mathcal{L}_{A'}$. We can use such a matrix Q to rotate a_1, a_2, \cdots, a_n, to reflect one or more vectors of the set a_1, a_2, \cdots, a_n, to permute a_1, a_2, \cdots, a_n, etc. The lattice $\mathcal{L}_{A'}$ which is dual to \mathcal{L}_B is generated by the columns of

$$B' = (A')^T = (QA)^T = Q^T A^T = QB,$$

i.e., by

$$b'_1 = Qb_1, b'_2 = Qb_2, \cdots, b'_n = Qb_n.$$

Thus the generators of the dual lattice $\mathcal{L}_{A'}$ are transformed in the same way as the generators of the lattice \mathcal{L}_A. In this way we see that a lattice \mathcal{L}_A is self dual if and only if the lattice $\mathcal{L}_{A'}$ is self dual. Indeed,

$$(A')^T A' = (QA)^T QA = A^T A$$

so $A^T A$ is a matrix of integers with unit determinant if and only if the same is true of $(A')^T A'$. Moreover, since

$$\|Qx\|_E^2 = x^T Q^T Q x = x^T x = \|x\|_E^2$$

we see that the orthogonal transformation Q preserves the Euclidean lengths of a set of generators for the lattice \mathcal{L}_d.

3. Main Results

We will now show that the only self dual lattices in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ are rotations of $\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, respectively.

The case $n = 1$

Let $A = [a_1]$ be a vector in \mathbb{R} that generates the lattice \mathcal{L}_d. We do not change the lattice if we assume that $a_1 > 0$. Let $b_1 = 1/a_1$ be biorthogonal to A. The lattice \mathcal{L}_B generated by $B = [b_1]$ will be identical to the lattice \mathcal{L}_d if and only if

$$a_i = \frac{1}{a_1},$$

i.e., if and only if
Thus the only self dual lattice in \mathbb{R} is the lattice
\[\mathcal{L} = \mathbb{Z}. \]

The case $n = 2$

Theorem 2 Every self dual lattice in \mathbb{R}^2 is some rotation of $\mathbb{Z} \times \mathbb{Z}$.

Proof 2 Let $A = [a_1 \ a_2]$ where a_1, a_2 are linearly independent vectors in \mathbb{R}^2 and assume that \mathcal{L}_A is self dual. Fix the origin at some lattice point of \mathcal{L}_A and rotate the axes, if necessary, so that the nearest nonzero lattice point of \mathcal{L}_A' lies on the positive x-axis, i.e.

\[
Q_A = A' = \begin{bmatrix} a_1' & a_2' \\ a_1'' & a_2'' \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 0 & \gamma \end{bmatrix}
\]

where $\alpha > 0$ and

\[\alpha^2 \leq \beta^2 + \gamma^2. \quad (1.1) \]

The lattice \mathcal{L}_A does not change if a_2' is replaced by $-a_2'$ so we can and do assume that $\gamma > 0$. Likewise the lattice \mathcal{L}_A does not change if a_2' is replaced by $a_2' - ka_1', k = 0, \pm 1, \pm 2, \cdots$ since this is the result of an integer column operation. Thus we can and do assume that

\[|\beta| \leq \alpha/2. \quad (1.2) \]

By hypothesis the lattice \mathcal{L}_A is self dual so the same is true of \mathcal{L}_A'. This implies that $\alpha \gamma = \det A' = 1$, and

\[
(A')^T = \begin{bmatrix} \gamma & 0 \\ -\beta & \alpha \end{bmatrix}.
\]

Since $\mathcal{L}_A' \subset \mathbb{R}^2$ is self dual, the first column of A' can be expressed as an integral linear combination of the columns of $(A')^T$, i.e.,

\[
\begin{bmatrix} \alpha \\ 0 \end{bmatrix} = n \begin{bmatrix} \gamma \\ -\beta \end{bmatrix} + m \begin{bmatrix} 0 \\ \alpha \end{bmatrix}
\]

where $n, m \in \mathbb{Z}$. In this way we see in turn that

\[\alpha = n \gamma, \alpha = n/\alpha, \alpha = \sqrt{n}, \quad (1.3) \]

for some $n = 1, 2, \cdots$,

\[n \beta = m \alpha, \beta = m/\sqrt{n}, \quad (1.4) \]

for some $m = 0, \pm 1, \pm 2, \cdots$, and

\[\gamma = 1/\alpha = 1/\sqrt{n}. \quad (1.5) \]

Using these expressions with (1.2) we find

\[
\frac{|m|}{\sqrt{n}} \leq \frac{\sqrt{n}}{2}
\]

so

\[|m| \leq \frac{n}{2}. \]

Using these expressions with (1.1) we find

\[n = \alpha^2 \leq \beta^2 + \gamma^2 = \frac{m^2}{n} + \frac{1}{n}, \]

C. de Souza, D. W. Kammler
and since

$$|m| \leq \frac{n}{2}.$$

this implies that

$$n^2 \leq 4/3.$$

It follows that \(n = 1 \) and \(m = 0 \). In this way we prove that \(A' = I \), i.e., the columns of \(A' \) and thus those of \(A \) are orthonormal. Thus \(\mathcal{L}_A \) is some rotation of \(\mathbb{Z} \times \mathbb{Z} \).

A theorem of Minkowski [1] states that

$$\|a\|_2 \leq \sqrt{N} |\det A|^{\frac{1}{n}},$$

where \(a \) is the shortest nonzero vector in a lattice \(\mathcal{L}_A \) in \(\mathbb{R}^n \). Within the present context, this leads to the bound

$$\sqrt{n} = \alpha \leq \sqrt{2}$$

which implies that \(n = 1, 2 \). Our argument gives \(n^2 \leq 4/3 \) from which we immediately obtain \(n = 1 \).

Another result in [4] states that if \(A \) is a self-dual lattice in \(\mathbb{R}^n \) then

$$\|a\|_2^2 = \min \{ \langle u, u \rangle | u \in \Lambda, u \neq 0 \} \leq \left[\frac{n}{8} \right] + 1$$

which leads to

$$\alpha \leq \sqrt{5}/4.$$

The case \(n = 3 \)

Theorem 3 Every self-dual lattice in \(\mathbb{R}^3 \) is some rotation of \(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \).

Proof 3 Let the self-dual lattice \(\mathcal{L}_A \) in \(\mathbb{R}^3 \) be generated by the columns of \(A = [a_1, a_2, a_3] \) chosen so that \(\|a_1\|_2, \|a_2\|_2, \|a_3\|_2 \) are as small as possible subject to the constraint

$$\|a_1\|_2 \leq \|a_2\|_2 \leq \|a_3\|_2.$$

Following the analysis from the previous section, we set

$$A' = QA,$$

where \(Q \) is an orthogonal matrix chosen so that

$$A' = [a'_1, a'_2, a'_3] = \begin{bmatrix} \alpha & \beta & \delta \\ 0 & \gamma & \epsilon \\ 0 & 0 & \zeta \end{bmatrix}$$

with

$$\alpha > 0, \gamma > 0, \zeta > 0.$$

By hypothesis the lattice \(\mathcal{L}_A \) is self dual, and since \(Q \) is orthogonal, the same is true of \(\mathcal{L}_{A'} \). This being the case

$$\alpha \gamma \zeta = |\det A'| = |\det A| = 1.$$

Since the lengths of the generators of the lattice \(\mathcal{L}_A \) are preserved under the orthogonal transformation \(Q \), it follows that

$$\alpha^2 \leq \beta^2 + \gamma^2 \leq \delta^2 + \epsilon^2 + \zeta^2.$$ \hspace{1cm} (1.6)

The columns of \(A \) (and thus the columns of \(A' \)) have been chosen to be as small as possible subject to the above constraints, so we must have

$$|\beta| \leq \alpha/2, |\delta| \leq \alpha/2, |\epsilon| \leq \gamma/2.$$ \hspace{1cm} (1.7)
It can be verified that A' has the inverse

\[
(A')^{-1} = \begin{bmatrix}
\frac{1}{\alpha} & -\beta \gamma & -\delta \gamma \\
0 & \frac{1}{\gamma} & \frac{\epsilon \gamma}{\zeta} \\
0 & 0 & \frac{1}{\zeta}
\end{bmatrix},
\]

and after using $\alpha \gamma \zeta = 1$ to simplify the components we obtain

\[
(A')^\top = \begin{bmatrix}
\frac{1}{\alpha} & 0 & 0 \\
-\beta \gamma & \frac{1}{\gamma} & 0 \\
-\delta \gamma + \beta \epsilon & -\alpha \epsilon & \frac{1}{\zeta}
\end{bmatrix}.
\]

Since L_x is self dual, the columns of $(A')^\top$ generate the same lattice as the columns of A' so we can write

\[
\begin{bmatrix}
\alpha \\
0 \\
0
\end{bmatrix} = n \begin{bmatrix}
\frac{1}{\alpha} \\
-\beta \gamma \\
-\delta \gamma + \beta \epsilon
\end{bmatrix} + m \begin{bmatrix}
0 \\
\frac{1}{\gamma} \\
-\alpha \epsilon
\end{bmatrix} + l \begin{bmatrix}
0 \\
0 \\
\frac{1}{\zeta}
\end{bmatrix}
\]

for suitably chosen $n, m, l, p, q, r \in \mathbb{Z}$. In this way we see in turn that

\[
\alpha^2 = n \text{ so that } \alpha = \sqrt{n}
\]

(1.8)

\[
\frac{1}{\zeta^2} = p \text{ so that } \zeta = \frac{1}{\sqrt{p}}
\]

(1.9)

for some $n = 1, 2, \ldots, p = 1, 2, \ldots$, and

\[
1 = \alpha \gamma \zeta = \sqrt{n} \gamma \frac{1}{\sqrt{p}} \text{ so that } \gamma = \frac{\sqrt{p}}{\sqrt{n}}.
\]

We also have

\[
0 = -n \beta \gamma + m \gamma \text{ so that } \beta = \frac{m}{\sqrt{n}}
\]

(1.11)

\[
0 = p \epsilon + q \gamma \text{ so that } \epsilon = -\frac{q}{\sqrt{p m}},
\]

(1.12)

for some $m = 0, \pm 1, \pm 2, \ldots, q = 0, \pm 1, \pm 2, \ldots$, and

\[
0 = n \left(-\delta \gamma + \beta \epsilon \right) - m \alpha \gamma + \frac{l}{\zeta} = -\delta \sqrt{n p} + l \sqrt{p}
\]

so that

\[
\delta = \frac{l}{\sqrt{n}} \text{ for some } l = 0, \pm 1, \pm 2, \ldots.
\]

(1.13)

Using (1.7) and (1.8)-(1.12) we find

\[
2|m| \leq n, 2|q| \leq p, 2|l| \leq n.
\]

(1.14)

Using (1.6) and (1.7) we see that,
\[\alpha^2 \leq \beta^2 + \gamma^2 \leq \left(\frac{\alpha}{2} \right)^2 + \gamma^2 \]

which implies that
\[\gamma \geq \frac{\sqrt{5}}{2} \alpha. \]

Again using (1.6) and (1.7) we see that,
\[\gamma^2 \leq \beta^2 + \gamma^2 \leq \delta^2 + \varepsilon^2 + \zeta^2 \leq \left(\frac{\alpha}{2} \right)^2 + \left(\frac{\gamma}{2} \right)^2 + \zeta^2 \]

which implies that
\[\zeta^2 \geq \frac{3}{4} \gamma^2 - 1 \quad \alpha^2 \geq \frac{9}{16} \alpha^2 - 1 \quad \alpha^2 = \frac{5}{16} \alpha^2 \]

so that
\[\zeta \geq \frac{\sqrt{5}}{4} \alpha. \]

Since \(\alpha \gamma \zeta = 1 \) we must have
\[1 = \alpha \gamma \zeta \geq \alpha \left(\frac{\sqrt{5}}{2} \alpha \right) \left(\frac{\sqrt{5}}{4} \alpha \right) = \frac{\sqrt{5}}{8} \alpha^3 \]

or
\[\sqrt{n} = \alpha \leq \left(\frac{8}{\sqrt{15}} \right)^{\frac{1}{3}} = 1.2735 \ldots \]

In this way we see in turn that \(n = 1 \) and \(m = l = 0 \) so that \(\alpha = 1, \beta = 0, \delta = 0 \). Finally, we again use (1.6) with (1.13), (1.12), (1.9) to write
\[p = \gamma^2 \leq \delta^2 + \varepsilon^2 + \zeta^2 = \frac{l^2}{n} + \frac{q^2}{n \alpha} + \frac{1}{\alpha} = \frac{q^2}{p} + \frac{1}{\alpha} \leq \frac{b^2}{p} + \frac{1}{p}. \]

It follows that \(p \leq \frac{\sqrt{4/3}}{2} \) so we must have \(p = 1, q = 0 \) and \(\varepsilon = 0, \gamma = \zeta = 1 \). In this way we see that the columns of \(A' \) (and thus those of \(A \)) must be orthonormal. Thus \(L_{A} \) is some rotation of \(\mathbb{R} \times \mathbb{R} \times \mathbb{R} \).

Suppose now that \(a_1, a_2 \) are linearly independent vectors in \(\mathbb{R}^2 \) and that
\[\text{grid}_{a_1, a_2}(x) := \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \delta(x - ma_1 - na_2) = \sum_{d \in A} \delta(x - a) \]

where \(A := [a_1 \quad a_2] \). We know that
\[\text{grid}_{a_1, a_2}(s) = \det[A_1 \quad A_2] \text{grid}_{a_1, a_2}(s) = \det[A_1 \quad A_2] \sum_{d \in L_{A}} \delta(s - a) \]

where the biorthogonal vectors \(A_1, A_2 \) are the columns of \(A^{-1} \). In this way we see that
\[\text{grid}_{a_1, a_2} = \text{grid}_{a_1, a_2} \]

if and only if \(L_{A} \) is self dual, where \(4ptA = [a_1 \quad a_2] \). This proves the following.

Theorem 4 Let \(a_1, a_2 \) be linearly independent vectors in \(\mathbb{R}^2 \). Then
\[\text{grid}_{a_1, a_2} = \text{grid}_{a_1, a_2} \]

if and only if
\[\text{grid}_{a_1, a_2} = \text{grid}_{a_1, a_2} \]
for some orthonormal choice of the vectors a_1', a_2'.

Analogously, we can prove the following 3-dimensional generalization.

Theorem 5 Let a_1, a_2, a_3 be linearly independent vectors in \mathbb{R}^3. Then

$$\text{grid}_{a_1, a_2, a_3} = \text{grid}_{a_1', a_2', a_3}$$

if and only if

$$\text{grid}_{a_1, a_2} = \text{grid}_{a_1', a_2', a_3'}$$

for some orthonormal choice of the vectors a_1', a_2', a_3'.

These results correspond to the familiar identity

$$III' = III$$

from univariate Fourier analysis. The possibility of rotations (other than reflections) in $\mathbb{R}^2, \mathbb{R}^3$ slightly complicates the generalization of this result.

References

