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ABSTRACT 
In this paper, the Schrödinger equation is solved by Modified separation of variables (MSV) method suggested 
by Pishkoo and Darus. Using this method, Meijer’s G-function solutions are derived in cylindrical coordinate 
system for quantum particle in cylindrical can. All elementary functions and most of the special functions which 
are the solution of extensive problems in physics and engineering are special cases of Meijer’s G-functions. 
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1. Introduction 
Perhaps, Cornelis Simon Meijer (1936) was the first to introduce the G-function in mathematics. This very 
general function intended to include most of the known special functions as particular cases; and for a long time, 
many studies have been done involving this type of functions. These functions have a lot of practical applica- 
tions in the fields of mathematical physics, theoretical physics, mathematical analysis, etc. 

Meijer’s G-functions are defined as Mellin-Barnes contour integrals which have been in existence for over 60 
years [1-5]. Meijer’s G-function satisfies the linear ordinary differential equation (LODE) of the generalised 
hypergeometric type whose order is equal to ( )max ;p q  [6-8]. This fact triggered us to verify the equality 
conditions between Meijer’s G-function’s LODE and some partial differential equations governing physical 
phenomena. In physics, we have many ordinary and partial differential equations, in which their solutions are 
elementary functions, special functions or a combination of both of them. Thus, Meijer’s G-functions can be the 
solution for many physical problems if the equality requirement between Meijer’s G-function’s LODE and those 
differential equations are verified. As such, we seek to deduce the solution of physical problems explicitly in 
terms of Meijer’s G-functions. 

Our previous works had focused on the introduction of the Modified separation of variables method (MSV), 
and applying it to solve partial differential equation related to the Reaction-Diffusion process [9], Laplace’s 
diffusion and Schrödinger equations [10-12] which led to representing its solution in terms of Meijer’s G- 
functions. The Cartesian coordinate system is used to derive their solutions. However, in this paper, we obtain 
G-function solutions for the same problem related to Schrödinger equation, solved by “separation of variables (SV)” 
in [13], by using modified separation of variables (MSV) method and cylindrical coordinates system as follows. 

2. Meijer’s G-Function 
We begin with the definition of Meijer’s G-function as the following: 
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Definition 1 A definition of the Meijer’s G-function is given by the following path integral in the complex 
plane, called Mellin-Barnes type integral: 
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Here, the integers ; ; ;m n p q  are called “orders” of the G-function, or the components of the order 
( ); ; ;m n p q ; ja  and jb  are called “parameters” and in general, they are complex numbers. The definition 
holds under the following assumptions: 0 m q≤ ≤  and 0 n p≤ ≤ , where , , ,m n p  and q  are integer num- 
bers. Subtracting parameters 1,2,3,j ka b− ≠   for 1, ,k n=   and 1,2, ,j m=   imply that no pole of any 
( ) , 1, ,jb s j mΓ − =   coincides with any pole of any ( )1 , 1, ,ka s k nΓ − + =  . 
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The Meijer’s G-function ( ) ( ),
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whose order is equal to ( )max ,p q . 
Choosing appropriate values for ; ; ; ,m n p q  orders of G-functions, Equation (1.5) can be changed to complex 

first and second order linear differential equations. The following section discusses the properties of the 
solutions of complex first and second order differential equations, and then studies the properties of coefficient 
functions of these differential equations in the complex plane. 

We start with using Modified separation of variables method (MSV) in cylindrical coordinates system as 
follows: 

3. The G-Function Solutions for the Schrödinger Equation 
When the geometry of the boundaries is cylindrical, the appropriate coordinate system is the cylindrical one. 
Separation of variables leads to ODEs in which certain constants (eigenvalues) appear. Different choices of 
signs for these constants can lead to different functional forms of the general solution. Thus general form of the 
solution is indeterminate. However, once the boundary conditions are imposed, the unique solutions will emerge 
regardless of the initial functional form of the solutions. Writing ( ), , zρ ϕΦ  as a product of three functions, 
( ) ( ) ( ) ( ), , z R S Z zρ ϕ ρ ϕΦ =  and a separation of variables transforms Laplace’s equation, ( )2 , , 0zρ ϕ∇ Φ = , 

into three ODEs: 
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where in anticipation of the correct BCs, we have written the constants as 2k  and 2m−  with m  an integer. 

( ) sin cosS z A mz B mz= +  

is a combination of two independent solutions deduced by “separation of variables method” or 
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is a combination of two independent solutions deduced by “modified separation of variables method”. Similarly 
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( )
2 2

1,0 2 1,0 2
1 10,2 0,2,0 0,
2 2

.
4 4
k kZ z CG z DG z

− −   
= − + −   

   
 

is a combination of two independent solutions deduced by “modified separation of variables method”. 
1) For 1, 0, 0, 2m n p q= = = = , (1.5) reduces to 
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By multiplying both sides of the equation by −4, we have 
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On the other hand, let Bessel equation 
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The conditions for equivalence or these two differential equations are 
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4. Quantum Particle in a Cylindrical Can 
Exercise 2 Considering a quantum particle in a cylindrical can, for an atomic particle of mass μ confined in a 
cylindrical can of length L and radius a, the relevant Schrödinger equation is 
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Let us solve this equation subject to the BCs that ( ), , ,z tρ ϕΨ  vanishes at the sides of the can by using 
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MSV method. 
Here is the steps: A separation of variables, 

( ) ( ) ( ) ( ) ( ), , ,z t R S Z z T tρ ϕ ρ ϕΨ = , 

leads to the following ODEs: 
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The second DE, the Z  equation, along with its BCs, constitutes an S-L system with G-function solutions. 
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Since the extra condition of periodicity is usually imposed on the potential for variable ϕ , the third DE, in 
terms of Meijer’s G-functions, has the general solution. 
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t  component: for 1, 0, 0, 1m n p q= = = = , (1.5) is reduced to: 
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The condition for the equivalence of these two differential equations is given by the solution of t-component. 
Thus, the general solution can be written as 
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