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ABSTRACT 

Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. 
The experimental high-throughput measurement of levels of biochemical components, like metabolites and proteins, has 
become an integral part for characterization of biological systems. Yet, strategies of mathematical modeling to func-
tionally integrate resulting data sets is still challenging. In plant biology, regulatory strategies that determine the meta-
bolic output of metabolism as a response to changes in environmental conditions are hardly traceable by intuition. 
Mathematical modeling has been shown to be a promising approach to address such problems of plant-environment 
interaction promoting the comprehensive understanding of plant biochemistry and physiology. In this context, we re-
cently published an inversely calculated solution for first-order partial derivatives, i.e. the Jacobian matrix, from ex-
perimental high-throughput data of a plant biochemical model system. Here, we present a biomathematical strategy, 
comprising 1) the inverse calculation of a biochemical Jacobian; 2) the characterization of the associated eigenvalues 
and 3) the interpretation of the results with respect to biochemical regulation. Deriving the real parts of eigenvalues 
provides information about the stability of solutions of inverse calculations. We found that shifts of the eigenvalue real 
part distributions occur together with metabolic shifts induced by short-term and long-term exposure to low temperature. 
This indicates the suitability of mathematical Jacobian characterization for recognizing perturbations in the metabolic 
homeostasis of plant metabolism. Together with our previously published results on inverse Jacobian calculation this 
represents a comprehensive strategy of mathematical modeling for the analysis of complex biochemical systems and 
plant-environment interactions from the molecular to the ecosystems level. 
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1. Introduction 

The molecular organization of plant metabolism is of 
high complexity. This complexity arises from a sophisti-
cated level of subcellular organization and of highly in-
terlaced regulatory circuits interconnecting different lev-
els of biochemical organisation. Mathematical modeling 
is a powerful way to improve the current understanding 
of plant cells on a molecular level [1]. It is of particular 
interest to understand how plant metabolism is affected 
by changes in environmental conditions due to the cen-
tral position of plants in our ecosystems [2]. A prominent 
example of how mathematical modeling can promote the  

understanding of plant-environment interaction is given 
by the modeling approach of photosynthesis which was 
developed decades ago [3,4] and is central to current 
model approaches on global net primary production (NPP) 
on earth [5,6]. Focusing the question how mathematical 
modeling can be applied to functionally integrate high- 
throughput experiments on the metabolome of plant cells, 
we recently published a strategy of inversely calculating 
the Jacobian matrix of a biochemical network from ex-
perimental high-throughput data [7,8]. When a system of 
ordinary differential equations (ODEs) is applied to de-
scribe a biochemcial system of interest, the Jacobian ma-
trix represents the first-order partial derivative of func-
tions fi of metabolite concentrations Mi with respect to 
metabolite concentrations (Equation (1)): *Corresponding author. 
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The metabolite functions fi are defined by the system 
of ODEs describing time-dependent changes of metabo-
lite concentrations (Equation (2)): 
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Here, M(t) is the n-dimensional vector of metabolite 
concentrations, v is an r-dimensional vector of metabolic 
fluxes and N describes the m x r stoichiometrix matrix of 
the biochemical reaction network. If the full stoichiome-
try of a large biochemical network cannot be resolved 
experimentally, a metabolic interaction matrix, NI, can be 
derived by interconnecting the experimentally accessible 
components. The term     ,v t tM p   indicates that the 
metabolic flux depends on time-variant metabolite con-
centrations, i.e. the substrates, products and effectors of 
the enzymatic reaction, and also on time-variant parame-
ters, e.g. enzyme kinetic parameters or thermodynamic 
constraints. Hence, to determine the Jacobian matrix of a 
metabolic system the stoichiometry as well as the time- 
variant parameters or fluxes must be known. While the 
method of metabolic reconstruction allows the computa-
tional assisted construction of genome-scale stoichiomet-
ric matrices [9], the experimental analysis of kinetic pa-
rameters is highly laborious and becomes almost impos-
sible for huge reaction networks with several thousand 
metabolites and reactions [10]. To overcome this limita-
tion and to derive the Jacobian matrix directly from ex-
perimental data an inverse problem can be formulated [8, 
10,11] (Equation (3)): 

T 2JC CJ D                  (3) 

Here, J represents the Jacobian matrix, C is the co-
variance matrix derived from the experimental data and 
D is the so-called fluctuation matrix integrating metabo-
lite fluctuations which can be modelled by a Langevin- 
type equation (Equation (4)): 

 Ξ Ξ 2k kl l k k
l

J D t             (4) 

Time-dependent changes in the matrix of metabolite 
concentrations Ξ are directly linked to the Gaussian noise 
function ψ(t). Stationary solutions of the Langevin-type 
equation are linked to the covariance matrix by a corre-
sponding Fokker-Planck equation and finally result in 
(Equation (3)) [11,12]. Applying this inverse approach to 
experimental metabolomics data of leaf material from the 

genetic model plant Arabidopsis thaliana, we could un-
ravel regulatory instances in plant primary metabolism 
contributing to the establishment of a new metabolic 
homeostasis induced by changes in light intensity and 
temperature [7]. Based on these findings, we now present 
an approach for characterization of the solution set of the 
inverse problem by deriving the eigenvalues of the Jaco-
bian matrix. The real part of an eigenvalue provides in-
formation about the stability properties of the solution set 
[13]. We show that these stability properties can report 
on shifts in plant metabolism which are due to a pertur-
bation of environmental conditions. 

2. Model Generation and Inverse  
Calculation 

Model construction and experimental analysis of me-
tabolite content was described previously [7]. Here, we 
provide the model structure in a hierarchical layout (Fig-
ure 1) designed with the open source software package 
CellDesignerTM (V4.3; http://celldesigner.org). The model 
file is provided on request in Systems Biology Markup 
Language (SBML). We used this model structure to de-
rive the metabolic interaction matrix, NI, allowing for the 
calculation of the Jacobian matrix (Equations (1) and (2)). 

Singular value decomposition (SVD) was applied for 
the inverse calculation of the Jacobian matrix [8]. We 
repeated inverse calculations 100 times until the variance 
of resulting Jacobian entries did not differ signficiantly 
(p < 0.05) from the previous calculation. We normalised 
the medians of each Jacobian entry to the square of its 
fluctuation which was expressed by the interquartile dis-
tance comprising 50% of all data points. As described in 
our previous publication, we build the differential Jaco-
bian matrix dJ representing the log2-ratio of two different 
conditions a and b (Equation (5)): 
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In this way we compared the ratio of Jacobian matrices 
derived from leaf samples of plants which were not ex-
posed (non-acc), 2 days exposed (2d), 8 days exposed 
(8d), 14 days expose (14d) and 18 days exposed (18d) to 
4˚C and increased light intensity. We found a major im-
pact of cold exposure on primary metabolism after 2 days 
and 14 days at 4˚C pointing to a short-term and long- 
term effect of cold on plant primary metabolism [7]. The 
data indicated that the short-term response represents a 
fast protection against rapid cell damage while the long- 
term response is due to an increasing regulatory interac-
tion with secondary metabolism resulting in an increase 
of flavonoids and other energy- and oxidative stress dis-
sipating molecules. 
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Figure 1. Model structure of primary metabolism in Arabidopsis thaliana leaf cells. Black squares represent dead ends of the 
model, i.e. imported and exported pools of metabolites which have not been analysed experimentally. Arrows represent steps 
of metabolic interconversion defining the metabolic interaction matrix, NI, for inverse Jacobian calculation. 

 
Deriving Eigenvalues of Jacobian Entries Metabolite concentration at this steady state, iM  , is 

related to the metabolite concentration Mi in (Equation 
(2)) by a perturbation term θi(t) yielding (Equation (7)): 

Based on our results of inverse calculations, we derived 
the eigenvalues of the Jacobian entries as described in the 
following steps. All of the compared Jacobian matrices 
represent solutions for a certain steady state, i.e. an in-
fintesimal time unit for which all changes in the systems 
equations can be assumed to equal zero (Equation (6)): 

   i i iM t M t             (7) 

Linearization around this steady state by Taylor expan-
sion discarding all but the first element results in (Equa-
tion (8)): 
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Here, jik are the elements of the Jacobian matrix J at 
the considered steady state. Solutions of (Equation (8)) 
are described by 
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Γik are constants depending on the initial values of the 
perturbations. The constants k  represent the eigenval-
ues of the Jacobian matrix J describing the behaviour of 
the system. Solutions for k  can be derived from the 
characteristic equation: 

    0J I t                (10) 

Here, I is the m  m unit matrix. In general, eigenval- 
ues are complex numbers, ,a ib  

 t

composed of a real 
part and an imaginary part. From (Equation (9)) it be- 
comes obvious that real parts < 0 result in an exponential 
decay of the perturbation matrix  while real parts > 
0 induce exponential increase indicating instable system 
behaviour. The imaginary part of the eigenvalues deter- 
mine the sinusoidal oscillation which becomes clear 
when rewriting   in polar coordinates instead of Carte- 
sian coordinates  cos sini      . 

To analyse whether solutions of inverse calculations 
may indicate a difference of system stability properties in 
leaf metabolism when exposed to perturbed environmental 
conditions, we compared the real parts of eigenvalues. All 
calculations and graphical representations were performed 
in MATLAB® (V7.12.0 R2011a). Histograms and scat- 
terplots indicate the presence of positive real parts in all 
samples following the environmental perturbation (Fig- 
ure 2). This points to instabilities in solution sets. In the  

histograms which are arranged diagonally in the scatter- 
plots (Figure 2), the distribution of real parts of eigen- 
values are shown for each environmental condition. Only 
for the samples from not cold exposed plants (“na”) all 
real parts of eigenvalues were found to be negative. When 
comparing results for samples of 2 days and 8 days of 
cold exposure (“2d” and “8d”), the number of positive 
real parts of eigenvalues indicates a destabilization of the 
system after 2 days, followed by a restabilization after 8 
days. The solution set for samples after 14 days of cold 
exposure (“14d”) shows an increase of instabilities, i.e. 
positive real parts of eigenvalues. The number and ex- 
tend of positive real parts declines again after 18 days 
indicating an increase of stable solution sets. 

3. Discussion 

Inverse problems may often be characterized as ill-con- 
ditioned because either solutions do not exist, or solu- 
tions are not unique, or solutions are not data-dependent 
in a uniformly continuous way [14]. Hence, solution sets 
gained by an inverse approach have to be carefully evalu- 
ated and tested by further experiments. This is necessary 
particularly to prevent any misinterpretation of subse- 
quent analysis which is based on the results of the in- 
verse calculation. In the present study, we assume the 
realistic output of inverse calculation of the Jacobian ma- 
trix due to good agreement with a multitude of former 
experimental studies on plant-environment interaction [7]. 
It is desirable to be able to derive the Jacobian matrix 
directly from experimental data because of its central im- 
portance in the field of mathematical modeling of com- 

 

 

Figure 2. Histogram and scatterplot of real parts of eigenvalues. Histograms show the distribution of eigenvalues for each of 
the sampling conditions. In the scatterplots, eigenvalue distribution is compared between two conditions. na: non-acclimated 
samples (0 days at 4˚C); 2d: samples after 2 days at 4˚C; 8d: samples after 8 days at 4˚C; 14d: samples after 14 days at 4˚C; 
18d: samples after 18 days at 4˚C. “+” and “−” indicate the positive and negative real parts of the eigenvalues. 
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plex natural systems. Even more, characterizing a bio- 
chemical system of interest by the Jacobian matrix en- 
ables the application of methods from systems theory 
which is inevitable for the comprehensive and systematic 
analysis of large metabolic networks [10]. Motivated by 
our previous findings based on numerical approximation 
of eigenvalues of Jacobian matrices in a small metabolic 
network [15] we now extended this approach to analyse 
plant-environment interactions in a larger network. The 
finding of changing distributions of real parts of eigen- 
values allows for speculation on different metabolic con- 
stitutions. It is known from former studies that there are 
short- and long-term acclimatory responses in primary 
metabolism of Arabidopsis thaliana [16] which were also 
indicated by our eigenvalue calculations. The appearance 
of positive real parts after 2 days at changed environ- 
mental conditions may indicate the shift of the metabolic 
constitution towards the more stable homeostasis after 8 
days. In agreement with the finding that interaction be- 
tween primary and secondary metabolism is permanently 
induced from 14 days on [7], instable system behaviour 
was again observed at this time point declining until day 
18 (Figure 2). Although the inverse calculations of the 
Jacobians comprise data variance which is an artefact 
from the Gaussian noise in the fluctuation matrix (Equa- 
tions (3) and (4)), we do not assume that our findings 
about eigenvalues are related artefacts. First, this is due 
to the fact that for “na” samples only negative real parts 
of eigenvalues were determined. Secondly, we have nor- 
malised the medians of calculated Jacobian entries by the 
fluctuation of the inverse calculation. Finally, our results 
agree with previous findings of independent studies. How- 
ever, because our experimental measurements only pro- 
vide qualitative information about a metabolic homeosta- 
sis, no realistic information about the absolute values of  
both our Jacobian entries as well as the eigenvalues can 
be expected. Instead, only comparative analysis, here ex- 
emplified in scatterplots, should be applied. This problem 
can be circumvented by integrating metabolomics ap- 
proaches which are able to measure absolute and not re- 
lative concentrations of metabolites. Like the approach of 
modeling photosynthesis [5,6], here we present the ap- 
plicability of our approach not only to model on a mo- 
lecular but also on an ecosystem level involving envi- 
ronmental stochastic perturbation [17]. Future studies 
will have to evaluate if an absolute quantification of me- 
tabolic intermediates allows for the calculation of abso- 
lute Jacobian entries and associated eigenvalues. This 
would be a further important step in dissecting the com- 
plexity of biological systems and their interaction with 
the environment by strategies of mathematical modeling. 
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