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ABSTRACT 

In this paper, the Combined Laplace Transform-Adomian Decomposition Method is used to solve nth-order integro-dif- 
ferential equations. The results show that the method is very simple and effective. 
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1. Introduction 

In the recent literature there is a growing interest to solve 
integro-differential equations. The reader is referred to 
[1-3] for an overview of the recent work in this area. In 
the beginning of the 1980’s, Adomian [4-7] proposed a 
new and fruitful method (so-called the Adomian decom- 
position method) for solving linear and nonlinear (alge- 
braic, differential, partial differential, integral, etc.) equa- 
tions. It has been shown that this method yields a rapid 
convergence of the solutions series to linear and nonlin- 
ear deterministic and stochastic equations. The main ob- 
jective of this work is to use the Combined Laplace 
Transform-Adomian Decomposition Method (CLT-ADM) 
in solving the nth-order integro-differential equations. 

Let us consider the general functional equation 

,y Ny f                   (1.1) 

where  is a nonlinear operator, N f  is a known func- 
tion, and we are seeking the solution y satisfying (1.1). 
We assume that for every ,f  Equation (1.1) has one 
and only one solution. 

The Adomian’s technique consists of approximating 
the solution of (1.1) as an infinite series 
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and decomposing the nonlinear operator  as N
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where nA  are polynomials (called Adomian polynomi- 
als) of  [4-7] given by 0 1, , , ny y y
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The proofs of the convergence of the series 
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  are given in [6,8-12]. Substituting (1.2) and  
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Thus all components of  can be calculated once the y

nA  are given. We then define the n-terms approximant  

to the solution  by  with  y  
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2. General nth-Order Integro-Differential 
Equations 

Let us consider the general nth-order integro-differential 
equations of the type [1,2]: 
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with initial conditions 

         1
0 1 2, , , , n

ny a y a y a y a   
      

where , 0,1, ,i i 1n  
m n

  are real constants, m  and  
are integers and . In Equation (2.1) the functions 

n

   ,f x g x
y x

 and the kernel  are given real-va- 
lued functions, and  is the solution to be deter- 
mined. We assume that Equation (2.1) has the unique 
solution. 

 ,k x t 


To solve the general nth-order integro-differential Eq- 
uation (2.1) using, the Laplace transform method, we 
recall that the Laplace transforms of the derivatives of 

 are defined by  y x
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Applying the Laplace transform  to both sides of 
(2.1) and taking into account the fact that the convolution 
theorem for Laplace transform [13,14] gives: 
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This can be reduced to 

   
       

   
   
   

   
       

11 20 0 0

1
, d .

nn n

n n

b
m

n
a

y x s

g x ss y s y y

s f x s s f x s

k x t s y t t
s f x s

    
 

 


 














(2.2) 

Substituting (1.2) into (2.2) leads to 
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The Adomian decomposition method presents the re- 
cursive relation 
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(2.3) 

A necessary condition for (2.3) to comply is that 

   
1
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ns s f x s




 

Applying the inverse Laplace transform to both sides 
of the first part of (2.3) gives , and using the recur- 
sive relation (2.3) gives the components of 

 0y x
  , 0ny x n  . 

We then define the -terms approximant to the solution  n

 y x  by  with     
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   . In this paper, the obtained series  

solution converges to the exact solution. 

2.1. A Test of Convergence 

The convergence of the method is established by Theo- 
rem 3.1 in [9]. In fact, on each interval the inequality 

1 2 2i  is required to hold for iy y 0,1, ,i n  , 
where 0 1   is a constant and  is the maximum 
order of the approximant used in the computation. Of 
course, this is only a necessary condition for convergence, 
because it would be necessary to compute 

n

2i  for 
every 

y
0,1, ,i n   in order to conclude that the series is 

convergent. 

2.2. Definition 

Let   , 1, 2,n x n    be the successive approximations 
to the solution  y x  of a problem. If the positive con- 
stants K ,  exist such that p
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then we call  the (estimated) Local Order of Conver- 
gence (EOC) at the point 

p

ix . The constant K  is called 
Convergence Factor at ix . 

3. Applications 

In this section, the CLT-ADM for solving nth-order inte- 
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gro-differential equations is illustrated in the three exam- 
ples given below. To show the high accuracy of the solu- 
tion results from applying the present method to our 
problem (2.1) compared with the exact solution, the 
maximum error is defined as: 

   Exact ,n nE y x x


   

where  represents the number of iterations. 
Moreover, we give a comparison among the CLT-ADM, 
Homotopy perturbation method (HPM) [1] and the varia- 
tional iteration method (VIM) [2]. The computations as- 
sociated with the examples were performed using Maple 
13 package. 

1, 2,n  

Example 1 
Solve the second-order integro-differential equation by 

using the CLT-ADM [1,2]: 

   

   

1

0

e d

0 1, 0 1

x ,y x x xty t

y y


   


  

 t
         (3.1) 

As mentioned above, taking Laplace transform of both 
sides of (3.1) gives 
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where . Substituting the series as-      y x s Y s

sumption for  Y s  as given above in (1.2), and using 
the recursive relation (2.3) we obtain 
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Taking the inverse Laplace transform of both sides of 
the first part of (3.2) gives  0y x , and using the recur- 
sive relation (3.2) gives 
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Thus the series solution is given by 
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that converges to the exact solution  Exact exy x  . In 
Table 1, the maximum errors and the EOC are presented 
for  0.2 0.2 1x 

n

. Comparing it with the HPM and VIM 
results given in [1,2], we notice that the result obtained 
by the present method is very superior (lower error com- 
bined with less number of iterations) to that obtained by 
HPM and VIM. From Table 1, it can be deduced that, 
the error decreased monotically with the increment of the 
integer . 

Example 2 
Solve the third-order integro-differential equation by 

using the CLT-ADM [1,2]: 
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As early mentioned, taking Laplace transform of both 
sides of (3.3) gives 
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where      y x s Y s . Substituting the series as- 

sumption for  Y s  as given above in (1.2), and using 
the recursive relation (2.3) we obtain 
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Table 1. Maximum error and EOC for Example 1. 

x E3 E6 E8 EOC 
0.2 1.4815E−06 5.4870E−11 6.0966E−14 0.99999 
0.4 1.1852E−05 4.3896E−10 4.8773E−13 1.00000 
0.6 4.0000E−05 1.4815E−09 1.6461E−12 0.99999 
0.8 9.4815E−05 3.5117E−09 3.9018E−12 1.00000 
1.0 1.8519E−04 6.8587E−09 7.6208E−12 1.00000 

According to the requirements of our test, 1 2

2

1i

i

y

y
   for all . 0,1, 2, ,i n 
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Taking the inverse Laplace transform of both sides of 
the first part of (3.4) gives  0y x , and using the recur- 
sive relation (3.4) gives 
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The series solution is therefore given by 
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that converges to the exact solution  Exact cosy x  x . In 
Table 2, the maximum errors and the EOC are shown for 

 0.2 0.2 1x 

n

. Comparing it with the HPM and VIM 
results given in [1,2], we notice that the result obtained 
by the present method is very superior (lower error com- 
bined with less number of iterations) to that obtained by 
HPM and VIM. From Table 2, it can be concluded that, 
the error decreased monotically with the increment of the 
integer . 

Example 3 
Solve the eighth-order integro-differential equation by 

using the CLT-ADM [1,2]: 
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As previously mentioned, taking Laplace transform of 
both sides of (3.5) gives 
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Table 2. Maximum error and EOC for Example 2. 

x E3 E6 E8 EOC 
0.2 6.7743E−06 2.1943E−07 2.2297E−08 0.99999 
0.4 1.0839E−04 3.5109E−06 3.5676E−07 0.99999 
0.6 5.4872E−04 1.7774E−05 1.8061E−06 1.00000 
0.8 1.7342E−03 5.6175E−05 5.7082E−06 1.00000 
1.0 4.2339E−03 1.3714E−04 1.3936E−05 0.99999 

According to the requirements of our test, 1 2
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y

y
  n for all . 0,1, 2, ,i  
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where      y x s Y s . Substituting the series as- 

sumption for  Y s  as given above in (1.2), and using 
the recursive relation (2.3) we obtain 
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Taking the inverse Laplace transform of both sides of 
the first part of (3.6) gives  0y x , and using the recur- 
sive relation (3.6) gives 
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and so on for other components. Consequently, the series 
solution is given by 
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