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ABSTRACT 

Let  be a smooth function,  a standard Brownian motion and  h t tB   inf ;h B h     the first hitting time. In 

this paper, new formulations are derived to evaluate the probability density of the first hitting time. If  denotes 

the density function of 

 ,u x t

tx B  for ht  , then 2xxu tu  and   , 0t tu h  . Moreover, the hitting time density 

 is  thd   1
,

2 xu h t t . Applying some partial differential equation techniques, we derive a simple integral equation 

for  hd t . Two examples are demonstrated in this article. 
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1. Introduction 

Since the publication of Black and Scholes’ [1], and 
Merton’s [2] papers in 1973, a stock price following a 
geometric Brownian motion becomes the standard model 
for the dynamics of a stock price. Therefore, the calcula-
tions for the first hitting time get important in the field of 
finance recently [3]. 

Let  be a smooth function for , and  h t 0t  B   

t  a standard Brownian motion. The first hitting 
time h

 ;B t 0
  is defined as   0inf ; 0tt B h t B  . It is 

known that h  has a continuous density [4]. Sometime 
we call the function  or the curve  h t  x h t  the 
barrier. For a constant barrier, the result has been well- 
known for a long time. In this case, the density is  

2

3
exp

22π

h h

tt

 

 

  ([5], Chapter 9). The distribution of the  

hitting time for non-constant barrier was considered by 
many authors; for example in [6-9]. In [6], Cuzick de-
veloped an asymptotic estimate for the first hitting den-
sity with a general barrier. In [7,8], the authors’ formulas 
contain an expected value of a Brownian function. The 
formulations in [7] are hard to see how the density for a 

general barrier is evaluated. Although the expected value 
in [8] can be evaluated by solving a partial differential 
equation, using a numerical method to compute the value 
is still not easy. In [9], the density function for parabolic 
barriers was expressed analytically in terms of Airy func-
tions. In this article, we derive new exact formulations 
for the hitting density with a general barrier. Thus, partial 
differential equation (PDE) techniques may be applied to 
evaluate the density function of the first hitting time. Let 
 ,u x t  be the probability density of  0, 0t hB x t B   ;  

i.e.     0, d , d , 0t hu x t x B x x x t B   P . It will  

be shown that  ,u x t  is the solution of an initial- 
boundary value problem of a heat equation, and the hit-  

ting density is 
 
   0

,
2 0

h
u h t t

xh

 


 . Our derivation re-  

sults a simple integral equation for the density function. 
In Section 2, we show that the density function of the 

first hitting time can be evaluated though solving an ini-
tial-boundary value problem of the heat equation. Then, 
the density function will be the solution of a simple inte-
gral equation. In Section 3, a couple of examples are 
solved by PDE techniques to demonstrate the justifica-
tion of the new method. The last section is the conclu-
sion. *Corresponding author. 
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2. The Boundary Value Problem 

Let Bt, 0 , a standard Brownian motion, 0B   h t  be a 
smooth function and   inf ;h tt B h t  

 0 0h 
 the first hit-

ting time. We consider  first. Let  ,p x t  de- 
note the probability  ,t hB x t  P , and  ,u x t  de-  

note the density function  . Surely, ,p x t
t
  ,u x t  ful-  

fills the heat equation, 2xxu  t  ([10], p. 352). Never-
theless, in this section, it will be proven with another way. 
To derive the formulations for , we consider the 
hitting problem at discrete times  , where  

u




 ,u x t
t t1 2, , , nt

i

t
t i

n
 . Let  denote   ip x

   , ; 1, 2,
i jt t jB x B h t j i  P , , 

and  denote  iu x  d

d ip x
x

. Therefore, 

       1 ,ih t

iu x G x u di   
           (1) 

where  
 2

2, 1 2π e
x

tG x t






   and t t n  . Taking 

the limit, we have 

   lim ,n
n

p x p x t


              (2) 

and  

   lim ,n
n

u x u x t


              (3) 

We will show that  satisfies the heat equation. 
Integrating Equation (1), we have 

 ,u x t 

   
 

 
2

2
1

1
e d

2π

x
x h i

t
ip x u x

t



 





  


  d ,i     (4) 

for  1< ix h t  . The probability difference between two 
steps is  
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  (5) 

Using a substitution, v x   , we have  
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where  

 
 

   
, if

, if

i
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x v x h t
a v

v h t v x h t

   
  

 

Consequently, 
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  (6) 

Note that, if  g v  is continuous and bounded  

   
2

0

1
lim e d 0 ,

π

v

t

t
g v v g

t




  

([11], p. 9) and, therefore, if     1g v 

   
2
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lim e d 0 .

π
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t
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Let  

 
 

     

, i

1
d , if 0.
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a
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f 0
 

The function  g v  is continuous and bounded. More- 
over,  g v  is differentiable, since 

      

 
     

   

     

0
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Thus, when t  approaches 0, the first term of the  
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right-hand side of Equation (6) is  1 d

2 d iu x
x

 . The  

second term is 0, because  ix h t  and, therefore, 
 when  a v x v  is small. Letting  approach 0, 

we have 
t

   1
, ,

2 xp x t u x t
t





.              (7) 

Since   ,p x t u x t
t





, , differentiating both sides  

of Equation (7) with respect to x , we have the partial 
differential equation 

   1
, ,

2t xxu x t u x t .              (8) 

The barrier  is assumed to be differentiable, and, 
therefore, there exists an positive number  not de-
pending on  such that 

 h t

t


   1i ih t h t t . Con-
sider the probability density near the boundary 

 
 1ih t   
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 (9) 

where s  . Note that  
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1 1
lim e d

22π
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When      1i ih t h t
s t

t
 

 


,  

     1 1
0

1
lim .

2i i i i
t

u h t u h t  
  

Consequently,  

     0 0
0

1
lim lim .

2

n

n n
t n

u h t u h t
  

   
 

 

We have the boundary condition 

  , 0u h t t .               (10) 

Therefore, we have a proposition as follows: 
Proposition 1 
The density function  is subject to the initial- 

boundary value problem:  
 ,u x t 

   , 2 ,xx tu x t u x t ,

,

            (11a) 

  , 0u h t t                (11b) 

   ,0 ,u x x               (11c) 

where  x  is the Dirac delta function. The initial- 
boundary value problem is mathematically well-post. 
The hitting probability  hp t ,  

     1 ,
h t

hp t u x t x


   d .           (12) 

Then, the hitting density   hd t

   

        

d

d
d

, ,
d

h h

h t

d t p t
t

h t u h t t u x t x
t t




  

 d .

  (13) 

Substituting Equations (8) and (10) into Equation (13), 
we have  

     1
, d .

2

h t

h xxd t u x t x


   

Using integration by parts, we have  

   1
, .

2h xd t u h t t              (14) 

Similarly, if  0h 0 , the hitting density will be  

 1
,

2 xu h t t 

,

d ,

. There is an integral equation for the  

boundary values of a heat equation ([12], p. 219).  

         
       

       

0

0

, ,0 ,0, , d

, , ,

, , , ,

h

t
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u h t t u G h t t

u h G h h t t

u h G h h t t

  

   

   




















  (15) 

where  
 

 
  

2

21
, , , e

2π

x

tG x t H t
t


   






  


 and  

 H t  is the Heaviside step function. For problem (11), 
the integral equation becomes  

         
0

0,0, , 2 , , , d 0,
t

hG h t t d G h h t t       

or  

 

    
   

2
2

2 2
0

2 1
e d e

2π2π

h t h

.
x

t t t
hd

tt


  




  


  (16) 

Equation (16) can be solved by a numerical method 
easily. 

3. Examples 

Example 1: Linear boundaries.  
Let  h t a bt   with . The initial-boundary 

value problem (11) has a close-form solution. The 
solution, which is a Green’s function for the boundary 

0a 

x a bt  , is  
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Thus, the hitting density  hd t  is  
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consistent with that in [8]. 
Example 2: First-passage time probability in an inter-

val. 
Let  and  be the den- 

sity function for a

 0inf ; ,a t B a   
t

  ad t
  . In this example, we evaluate the 

probability density of the first passage time  ad t . 

Let    00inf ; ,a tt B a B          and  td    

be the density of a t   . Using  , ;lu x t   and  , ;ru x t   
to denote the probability density  

 0
,t a tB x t B

x
 

  


P  for a   and a   re-  

spectively, we have an initial-boundary value problem 
for both functions,  and . From the proposition, 

 and  fulfill the equations  
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lu ru

   
2
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The density function is 
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The density of a t   has to be  

     

       
0

0 0

d

d d

a t

a

t ta

d t d u

d u d u

  

,     

 



 





 



 
  (17) 

where  0u   is the density function of 
0t

B  ; i.e.  
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The integral in Equation (17) can be calculated.  
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Therefore, the hitting rate  
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In the special case of 0a  ,  
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π 2 π
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The probability of that the Brownian motion process 
takes on the value 0 at least once in the interval  , t  0t
is  

0

0 0

0
ππ tt    
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2
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esult e same as in ([13], p. 191). In a simple 
case of 0 0t  ,  
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the density of the first
hitting time for a constant barrier. 

problem

rrier numerically by using the integral Equa-
tio

lt o-d
. Let d Brownian

motion, a sm h surface an   

ime. If 

This is the well-known result of  

4. Conclusions 

The proposition proposed in Section 2 may offer a simple 
way to evaluate the density of the hitting time with a 
general barrier by solving an initial-boundary value 

 of the heat equation. The density function 
 ,u x t  locally satisfies the heat equation is well-known 

[10]. The main contribution of this paper is the derivation 
of the boundary condition (10). This result makes pro-
gress in the evaluation of hitting time density. Two ex-
amples with exact solutions are demonstrated in Section 
3. Even though the examples may be solved by other 
method, the new formulations in this paper can be ap-
plied to evaluate the hitting time distribution with any 
smooth ba

n (16). 
A similar resu  for tw imensional problems may be 

expected and 2
tB  be two standar 1

tB  
 t 

 
,h x y  oot d

  1 2inf ; ,t h B t B    h t t

the first hitting t  , ,u x y t  presents the probabil-
ity density of    1 2, ,t tB B x y  for ht  , the two-di-
mensional form

 
ulations may be as follows, 

2xx yyu u u   t  

,

             (18a) 

  , , , 0u x h x t t         

ay be evaluated by an analytical or 
numerical method. 

] F. Black and M. Scholes, “The Pricing of Options and 

      (18b) 

     1 2
0 0, ,0 .u x y x B y B            (18c) 

As long as Equation (18) is established, the probability 
density of the first hitting time for two-dimensional 
Brownian motion m
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