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ABSTRACT 

A new algorithm is presented for solving Troesch’s problem. The numerical scheme based on the sinc-collocation tech-
nique is deduced. The equation is reduced to systems of nonlinear algebraic equations. Some numerical experiments are 
made. Compared with the modified homotopy perturbation technique (MHP), the variational iteration method and the 
Adomian decomposition method. It is shown that the sinc-collocation method yields better results. 
 
Keywords: Sinc Function; Collocation Method; Troesch’s Problem; Numerical Solution 

1. Introduction 

In this paper, we consider a two-point boundary value 
problem, Troesch’s problem [1-3], defined by 

  sinhu u                 (1) 

   0 0,  1u u 1               (2) 

where   is a positive constant. This problem arises in 
an investigation of the confinement of a plasma column 
by radiation pressure [4] and also in the theory of gas 
porous electrodes [5,6]. This problem has been studied 
extensively. Troesch found its numerical solution in [7] 
using the shooting method, in [8] using the decomposi-
tion technique, in [9-11] using the variational iteration 
method, in [12] using a combination of the multipoint 
shooting method with the continuation and perturbation 
technique, in [13] using the quasilinearization method, in 
[14] using the method of transformation groups, in [15] 
the invariant imbedding method, in [16] using the inverse 
shooting method, in [17] using the modified homotopy 
perturbation method, in [18] using sinc-Galerkin method, 
in [19] using B-spline method, in [20] using the differen-
tial transform method and in [21] using chebychev col-
location method. 

The purpose of this paper is to introduce a novel ap-
proach based on sinc function for the numerical solution 
of the class of nonlinear boundary value problems given 
in (1)-(2). Sinc approximation have become increasingly 
important in numerical analysis. Most commonly used 
techniques with sinc-collocation have been examined in 

[22-24] and references therein. The error of the method 
converges to zero like  e k NO  , as , where N 
is the numerical of collocation points used, and where k 
is a positive constant independent of N. 

N 

The aim of this work is two folds. First we aim to in-
vestigate the ODEs of a variety of distinct orders, linear 
or nonlinear, to show that sinc-collocation method can 
work as a unified method. Second we aim to confirm the 
power of the sinc-collocation method in handling scien-
tific and engineering problems. 

The remaining structure of this article is organized as 
follows: a brief introduction to the sinc function is pre-
sented in Section 2. In Section 3, the sinc-collocation 
approach for the solution of Troesch’s problem is de-
scribed. The results are compared with the exact solu-
tions and some existing numerical solutions in Section 4. 
Finally, in Section 5, a conclusion is given that briefly 
summarizes the results. 

2. Sinc Function 

A general review of sinc function approximation is given 
in [25,26] and the recent papers [27-29]. Hence, only 
properties important to the present goals are outlined in 
this section. 

If  f x  is defined on the real line, then for  
the Whittaker cardinal expansion of f 

0h 

    , ,  2
N

m k
k N

f x f S k h x m N


1    

where   ,k k kf f x x hk  , and the mesh size is given 
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by 

π
,  0 1,  

2

d
h

N



  

π
d              (3) 

where N is suitably chosen and   depends on the as-
ymptotic behavior of  f x . The basis functions on 

 are then given by  ,a b

     
, sinc

x kh
S k h x

h




 
  

 
  

and 

  ln
x a

x
b x

    

               (4) 

The interpolation formula for  f x  over  ,a b  takes 
the form 

     ,
N

k
k N

f x f S k h x


   ,



         (5) 

The n-th derivative of the function  at points f
  e 1 ekh kh

kx a b    can be approximated using a 
finite number of terms as 

     
N

n n
k

k N

n
jk kf x h f



             (6) 

where 

     d
,

d k

n
n

jk n x x
S j h x 

 
   

The quadrature formula of  F x  is given by 

   
 

d
b N

k

k N ka

,
F x

F x x h
x


           (7) 

We consider the following definitions and theorems in 
[26]. 

Definition 1. 
Let  be a simply-connected domain in the complex 

 plane having boundary . Let  and 
 denote two distinct points of  and 

D
i  z x y

b
 D a

D   denote a 
conformal map of  onto , where  denote the 
region 

D dD dD

 : ;w C Iw d d   0  

such that  and . Let  a    b   1   de- 
note the inverse map, and let   be defined by 

  : ,z C z u u R     .  

Given , 
 h 

 and a positive number  let us set ,h
  , 0,1, 2,k kz z w kh k  Λ , let us also   by 

  e  zz   . 
Definition 2. 
Let  be the set of all analytic functions, for 

which there exists a constant,  such that 
 L D

C

   
  2 , ,0

1

z
u z C z D

z









1.   


 

Theorem 1. 
Let  L D

1C

, let  be a positive integer, and  be 
selected by the Formula (3) then there exist positive 
constant , independent of , such that 

N h

N

      π
1sup , e

N
d N

z k
k N

u z u S k h z C  




   . 

3. The Description of Sinc-Collocation 
Scheme 

First, the sinc function composed with various conformal 
mappings,  ,S j h  , are zero at the endpoints of the 
interval. Since the boundary conditions are nonhomoge-
neous, then these conditions need be converted to homo-
geneous ones via an interpolation by a known function. 
The nonhomogeneous boundary conditions in (2) can be 
transformed to homogeneous boundary conditions by the 
change of dependent variable . The new prob-
lem with homogeneous boundary conditions is then 

y u x 

sinh y y x                 (8) 

subject to the boundary conditions 

   0 1y y 0                 (9) 

To obtain its approximate solution of Equations (8) 
and (9), we expand  sinh y  around  ŷ

     
 



 

   

   

22

33

44

ˆ ˆ ˆsinh sinh cosh

ˆsinh
ˆ

2!
ˆcosh

ˆ
3!

ˆsinh
ˆ

4!

y y y y

y
y y

y
y y

y
y y

   










y  

 

 

  

 

Particularly, if ˆ 0y  , then 

 
3 5

3 5sinh
3! 5!

y y y y
       

and 

 
2 4

2 4cosh 1
2! 4!

y y y
       

The Equation (8) becomes 

     1
2

j
j

j

y P x y P x y f x




          (10) 

where 
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   
   

   

   

   

   

1

3

2

4

3

5

4

6

5

sinh ,

cosh ,

sin
,

2!

cosh
,

3!

sinh
,

4!

cosh
,

5!

f x x

P x x

x
P x

x
P x

x
P x

x
P x

 

 

 

 

 

 

 

 

 

 

 

  

 

The approximate solution for  y x  is represented by 
the formula 

   ,  2 1.
N

m j j
k N

y x c S x m N


  

.

       (11) 

We need the following lemma. 
Lemma. 
The following relation holds 

     ,
N

n n
k

k N

y x c S k h x


           (12) 

where N and  are now dependent on both h  y x  and 
ny . 
Replacing the terms of (10) with the appropriate rep-

resentation defined in (5), (6), and (12) and applying the 
collocation to it, we eventually obtain the following 
theorem. 

Theorem 2. 
If the assumed approximate solution of problem (10) 

and (9) is (11), then the discrete sinc-collocation system 
for the determination of the unknown coefficients is 
given by 

 

     
2

0
12

2

,

                                                , 1, , .

N
kj j

k kj j j k k k
J N j

P x c P x c f
h

k N N N




 

 
   
  

   

 



(13) 

The following notation will be necessary for writing 
down the system. Let  be the  diagonal 
matrix 

 D g m m

 

 
 

 

1 ,

N

N

N

g x

g x
D g

g x



 

 
 
   
  
 


   (14) 

and define the  matrices m m  pI  (see [30]) for 
 by 0 2p 

    ,  , , ,p p
jkI j k N N              (15) 

whose kj-th entry is given by 

 

 

 
 

0

2

2

2

1, ,

0, ,

π
, ,

3

2 1
, .

jk

k jjk

j k

j k

j k

j k
k j



 


  



   
 

 

Let c be the m-vector with j-th component given by 

jc
by 

, let n  be the m-vector with j-th component given 
n

c

jc , and 1 is an m-vector each of whose components 
is 1. In this notation the system in (13) takes the matrix 
form 

1 1

2

j
N N

j
N N

j
j

j
N N

c c

c c
P

c c



 

   



  
  
       
       

A
 

       (16) 

where 

 
 

, 2,3, ,

,

j jP j

f

 

 

P D

D



1
 

and 

     2 0
12

P
h

A I I D
1

.   

1 equaNow we have a nonlinear system of 2m N  -  

tion of the m unknown coefficients, namely,  j
N

j N
c


. 

We can obtain the coefficient of the approximate solution 
by solving th em by Newton’s method. 
The solution  T

, ,N Nc cc   gives the coef s in 
pproximate sinc-collocation solution 

 

is nonlinear syst
ficient

the a  my x  of 
 y x . Then, e solution of (1) is 

x

 the approximat
N

 j j
J N

u c S x


m    

Newton’s Method. 
To solve the system of Equation (16), we express these 

equations as the simultaneous zeroing of a set of func-
tions, where the number of functions to be zeroed is 
equal to the number of independent variables. 

 

 
 

 

1

1 1

, , , 0

, , , 0

, , , 0

N N N N

N N N N

F c c c

F c c c

F c c c

   

    

   
   
   
    
   
   

    

F c




 
 



 

1N N N N   

A very important metho

    (17) 

d for the solution of Equation 
(1 New

he gu
7) is ton’s method: 
Let  ic  be t ess at the solution for iteration i. 

Assuming the  iF  is not small enough, we seek an 
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update vectors 

i

i.e. 

1








       ( 8  

varia- 
tion of 

 ic  

 

 

 

1

1

1
Nc




 



 
 
 
 
 
 


a

     1 ,i i   c c c  

 

 

 

 

 

 

1 1 ,

i i i
N N N

i i i
N N N

i i i

c c c

c c c

  

   

   
  
  

   
  
  

 

  
 

N Nc c  

such that   1 0i F c . Using the multidimensional 
extension ylor’s theorem to approximate the 

1 )

of T
 F c  eighin the n

 

  

borhood of  gives  ic

  
       2

,

i i

i i i iO

 

 

c

F c

 is the

     

F c

F c c c
   (19) 

 Jacobian of the system of equa- 
tions: 

 

where   iF c

 

     

     

     

1

1 1 1

1 ,

N N N

N N N

N N N

N N N

N N N

F F F

c c c

F F F

c c c

F F F

  

  

     

  

   
    
   
      
 
 
   

 


c c c

c c c
F c

c c c





   



(20) 

1N N Nc c c    

Neglecting higher order terms and designating  iJ  as 
the Jacobian evaluated at . We can rearrange - 
tion (19) 

i       (21) 

tting that term to zero in the 
gives 

 ic  Equa

           i i i iF F J    c c c c  

The goal of Newton iterations is to make  
     0i i  F c c , so se

preceding equation 

      i i iJ   c F c            (22) 

Equation (22) is a system of m linear equations in the 
m unknown  ic . Each Newton iteration step involves 
evaluation of the vector  iF , the matrix  iJ  and the 
solution to Equation (22). A common numerical practice 
is to stop the Newton iteration whenever the distance 
between two iterates is less than a given tolerance, i.e. 
when 

   1 .i i  c c   

Algorithm. 
 Initia iz :  0l e
 For 

c c  
1,2,Λ  0,i 

        2 3
2 3

i     Λ  
i ii

F Ac P c P c

 If  iF  is small enough, stop 
 Compute  iJ  
 Solve         i i iJ c F c

   i i i
 

  1   c c c  
 End. 

4. Numerical Examples 

The closed form solution to this problem in terms of the 
Jacobian elliptic function has been given [3] as 

      21 02 1
Sc 1 0sinh

2 4

u
u x x u




          
  (23) 

where  0u , the derivative of  at 0, is given by the 
expression 

u
 0 2 1u m   , with  being the solu- 

tion of the transcendental equation 
m

 
sinh

2
Sc

1
m

m





 
 
  


 

where the Jacobian elliptic function Sc m   [2,31] is  

defined by   sin
Sc

cos
m




  where   and   are re-  

lated by the integral 

2
0

1
d

1 sinm



 





  

In Tables 1 and 2 the numerical solution obtained by 
sinc-collocation method is compared with the exact solu-
tion derived from Equation (23) and with the numerical 
solution obtained by the modified homotopy perturbation 
technique (MHP) [17], variation method [9] and decom-
position method [8] for the case 0.5   and 1.0   
respectively . 

In Table 3, the numerical solution obtained by the 
sinc-collocation method for 5   is compared with the 
numerical approximation of the exact solutions given by 
a Fortran code called TWPBVP and the numerical solu-
tion obtained by B-spline collocation method [19]. 

5. Discussions 

There are two main goals that we aimed for this work. 
The first is to employ the powerful sinc-collocation 
method to investigate nonlinear ordinary differential 
equations. The second is to show the power of this me- 
thod and its significant features. The two goals are 
achieved. 

In [27], we compared the performance of the colloca-
tion and Galerkin methods using sinc bases for solving 
linear and nonlinear second order two-point boundary 
value problems and shown that the most significant virtue     
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Table 1. Numerical solutions of Troesch’s problem for the case μ = 0.5. 

x Exact solution Sinc-collocation MHP [17] Variational [9] Decomposition [8] 

0.1 0.0951769 0.0959443 0.0959395 0.1000416 0.0959477 

0.2 0.1906338 0.1921287 0.1921193 0.2003336 0.1921352 

0.3 0.2866534 0.2887944 0.2887806 0.3011275 0.2888034 

0.4 0.3835229 0.3861848 0.3861675 0.4026773 0.3861955 

0.5 0.4815373 0.4845471 0.4845274 0.5052411 0.4845585 

0.6 0.5810019 0.5841332 0.5841127 0.6090820 0.5841442 

0.7 0.6822351 0.6852011 0.6851822 0.7144698 0.6852105 

0.8 0.7855717 0.7880165 0.7880018 0.8216826 0.7880234 

0.9 0.8913669 0.8928542 0.8928462 0.9310084 0.8928578 

 
Table 2. Numerical solutions of Troesch’s problem for the case μ = 1. 

x Exact solution Sinc-collocation MHP [17] Variational [9] Decomposition [8] 

0.1 0.08179699 0.08466125 0.08438170 0.10016683 0.08492528 

0.2 0.16453087 0.17017135 0.16962076 0.20133869 0.17067908 

0.3 0.24916736 0.25739390 0.25659292 0.30454102 0.25810502 

0.4 0.33673220 0.3472228 0.34621073 0.41084132 0.34807811 

0.5 0.42834716 0.44059983 0.43944227 0.52137347 0.44152329 

0.6 0.52527402 0.53853439 0.53733006 0.63736635 0.53943772 

0.7 0.62897114 0.64212860 0.64101046 0.76017896 0.64291809 

0.8 0.74116837 0.75260809 0.75173354 0.89134491 0.75319489 

0.9 0.86397002 0.87136251 0.87088353 1.03263022 0.87167571 

 
Table 3. Numerical solutions of Troesch’s problem for the 
case μ = 5. 

x Fortran code [19] B-spline [19] Sinc-collocation

0.0 0.000 0.000 0.000 

0.2 0.01075342 0.01002027 0.00762552 

0.4 0.03320051 0.03099793 0.03817903 

0.8 0.25821664 0.24170496 0.23252435 

0.9 0.45506034 0.42461830 0.44624551 

1.0 1.0000 1.000 1.000 

 
of the collocation procedure is its ease in application. 
The collocation method easily generalizes to problems 
having general boundary conditions. 
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