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ABSTRACT 

We propose a quantum version of Tic-Tac-Toe which accurately reflects the inherent probabilistic nature of the meas-
urement principle in quantum mechanics. We then formulate a quantum strategy which allows a quantum player to con-
sistently win over a classical player, with a certain probability. This result can be seen as another proof of the superior 
computational power of a quantum system with respect to a classical one. Our investigation also reveals that the 
non-determinism and complexity introduced by the principles of quantum mechanics into even the most simple games 
make brute-force strategies considerably more difficult to implement. Consequently, games in which machines have 
gained the upper hand over humans may be made fair again by upgrading them to a quantum level. 
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Power 

1. Introduction 

The field of quantum information is concerned with ways 
of embodying information in physical systems whose 
behavior can only be described by the laws of quantum 
mechanics and exploring the consequences of this novel 
physical support on how information is manipulated and 
processed. Weird quantum mechanical principles, like 
superposition of states and entanglement can effectively 
be harnessed in order to achieve higher efficiency or se-
curity than it is possible by using classical means: quan-
tum algorithms that are faster than their classical coun-
terparts [1,2], quantum protocols for key distribution that 
are qualitatively more secure against eavesdropping than 
any classical cryptosystem [3-7], reduced communication 
complexity [8]. 

Not surprisingly, the laws of quantum mechanics have 
been applied to game theory as well, with the same result: 
better, more successful quantum strategies than the clas-
sical ones [9-11]. The main motivation behind applying 
quantum information into game theory is the ability to 
formulate many problems as games between two parties: 
quantum cryptography can be seen as a game between 
those who wish to communicate secretly and the eaves-
droppers [5]; quantum algorithms may be seen as games 
between classical and quantum agents [12]; even quan-
tum cloning or the measurement process itself may be 
interpreted as a game played against nature [13,14]. Con- 
sequently, quantum game theory tries to apply the prop-

erties of quantum systems in an abstract manner with the 
purpose of making better decisions in adversarial situa-
tions. 

In this paper, we take a different approach to quantum 
games. Rather than seeking a unified theory of games 
and quantum mechanics, we wish to explore the effects 
of “upgrading” particular, well known games to the quan- 
tum level. This upgrading refers to the physical support 
of the game (like the board, for example) as well as the 
legal moves the players are allowed to do. Therefore, in a 
board game, the board is embodied as a quantum system 
and each move in the game is viewed as a quantum op-
eration or transformation acting upon and changing the 
current quantum state of the system. 

The questions that will guide our exploration are: How 
can a particular game be upgraded to a quantum version? 
What is the best strategy to follow, once the rules are 
precisely defined? How would a “classical” player fare 
against a “quantum” opponent? What is the level of com-
plexity introduced by the quantum upgrade? How would 
this upgrade affect (if at all) the chances of a human 
player against a machine? In this respect, our investiga-
tion is closer to the approach taken in [15] to explore a 
quantum version of Chess. 

Our investigation will focus on a much simpler game, 
Tic-Tac-Toe, in order to better observe the effects of the 
quantum upgrade, unobscured by the game inherent in-
tricacies. Also, we are interested in a “genuine” quantum 
upgrade, where the laws of quantum mechanics are ap-
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plied as they are, without “accommodating” them to bet-
ter suit the game at hand. For example, we choose to im-
plement a non-deterministic measurement process iden-
tical in every respect to a probabilistic quantum meas-
urement, which is different from the version of Tic-Tac- 
Toe defined in [16] where the player has direct control 
over how a superposition collapses and the outcome of 
the measurement. In this way, we make sure that the 
game can be physically implemented using a quantum 
system whose behavior must obey the rules of quantum 
mechanics throughout the entire game play. 

The remainder of the paper is organized as follows. 
Section 2 describes in detail the quantum version of Tic- 
Tac-Toe that we choose to investigate, carefully defining 
the initial configuration of the board, the legal moves 
allowed and the objectives of the game. In order to quan-
tify the power of a quantum player relative to a classical 
one, we need precise definitions for the abilities of a 
quantum and a classical player. This is done in Section 3. 
The next section introduces a quantum strategy which, 
when followed, consistently gives more chances to the 
quantum player to win the game to the detriment of a 
classical player. This result is consistent with previous 
results in quantum game theory in general [9,12] and can 
also be interpreted as a reformulation of the idea devel-
oped in [17], using a game setting as a new vehicle for 
showing that a quantum “entity” is strictly more power-
ful and can solve a larger set of problems than a classical 
entity. 

Section 5 goes on to analyze the equilibrium devel-
oped when both players are endowed with quantum pow- 
ers and touches on the issue of human vs. machine play- 
ing. In this respect, we argue that the complexity and 
uncertainty introduced by quantum properties make the 
game more fair, rendering a brute-force strategy (usually 
adopted by a machine) more difficult, if not impossible 
to implement. Section 6 discusses several ways in which 
our quantum version of Tic-Tac-Toe can be extended. 
Finally, a summary of the problems discussed and the 
results obtained concludes the paper. 

2. Rules of the Game 

In this section we provide a detailed description of our 
quantum version of the Tic-Tac-Toe game, which we 
will refer to as Q3T. The simplicity in defining the legal 
moves is deliberate. Our aim is to explore the conse-
quences introduced in gaming by the same principles that 
govern the behavior of quantum systems, without “ad-
justing” or “customizing” them in any way. In order to 
observe and analyze these consequences, it is best to start 
with the simplest form of a quantum game, so as to avoid 
situations in which it is not clear whether a certain ob-
served behavior is a result of the “quantum enhance-

ment” of the game or it is due to the game’s inherent 
complexity, or perhaps both. 

2.1. Initial Configuration of the Board 

At the outset, each square on the board is in a grey state: 
a balanced superposition of White (W) and Black (B). 
Formally, the quantum state of any of the nine squares on 
the board can be expressed as 

1
,

2
i W B                 (1) 

in the usual Dirac notation employed to describe quan- 
tum states. 

2.2. Legal Moves 

There are only two possible moves (operations) a player 
can choose from:   

1) The first one applies to any one square on the board 
that does not have a definite state (White or Black) yet. 
From a quantum mechanical perspective, it corresponds 
to an observation or measurement of the quantum system 
representing the physical realization of the square being 
observed. Following this observation, the respective 
square acquires a definite state: White or Black, with 
equal probability. In quantum mechanical terms, we say 
that the superposition collapses to one of the base vectors: 
W  or B . 

2) The second possible move acts on a pair of squares 
and consequently, it is implemented through a two-qubit 
gate, namely the Controlled-NOT or more simple, CNOT. 
The effect of applying the CNOT operator on the four 
basis vectors required to describe the state of a two-qubit 
system ( , , ,WW WB BW BB ) is specified by the 
following matrix: 

1 0 0 0

0 1 0 0
CNOT .

0 0 0 1

0 0 1 0

 
 
 
 
 
 

              (2) 

In simple terms, the CNOT gate flips the state of the 
target qubit (the second qubit) from W  to B  or from 
B  to W  if and only if the control qubit (the first 

qubit) is set to B . However, in our Q3T game, the ap-
plication of the CNOT gate is restricted to the case where 
the control qubit is in superposition and the target qubit 
is in a “classical” state ( B  or W ). Under this restric-
tion, the second type of move will entangle the control 
and target qubits together. The following two equations 
describe the effect of a CNOT operator applied on a 
White target square (Equation (3)) and a Black target 
square (Equation (4)), respectively. 
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  1 1
CNOT

2 2
W B W WW BB

     
 

  (3) 

  1 1
CNOT

2 2
W B B WB BW

     
 

  (4) 

Such an entanglement can be extended to several qu- 
bits if the control qubit is already part of an entanglement. 
The rationale behind restricting the application of CNOT 
to a pair of qubits satisfying certain conditions (as ex-
plained above) is twofold: to simplify the game and to 
prevent a player from directly changing the color of a 
square from W  to B  or from B  to W .  

It is important to mention here that squares “caught” in 
an entanglement are displayed as Grey, similar to any 
other square whose quantum state is in a superposition. 
As a consequence, when a Grey square is measured, one 
or more squares can “collapse” to one of the two basic 
colors, depending on whether the “observed” square is 
entangled with other squares on the board or not. In an 
extreme case, a single measurement is enough to trigger 
the “collapse” of all nine squares (provided they are all 
part of an entangled state) and therefore end the game. 

2.3. Game Objective 

As in classical Tic-Tac-Toe, the objective of the game is 
for any of the two players to “mark” a full row, column 
or diagonal with the player’s color. By convention, 
White is assigned to Player 1, while Player 2’s color is 
Black. The two players take turns in executing a legal 
move until one of the players achieves the game objec-
tive or no further legal moves are possible. 

In the latter case, the entire board is in a classical state, 
with each of the nine squares being colored in White or 
Black, but without any row, column or diagonal sharing 
the same color. This situation is a draw and has a direct 
correspondent in classical Tic-Tac-Toe. But in Q3T there 
is another situation that may lead to a draw. Imagine that 
after a measurement, several squares acquire a White or 
Black color, forming both a White and a Black “suite” 
(row, column or diagonal) at the same time. This sce-
nario, only possible due to entanglement is also consid-
ered a draw. In all other cases, either there are still valid 
moves available, or a single player can claim victory 
following a measurement that completes a full row, col- 
umn or diagonal with the player’s color. 

3. Quantum Player vs. Classical Player 

In [17] we have investigated the relative power of a 
computational device capable of manipulating informa-
tion at the quantum level with respect to its traditional or 
classical counterpart. The conclusion was that a quantum 
computer is strictly more powerful than a classical one 

because some problems that require a quantum descrip-
tion can only be successfully addressed if information 
can be accessed at the physical level used to encode it. 

The question that we ask in this paper is: How is this 
superior computational power manifesting itself in the 
context of quantum games? Will a quantum player be 
able to always “beat” a classical opponent? Or, perhaps, 
most of the time? Or the fact that he can manipulate the 
board at the quantum level will make no difference in the 
end? We will consider these questions in the following 
for the particular case of the Q3T game, as defined above. 
But before any comparison can be made, we must define 
precisely what we understand by a quantum player ver-
sus a classical player. 

A quantum player has no constraints in manipulating 
the squares on the board, except for those specified in the 
rules of the game. Consequently, he is free to choose any 
one of the two legal moves, provided that both are possi-
ble at that point. On the other hand, a classical player has 
only one move at his disposal, the observation or meas-
urement of a square, because this is the only way to ac-
quire (classical) information about a quantum system. 
Furthermore, following a measurement, the state of the 
system can always be described in classical terms, con-
sistent with the outcome of the measurement. Therefore, 
a classical player in Q3T behaves similar to a player of 
“regular” Tic-Tac-Toe, choosing the next square to put 
his mark on or deciding which square to measure next, 
respectively. 

Clearly, according to these definitions, the quantum 
player is the more powerful one. But is this extra power 
(quantum power) enough to give him a clear, provable 
advantage during the game, considering that none of the 
players have direct control on what color is assigned to 
each square? Indeed, the measurement process is com-
pletely non-deterministic, in the sense that each square 
has an equal chance of ending up as a White or Black 
square, following an observation. Yet, a quantum player 
can harness the power of entanglement to consistently 
guide the outcome of a game in his favor, as we prove in 
the next section. 

4. The Road to Victory: Entangle Your  
Opponent 

For concreteness, let us assume that Player 1 or the White 
Player is a classical player, while Player 2 or the Black 
Player is a quantum player. Without loss of generality, 
we consider the case where both players try to gain con-
trol over the squares composing the main diagonal of the 
board. The central square is the first “target” since it is 
the best strategically placed square, offering control over 
one row, one column and two diagonals. Once the central 
square is “acquired” by one of the players, attention 
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shifts towards the top-left and bottom-right squares, re-
spectively. 

The classical player can only measure these squares, in 
the hope that they will “turn” White, the color of the 
classical player. The quantum player could follow the 
same strategy and measure any of the Grey squares, but 
this purely classical approach will not give him any ad-
vantage over his opponent: both players will have a 50% 
chance of winning the game. In order to gain the upper 
hand, the quantum player must bring entanglement into 
play. The following strategy will ensure that the quantum 
player wins most of the time: whenever the classical 
player measures a square as White, the quantum player 
entangles it with one of the Grey squares left on the 
board. 

Intuitively, this strategy is a winning one because 
every time a square is measured as White (“bad luck” for 
the quantum player), he can get a second chance on it by 
entangling it with a Grey square. Formally, assume that 
we have two squares, denoted by S1 and S2, and four 
possible events corresponding to the four possible out-
comes when the two squares are measured: 

1) W1  S1 is observed to be White.  
2) B1  S1 is observed to be Black.  
3) W2  S2 is observed to be White.  
4) B2  S2 is observed to be Black.  
All these four events are equally likely and we have: 

        1
Pr 1 Pr 1 Pr 2 Pr 2 .

2
W B W B       (5) 

Note that 1B W 1 and therefore    Pr 1 1 Pr 1B   W . 
Similarly, 2B W 2 and    1 Pr 2B W Pr 2 . 

We define the random variable X to be the number of 
Black squares created by measuring (observing) S1 and 
S2. We have: 

    1
Pr 0 Pr 1 2 ;

4
X W W            (6) 

      1
Pr 1 Pr 1 2 Pr 1 2 ;

2
X W B B W       (7) 

    1
Pr 2 Pr 1 2 .

4
X B B            (8) 

Therefore, the expected value of random variable X is: 

   

     

Pr

0 Pr 0 1 Pr 1 2 Pr 2

1 1
2 1.

2 4

x

E X x X x

X X X

  

        

   


(9) 

This result conforms with the intuition that when we 
resort only to measurements, on average, we expect to 
see one White square and one Black square emerging 
after the two measurements. What happens now if the 

Black player has the option of bringing entanglement 
into play? More precisely, each time the measurement on 
S1 yields a White square, the Black player (quantum 
player) will entangle S1 and S2 together, using a CNOT 
gate with S1 as the target qubit and S2 as the control 
qubit (see Equation (3)). 

In this scenario, we still have two measurements per-
formed, one on S1 and the second on S2, so still four 
equally likely outcomes are possible: W1W2, W1B2, 
B1W2 and B1B2. The only difference is that the event 
W1B2 will now yield two black squares, as S1 has been 
entangled with S2 after the measurement on S1 took 
place, and must be observed in a state consistent with S2. 
Consequently, the probability distribution of random 
variable X changes as follows: 

    1
Pr 0 Pr 1 2 ;

4
X W W           (10) 

    1
Pr 1 Pr 1 2 ;

4
X B W           (11) 

      1
Pr 2 Pr 1 2 Pr 1 2 .

2
X W B B B       (12) 

According to its change in its behavior, the new ex- 
pected value of variable X becomes: 

     1 Pr 1 2 Pr 2

1 1
2 1.25

4 2

E X X X     

   
     (13) 

This means that the expected number of black squares 
seen after the two measurements is now 1.25, while the 
expected number of white squares drops to 0.75. 

Extending this argument to 3 squares, Table 1 shows 
the number of black squares observed in each of the 

32 8  possible cases. Note that the quantum strategy 
assumes that whenever S1 has been measured as White, 
by the White player, the Black player will entangle S1 
with S2 in response. This situation occurs in the first four 
rows of the table. Similarly, whenever S2 is measured 
White by the White player, the Black player responds by 
entangling S2 and S3 together, in the next move. This 
situation occurs in rows 1 and 2 in the Table 1. 

The situation is different for rows 5 and 6, however. 
Since the two players alternate their moves, with the 
White making the first move, in rows 5 and 6 the Black 
player is in the situation of making a move after S1 has 
been measured as Black. Therefore, it makes no sense to 
entangle S1 with S2, so he chooses to measure S2. Un-
fortunately for him, S2 turns White, but then it is White’s 
turn again and the White player proceeds by measuring 
S3. Consequently, rows 5 and 6 are entanglement free. 

According to the table we have constructed, the ex-
pected value of X after 3 measurements is:   
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Table 1. Number of black squares observed after 3 measurements. Black is a quantum player and white is a classical player. 
White has the opening move. 

 M(S1) M(S2) M(S3) Classical strategy Quantum strategy Entanglement 

1 W W W 0 0 1 2S S ,  2 3S S

2 W W B 1 2 (becomes WBB) 1 2S S , 2 3S S  

3 W B W 1 2 (becomes BBW) 1 2S S  

4 W B B 2 3 (becomes BBB) 1 2S S  

5 B W W 1 1  

6 B W B 2 2  

7 B B W 2 2  

8 B B B 3 3  

 

      
   

    

1 Pr row5 2 Pr row2 Pr row3

Pr row6 Pr row7

3 Pr row4 Pr row8

1 4 2
1 2 3 1.875

8 8 8

E X     

 

  

      

 (14) 

Consequently, after three measurements we expect to 
see 1.875 black squares and 1.125 white squares, on av-
erage. Note that three measurements is not equivalent to 
three moves, as some of the moves could be entangle-
ment moves. Furthermore, if S1, S2 and S3 belong to the 
same “suite” (row, column or diagonal) then the chances 
for the quantum player to win the game after just three 
measurements are double the chances of the classical 
player (25% compared with 12.5%). This result is con-
sistent with the fact that the set of problems solvable by 
classical means is a proper subset of the set of problems 
that can be solved if information can be manipulated at 
the quantum level. 

Certainly, the equilibrium between the two players is 
restored if the White player also chooses to resort to 
quantum moves. He can use a similar strategy of entan-
gling Black squares with Grey ones, in the hope that a 
second measurement on the same square will yield a 
more favorable outcome. However, since now a Black 
square is used as the target qubit, the entanglement cre-
ated is of the form given in Equation (4) rather than that 
of Equation (3). This aspect emphasizes another uncon-
ventional characteristic of our game, still stemming from 
its quantum nature: the game is not symmetric with re-
spect to the two players. If the first type of entanglement 
creates only White or only Black squares when measured, 
the second type always creates one White and one Black 
square. This strategy guarantees to the White player that 
the worst case of seeing two Black squares after two 
measurements is no longer possible. 

The asymmetry between White and Black is clearly 

exposed if we construct a table similar to Table 1, but for 
the case where Black is now the classical player and has 
the opening move, while White is a quantum player. Ta-
ble 2 shows the number of white squares after three 
measurements in all possible cases. The net effect of en-
tangling a Black square with a Grey one, followed by a 
measurement is the “metamorphosis” of the Grey square 
into a White one. The input and output of such a ply is 
shown in Figure 1. The Black square can then be used to 
repeat the same ply and transform another Grey square 
into White. This explains why, in this case, the expected 
number of White squares after three measurements is 

  1 6 1
1 2 3

8 8 8
E Y 2.               (15) 

The equation above is derived taking into considera-
tion that in Table 2 there is only one row (row 5) that 
corresponds to a single White square observed, only one 
row (row 8) that corresponds to three White squares ob-
served, while all the other six remaining rows correspond 
to situations where two White squares are observed. This 
result is superior to the expected number of Black squ- 
ares when Black was the quantum player. Consequently, 
when restricted to this strategy, the Black player would 
always end up loosing. Of course, the Black player may 
choose to measure a Grey square which is not entangled 
and this might offer him some chances of winning the 
game, but overall, White will still win most of the time. 

An interesting open question raised by the asymmetry 
exhibited in this game is whether playing White or Black 
does offer any advantage (assuming both players are 
quantum) and if so, how big an advantage? In the most 
general case, the situation can get very complicated due 
to the multiple entanglements that can be formed. Re-
member that if the Grey square used as the control qubit 
in a CNOT gate is already part of an entanglement, then 
that entanglement can spread to more than two squares, 
generating a complex position. As we mentioned earlier,     
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Table 2. Number of white squares observed after 3 measurements. White is a quantum player and Black is a classical player. 
Black has the opening move. 

 M(S1) M(S2) M(S3) Classical strategy Quantum strategy Entanglement 

1 B  B  B  0  2 (becomes WWB) 1 2S S , 2 3S S  

2 B  B  W  1  2 (becomes WBW) 1 2S S , 2 3S S  

3 B  W  B  1  2 (becomes WWB) 1 2S S ,  2 3S S

4 B  W  W  2  2 (becomes BWW) 1 2S S , 2 3S S  

5 W  B  B  1  1   

6 W  B  W  2  2   

7 W  W  B  2  2   

8 W  W  W  3  3   

 

 1

2
W B

W

B

B

WB

ORMeasureCNOT

Control

Target

 

Figure 1. A (Controlled-NOT, Measure) ply that transforms the Grey input into White. 
 
in an extreme case, all nine squares can be gradually in-
corporated into an entangled state. This makes the analy-
sis much more complicated, but at the same time it 
makes the game more fair in a contest between a human 
and a machine. Indeed, in many cases (and chess is 
probably the most visible example) the competition be-
tween a human player and a machine is decided more 
and more in favor of the latter, only because the con-
tinuous increase in raw computational power allows a 
machine to apply a “brute force” strategy successfully 
and consider an increasing number of possible moves in 
the same amount of time. 

The implicit non-determinism and explosion of the 
number of states that quantum mechanics brings into 
play make a “brute-force” strategy much more difficult to 
implement: considerably fewer levels in the game tree 
can be explored in a given amount of time. As a result, in 
the quantum version of a game, it is the “inspiration” of 
a player that might decide the outcome again, and not 
just raw computational power. This is visible even in a 
simple game like Tic-Tac-Toe. In the classical version it 
is almost trivial to plan your entire game (move by move) 
from the outset, yet when we switch to the simplest 
quantum version, where just two types of moves are al-
lowed (from which only one is genuinely quantum), the 
simplicity and confidence characterizing the classical 
game seem to vanish. This is all the more so in a game 
with more complex rules or an extension of Q3T. 

5. Possible Extensions 

The quantum version of Tic-Tac-Toe discussed in this 
paper could be extended in several ways. One possibility 
is to introduce new moves in the set of legal moves a 
player can choose from. For example, we could add the 
Hadamard gate as another alternative for a quantum 
move. The Hadamard operation can turn a White or 
Black square into a Grey square again (recreating a su-
perposition) and therefore it may have the effect of ex-
tending the length of the game, if introduced. 

Another possibility is to modify the initial configura-
tion of the board, such that we have two types of super-  
positions:  1 2 W B  and  1 2 W B , ran-  

domly generated for each square. In this way, the squares 
will still look Grey to the two players, who will not know 
what particular type of superposition each square is in. 
Now, if a Hadamard gate is applied to a Grey square, the 
result could be either a White or a Black square, depend-
ing whether the initial superposition was  

 1 2 W B  or  1 2 W B , respectively. 

This new rule would also affect the entangled states 
created during the game, as the two different superposi-
tions will give rise to two different entangled states, 
when a Grey square plays the role of a control qubit in 
the application of a CNOT gate. Also note that the play-
ers cannot distinguish between a square in its initial su-
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perposed state and a square that is part of an entangle-
ment, just by visually inspecting the board, since they 
will both look as Grey. Therefore, in a complex situation, 
it may be very difficult for a player to figure out which 
squares are entangled together and what is the exact en-
tangled state spanning them. 

But the most dramatic increase in complexity would 
arise from extending the board to an arbitrary size along 
with requesting a suite of five Black or White squares to 
win the game. Nevertheless, the observations formulated 
for our simple version of Q3T remain valid in all these 
possible extensions: a purely classical player will consis-
tently be defeated by a player endowed with quantum 
abilities through the use of the strategies outlined above. 

6. Conclusions 

In this paper, we have formulated and analyzed a quan-
tum version of Tic-Tac-Toe based on the actual (and not 
just inspired from the) physical laws describing the be- 
havior of quantum systems. This property makes our 
quantum game fully implementable using an actual quan- 
tum system and not just an adapted simulation of a real 
quantum system. During the investigation, we have 
shown that there are quantum strategies which, when 
followed by a quantum player, consistently outwits a 
classical player with a certain probability. This result 
should not be surprising and should actually be seen as a 
direct consequence of the fact that a quantum informa-
tion processing system is superior in computational pow- 
er to a system that can only represent and process classi- 
cal information. 

Our investigation also clearly shows that the intrinsic 
complexity and non-determinism characterizing quantum 
systems can easily diffuse in the game play. Arguably the 
most simple quantum upgrade of classical Tic-Tac-Toe 
changes the original game dramatically, reviving it by 
making it interesting and challenging. This leads to an-
other important property of quantum games. The diffi-
culty to classically simulate the evolution of a quantum 
system may bring back the equilibrium between a human 
playing against a machine, an equilibrium that seemed to 
be lost due to the unfair possibility to apply brute-force 
strategies sustained by ever increasing computational 
speeds. 

Another interesting property exhibited by our quantum 
game is asymmetry. The particular form of entanglement 
brought about by the White player is not the same as the 
entanglement created by the Black player. This brings a 
whole new dimension into the game and certainly de-
serves a more thorough investigation to fully understand 
its consequences. 

These observed features of quantum Tic-Tac-Toe hold 
great promise to generalize to other games as well and 

potentially revolutionize the future of gaming industry. 
This could be accomplished by pursuing two main direc-
tions: create quantum versions of well-known, existing 
classical games, or trying to design a new quantum game 
from scratch in order to best exploit the potential benefits 
offered by quantum mechanical principles. Certainly, the 
applications of quantum mechanics into the gaming in-
dustry look quite promising and are worth further inves-
tigation. 
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