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ABSTRACT 

In the Simulated Annealing algorithm applied to the Traveling Salesman Problem, the total tour length decreases with 
temperature. Empirical observation shows that the tours become more structured as the temperature decreases. We 
quantify this fact by proposing the use of the Shannon information content of the probability distribution function of 
inter-city step lengths. We find that information increases as the Simulated Annealing temperature decreases. We also 
propose a practical use of this insight to improve the standard algorithm by switching, at the end of the algorithm, the 
cost function from the total length to information content. In this way, the final tour should not only be shorter, but also 
smoother. 
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1. Introduction 

The Traveling Salesman Problem (TSP) seeks to find the 
tour order in which to visit all the cities of a given set so 
that the total length traveled is the smallest possible. The 
problem was posed centuries ago and has enjoyed con-
stant attention and consistent progress en route for better 
solutions [1,2]. Generally speaking, the optimal solution 
can be found for sets containing a few dozens cities. 
However, for sets larger than that, and due the non- 
polynomial growth of tours permutations with set size, 
solutions to the TSP are approximate: in this case one is 
satisfied with finding a good tour instead of the best tour. 
Although perhaps not fully theoretically appealing, this 
practical approach to the TSP is the one taken by applied 
mathematicians when providing tours to delivery trucks 
that need to visit a prescribed set of addresses, or micro-
scope probes that need to reach specific sample locations. 
Practical solutions of these types reduce waste and are 
thus of great value to the commercial and/or scientific 
enterprise. 

Here we consider the randomly generated TSP in-
stances problem with Euclidean distance [3], for which 
the optimal tour length grows as 0.712 N  with the 
number of cities N [4,5]. 

The last ten years have seen a renewed surge in the in-
terest in the TSP in its original form and variations, and 
the algorithms developed are so efficient that one doubts 
anything new can be said on the topic. However, there is 
an unexploited perspective that can give new insights 
into the problem and suggest improved algorithms. This 

perspective is proposed here and it is based on the infor-
mation content in a given tour. If one picks a tour by a 
random procedure, first most likely that tour will be long 
because long tours are common while the short ones are 
rare, and second the longer tours by its own nature of 
passing through more between city points are less struc-
tured, even less visually pleasing due to presence of a 
large number of sharp turns, than shorter tours. This 
qualitative description can be made quantitative by ap-
pealing to the Negentropy, or information content [6]. 
We suggest here the use of the Negentropy of a tour as a 
measure of its structural order. The paper is organized as 
follows. In Section 2, we study the probability density 
function (PDF) of step lengths in a tour. These PDFs are 
then studied as a function of time, that is the time step of 
a tour optimization algorithm. We identify an analytical 
expression for these PDFs at all times. In Section 3, we 
propose to quantify the information content by the use of 
Negentropy [7], which is defined through Shannon’s 
information [8]. We find an analytical expression of the 
information content. We also monitor the evolution of 
both total tour length and Negentropy during optimiza-
tion. In Section 4, we suggest practical applications 
where by monitoring the tour information content can 
provide smoother tours. Section 5 presents the conclu-
sions. 

2. Simulated Annealing and PDF of Steps 

The TSP has been optimized by genetic algorithms, di-
rect steepest descendant, insect swarm algorithms, etc. 
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Here we use a program written by us based on the exten-
sively tested Simulated Annealing (SA) adapted to the 
TSP [9]. In a generic minimization by SA [10], a cost 
depending on many parameters is to be minimized. First, 
random values of the parameters are chosen and the cor-
responding cost is evaluated. Subsequently elemental 
changes of the parameters are performed. If the effect of 
the change is to reduce the cost, then the change is ac-
cepted. If, on the other hand, the effect of the change is to 
increase the cost, then the change is accepted with the 
Boltzmann’s probability  exp C T , where T is a 
parameter representing an absolute temperature and 
Boltzmann’s constant has been chosen as unity in that 
scale. At the beginning of the algorithm, the temperature 
is kept sufficiently high so that the system explores a 
large region of parameter space without getting trapped 
in a local minimum. Eventually, after a preset number of 
steps for example a thousand, the temperature is reduced 
to a fraction of its previous value, typically 90%. Then 
the process is repeated, and as the temperature decreases, 
the system gets confined in subregions of parameter 
space. The program stops when the cost value stagnates. 
In the particular implementation of SA to TSP, we use 
parameter changes that revert the direction of travel be-
tween two randomly chosen nodes, or that two randomly 
chosen consecutive nodes are visited at a different part of 
the path, also randomly chosen [11,12]. 

Thus the SA-TSP algorithm generates a tour at each 
time step. We analyze each such tour and produce histo-
gram of steps—that is, a histogram of all the consecu-
tive-city distances that the traveler takes in the tour. Fig-
ure 1 shows such a histogram, in this case for the initial 
randomly chosen tour, before the SA-TSP program be-
gins. 

The mean length is known to be  

   1 1
ln 1 2 2 2 0.52

3 15
     [13], for distances bet-  

ween random points on the unit square, quite in agree-
ment with our numerical results as seen in Figure 1. We 
would like to underscore the large width of the PDF, 
relative to its mean. As the SA-TSP algorithm progress, 
the tours tend to contain steps more narrowly distributed. 
Figure 2 shows the PDF for random initial conditions for 
2048 cities, after the program was run during 86 tem-
perature decrements. 

The increased narrowness of the PDFs for shorter 
tours is a consequence of the smoother nature of better 
tours. This can be seen in Figure 3. There we show four 
snapshot of SA-TSP with 64 cities: at the beginning of 
the program, at two intermediate times, and at the end. 
We see that as the tour becomes shorter, the step size 
distribution becomes less spread. In addition, the figure 
gives further insight; there is a suggestion that the better 
tours convey a message while the longest tours barely  

 

Figure 1. Histogram (dots) of step lengths for 105 nodes 
randomly distributed in the unit square. No optimization 
has yet been made. The continuous line is from the analyti-
cal expression for the PDF of step lengths for tightly packed 
points on a square [13]. 
 

 

Figure 2. Histogram of steps for optimum SA for a 2048 
cities tour TSP problem. The continuous probability dis-
tribution function is explained in Section 3. 
 
communicate anything. It seems as if the shortest tours 
carried more information. Although this is a vague 
statement, we will make it quantitative in the next sec-
tion. 

3. Negentorpy and Physical Insight 

In this section we follow Wheeler’s inspiration that “all 
things physical are information-theoretical in origin” 
[14]. To quantify the visual appearance of the tours, we 
introduce the tour information measure, or Negentropy 
[8], 

 lnj j
j

I p p                (1) 

where jp  is the probability of having a step length j  
for a given tour of total length 

j
j

L                      (2) 

  With this definition, we could use the histograms for 
the tour step lengths introduced in the previous section 
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Figure 3. Evolution of TSP tours for four SA time steps, 
from initially completely random on the top left, to opti-
mum on the bottom right. 

however, to gain more insight we shall introduce an ana-
lytical description of the problem. 

In Figure 2 we show the histogram of step lengths for 
the optimal tour (dots), and we introduce a continuous 
PDF curve of the form 

 P A e                    (3) 

where A is a normalization constant, 1.6  , and 
4.3  . 

We then studied the SA TSP from 64 to 2048 cities 
and found that Equation (3) consistently represents the 
PDF of tour steps at any stage of the SA annealing algo-
rithm. While the form of Equation (3) remains valid 
throughout the evolution of the SA, the values of   
and   change as functions of the SA time stage. 

Therefore, we take Equation (3) as the PDF of TSP 
tour steps at any stage of the SA. In addition, the Negen-
tropy of a given PDF cannot depend either on its area 
under the curve (total tour length) or on its mean step 
size. The Negentropy, on the other hand, should be de-
pendent on the variance and higher moments since they 
carry (dis)order information. Thus we consider the area 
and mean normalized version of Equation (3) 

   
 

 
1

11

1
P







 


 

  e           (4) 

where the parameter  , that carries information of the 
mean, disappeared. 

This PDF has already been recognized as that of the 
near neighbors for a one-dimensional gas with logarith-
mic pair potential. In addition, it is a particular case (rank 
2) of a daisy model, in which the PDF is derived by the 
Poisson spectrum and then removing every rth intermedi-
ate levels, where r defines the rank of the derived distri-
bution [15]. 

Using Equation (1) for the PDF in (4) one obtains, 

    
0

1 LogI P P


     d              (5) 

where we have added the arbitrary constant 1 to the defi-
nition of Negentropy for later convenience. Then the 
Negentropy becomes explicitly, 

   
1

1 1 log
1

I
 


 
          

       (6) 

where   is the logarithmic derivative function [16]. 
Figure 4 shows the Negentropy, I for   in the range 

0 2   of interest for the TSP. In the SA program   
increases as a function of time and, according to the fig-
ure so does I. 

4. Practical Considerations 

In addition to being able to quantify the previously vague 
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concept of tour appearance, can the ideas of Section 3 be 
of any practical use? We argue here that indeed, we can 
refine the optimum solution obtained by standard SA TSP. 

Figure 5 shows both total tour length and negative 
Negentropy (Entropy) as functions of the SA temperature. 
As expected, both quantities decrease as the SA tem-
perature decreases: the tour length becomes smaller, and 
the information increases. Also both quantities tend as-
ymptotically to constant values at small temperatures. 

However, we also see that their convergence rates are 
different: the total length saturates faster than the negen-
tropy. Therefore, one could run the SA program moni-
toring the total length until it does not change substan-
tially. At that point one would switch to monitor the 
negentropy instead. However, while the total length is  
easy to compute, j

j

L  , the negentropy would re-  

quire to build a histogram and then use Equation (1). 
However, this would be too time consuming for the pro-
gram. Instead, we use the analytical results of Section 3, 
to expedite the calculations. The variance of the PDF in 
Equation (4) is 

2 1

1






                  (7) 

 

 

Figure 4. Negentropy as a function of β. 
 

 

Figure 5. Total tour length (red dots) and entropy (blue dots) 
as functions of the SA temperature. Both graphs are nor-
malized so they have the same value 1 at high temperatures, 
before the algorithm begins. 

So given the set of step lengths in the program, one 

computes 
22 2

j j     and then substitutes in 

2
2 2

1 1
1 1 logI 

   2

1                            
    (8) 

Thus we have a fast way to evaluate information in 
terms of the firs two moments of the step-length. 

The proposed improvement may provide a marginal 
gain in tour length. But while indeed the total tour length 
will stay practically unchanged the algorithm will search, 
out of those many good solutions, for the ones with 
maximum information. In the end, the traveler will not 
only travel less, but will also travel more comfortably. 

5. Conclusion 

We have introduced a new perspective from which to 
study the Traveling Salesman Problem. Besides using the 
total tour length as the cost function, we propose to also 
use the tour information content. The Shannon entropy 
has been used here to quantify the intuitive fact that gen-
erally, shorter tours contain more information. The ana-
lytical expression for the information content provides 
insight into the TSP structure. We have also proposed a 
practical improvement to the SA TSP where, when an 
acceptable short tour has been found by the standard al-
gorithm, the program remains running to search among 
short tours for those with more information. This pro-
vides the additional benefit that the tour selected will not 
only be short but also smoother. This could be relevant, 
for example, when the TSP is used to design solutions 
that require mechanical manipulation of an arm to visit 
points on a surface. Such could be the case when visiting 
preset locations on a sample with Atomic Force Micros-
copy [17]. The additional requirement of maximizing 
information of the tour makes the trajectory less taxing to 
the mechanical components of the microscope. We end 
by speculating on a possible fruitful use of the viewpoint 
proposed here. The use of Negentropy as a measure of 
the goodness of a tour may find connections with neuro-
science since it has been empirically established that 
animals are able to find good tours instinctively: for ex-
ample pigeons have been found to obtain acceptable 
tours [18,19]. Although it has not been established that 
there is a cognitive map that allows the pigeons to act for 
future planning, it is clear that whatever their means, 
animals do need to minimize foraging tours to avoid be-
ing prayed. 
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