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ABSTRACT

Blow-up phenomena for solutions of some nonlinear parabolic systems with time dependent coefficients are investi-
gated. Both lower and upper bounds for the blow-up time are derived when blow-up occurs.
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1. Introduction

It is well known that the solutions of parabolic problems
may remain bounded for all time, or may blow-up in fi-
nite or infinite time. When blow-up occurs at time t°,
the evaluation of t* is of great practical interest.

In a recent paper [1] Payne and Schaefer have investi-
gated the blow-up phenomena of solutions in some para-
bolic systems of equations under homogeneous Dirichlet
boundary conditions. The contribution of this note is to
extend their investigations to a class of parabolic systems
with time dependent coefficients. The case of a single pa-
rabolic equation was investigated recently in [2].

There is an abounding literature dealing with blow-up
phenomena of solutions to parabolic partial differential
equations. We refer the interested readers to [3-5]. A
variety of physical, chemical, biological applications are
discussed in [5,6]. Further references to the field are
[1,7-19]. In this note we investigate the blow-up pheno-
mena of the solution (u,v) of the following parabolic
system

u = Au+k(t) f(v),x=(x ,-~,xN)eQ,te(O,t*)

V, = Av+k, (1) f,(u Xthe( ),

(1.1)
u(x,t)=v(xt)=0, xa@Qte( ),

u(x,0)=u,(x)=0, v(x,0)=v,(x)>0,xeQ,

where Q is a bounded domain in R“,N>2. The
initial data (u,,v,) as well as the data k (t),k,(t),
f (), f,(t) are assumed nonnegative, so that the solu-
tion (u,v) of (1.1) will be nonnegative by the maxi-
mum principle. More specific assumptions on the data
will be made later.
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In Section 2 we derive conditions on the data of prob-
lem (1.1) sufficient to guarantee that blow-up will occur,
and derive under these conditions some upper bound for
t". In Section 3 we derive some lower bounds for the
blow-up time t* when blow-up occurs. However this
section is limited to the case of Q in R’ and in R’
respectively, because our technique makes use of some
Sobolev type inequalities available in R® and in R’
only. For convenience we include the proof of one of
these inequalities in Section 4.

2. Conditions for Blow-Up in Finite Time t’

Let A, be the first eigenvalue and ¢ be the associated
eigenfunction of the Dirichlet-Laplace operator defined
as

A +A4¢ =0,4>0,xe; ¢
Jggzﬁldx =1. (2.2)

Let the auxiliary function &(t) be defined in (O,t*)
as

=0,xedQ,  (2.1)

O(t) =y (t)+x(t), (2.3)
with

w(t)= jﬂuqﬁldx, 2(t)= jgv¢1dx, (2.4)

where (u,v) is the solution of problem (1.1). We as-
sume in this section that Q is a bounded domain of
RM,N >2, and that

f,(s)=sP, p=constant > 1,

(2.5)

fz(s) >s% q = constant >1,5 >0,
I?ion{k‘ (t).k, (t)} =K >0. (2.6)
AM
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We then compute

y'(t)= JQ[AU +k, £, (v) Jdx

2.7
> =2y (t)+k, (1) ] vPedx
Making use of Holder’s inequality, we have
1
2(t)= [ vaax <([ v didx)?. 2.8)
Combining (2.7) and (2.8), we obtain
' (1) = -Aw (1) +k (1)(2 (1)’ (2.9)
A similar computation leads to
7)==z (t)+k, (1) (w (1)) (2.10)

Adding (2.9) and (2.10), we obtain
0'(t)=y'(t)+ 2 (t)2-40(t)+ Ky +2°), (2.11)

where K is defined in (2.6). We first investigate the
particular case p = (. Making use of Holder’s inequal-
ity, we have

wi+ >0 (t//+)()q =) (H(t))q )

Inserted in (2.11), we obtain the first order differential
inequality

(2.12)

0'(t)2-20+27 Ko te(0.t"). (2.13)

Integrating (2.13) from 0 to t, we obtain the inequa-
lity

1-q 1-q
(e(t))l—q Se(qfl)ﬂql {(9(0))]41 _2 K}+ 279K
A Ao (214
=g(t).
Suppose that the data satisfy the condition
ﬂ] Y(a-1)
9(0)>2(Ej . (2.15)

Then &(t) vanishes at some time t,>0, and 6(t)
must blow up at some time t* <t,. We obtain

*

t <t,:=-

1 a 2‘“‘14
<q—1>ﬂf°g{1 K(a<o>>‘”}' o

In the general case, we suppose without loss of gener-
ality that p > q, and make use of the inequality

p=a

af 9 \p I
;(“=(C;(”)P(c “‘J <Aepp P00 017
p p

p

valid for arbitrary ¢ >0 . Choosing ¢:=-—, we obtain
q
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27< " +Q, (2.18)
with
_a
Q :=ﬂ[ﬂ] o, (2.19)
p Lp

Inserted in (2.12), we obtain the first order differential
inequality

0'(t)22"9K6" - 2,0-KQ=0(0).  (2.20)

Suppose that the initial data are so large that
@(6(0)) >0 . Then 6(t) is increasing for t small.
Since ©(6) is increasing in @ from its negative mi-
nimum, it follows then that ®(6(t)) is increasing for
t>0. This shows that 6'(t) remains positive, so that
6(t) blows up at time t*. Integrating (2.20) leads to
the following upper bound for t"

. : « dé
t= .[(; dt< Jla(o)w'

These results are summarized in the following.

Theorem 1

1) Assume (2.5) with p=qg>1, (2.6), and (2.15).
Then 6(t) defined in (2.3) blows up at finite time t*
bounded above by (2.16).

2) Assume (2.5) with p>qg>1, (2.6), and
©(6(0))>0 with ©() defined in (2.20). Then 6(t)
blows up at finite time t* bounded above by (2.21).

To conclude this section, we note that if the condition
(2.6) is replaced by

rgin{kl (t).k, (t)} =K >0,

2.21)

(2.22)

then we have to replace the initial data 6(0) by 6(r)
in Theorem 1. Clearly we may use a lower bound for
6(r). For instance we may integrate the differential
inequality

0'>-10 (2.23)
that follows from (2.11), leading to the lower bound

6(r)=e76(0). (2.24)

3. Lower Bounds for t~

In this section we assume that the data f,f,, satisfy
the conditions

0< fi(s)<sP,p>1;0<f,(s)<s%,q>1,5>0, (3.1)

and that the data k,(t),k,(t) are nonnegative for all
t>0. Moreover the solution is assumed to blow up in
the sense that ®(t) > as t—t", where ®(t) is
defined as

O (t):=M,; U (t)+M,V(t), (3.2)
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with

t):=[udx, M, :=[ updx, (3.3)

t):=[ v?Pdx, M, =] v;Pdx (3.4)

Differentiating (3.3) and making use of (1.1), (3.1), we
obtain

U'(t)<2qf u" [ Au+k, (t)vP |dx

3.5
)jﬂuzq‘lvpdx—zq(Zq -1)J(t), G2

=20k, (t
with
t):= [ " |Vuf dx. (3.6)

Making use of Schwarz and Holder’s inequalities we
have

J'QUQ“‘lvpdx < (J'Quz(”’l)dxj'gvzpdx)l/2

< (Iﬂu4qu)% (J‘Quzqu)l/Zq (J-szpdx)l/z

In R*> we make use of the following Sobolev type
inequality

3.7)

2
[ utdx< q?jQUQ(q‘l) vy’ dx[_uddx, (3.8)

derived in the last section of the paper. Combining (3.7)
and (3.8), we obtain

j U2y Pdx
Q

q-1
2

(S areri o

q-1
N

1 2q q-1
Sz(q?] (3 (1) MM w(1),

where we have used the arithmetic-geometric mean ine-
quality. Making use of the inequality

a'b'" <ra+(l1-r)b,

3.10
re(0,1),a>0,b>0, (3-10)
we have
q+1
g-1 g-1( 91 29
(J (t))Qq (DI( J) q [CCqu)QHJ
G.11)
91 29
Sq—_lc J() q+1Cq+lq)q+1
2q 29

valid for arbitrary ¢>0 to be chosen later. Inserted in
(3.9) and (3.5), we obtain
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< —(q—l)k()(q?TMl/le/z 1 _2q(2q-1)}d (1)

at 2
+(q+12) ()(%Jz M11/2M;/2C%q)qijl_
(3.12)
We now select
o
—1)k, (t 2 )20
ci= —(fq (Z)q 1_(1)) VERIVIE (%j (3.13)

in order to have {} =0 in (3.12), arriving at

L9 2q 2q

MU (t) < F (q)M, *IMI (K, (t))e (D (t))eer, (3.14)

with
2(2q-1) 9t
- q (q — 1) g+l
F(q)=2 +1)| —=| . 3.15
@2 @ LT s
A similar computation leads to
M 2_1V '(t)
p 1 ) ) (3.16)

<F(p)MPM, P (k, (t))?fl(cb(t))ﬁ,

where V (t) is defined in (3.4). In R*, we replace (3.7)

by
Iguzq‘lvpdx < (jgu 2‘2“‘”dxjﬂv2 "dx)l/2

< (jgué“dx)%ql (J-Quz“dx)%1 (L}v”’dx)l/2 .

and make use of the Sobolev type inequality

(J.Quéqu)l/6 <79 (.[QUZ(Q—I) |VU|2 dX)l/z

(3.17)

/ (3.18)
1/2
=ra(3()"
derived by Talenti in [20] with y:=4"°3"27%* Insert-
ed in (3.17), we obtain
[ uvPdx
Q
3(q-1) g+l 12 a+
<C@(I (1) @ (MU (L)% (MV (1) MMy,
(3.19)
with
3(g-1)
C(q):=(ya) 20 (3.20)
Moreover we make use of (3.10) to write
AM
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g+l 3(a-D)

(MU (1)) g %

a+3

3@-n | e a+l |49
:(C-lj) aq | g o3 (MflU )q+3

(3.21)

3(a-1) N
3(q_l)c“J + q+3ch(M“U )ST;
4q 4q : ’

with arbitrary ¢>0 to be chosen later. Combining (3.5),
(3.19) and (3.21), we obtain

u'(t)

_ g+l
s{—“qz U (qym, oMl () K ()"

<

(3.22)

-2q(2q-1) }J (1)

g+! 3(9-D) g+l

()M, MY (M;V) e o (MU )k (1),

La+3

We now select ¢ such that the quantity {} in (3.22)
vanishes. We are then led to the inequality

u'(t)<

al 2q 49 4+l 29 (3.23)
AOMEME (& (O (70 )i (V)5

with

i ( 3(a-1) |

q+3 s 3(q-1) )o@

A(q)=-"—"=(C(q))e | —— .
(a) 5 (C(a))s (4q(2q—1)

Finally we make use of (3.10) to write

(3.24)

sl 29
(M0 )o3 (M )oss
3g+1

a+l 29 \g+3
(I

(3.25)

3qg+l1
_g+l q+3

. 2q Y
s{3qqilc(Mllu)+T‘ilc 2q(|\/|21v)} ,

q+1

and select C to satisfy (q+1)c= 29c7 "% feading to

a+l 29
(M flU )q+3 ( M 2*1\/ )q+3
341 ECT, (3.26)
< q +1 \a+3 Zq q+3 (I)m
3g+1 g+1

Inserted in (3.23), we obtain
2 29 4q 39t

MU’ (1) <T(q)M, M3 (K, (1)) © 9, (3.27)
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with
3(g-1) 3q+1
+3( 3(q-1) ) +1 a3
F(q):qz (4q2c21q—)1)J (3qq+1j

) (3.28)
q
T3 4

) e

gq+1

A similar computation leads to

2p 2 4p 3p+l

MV (1) <T(p)M =M, P2 (k, (1))p @ P2 (3.29)

If we suppose that

O(t) > ast—>t", (3.30)

then there exists t, >0 such that ®(t)>1 vt>t, and
we have

k(t)* ™ if Q c R?

O'(t) = MU + M,V <
B)=M, ’ {k(t)dﬁf’/("”) if QcR®

valid for t>t, with
o =max{p,q},

L aq 2

K(t)= F (a)M, “TM (K, (t)Jor
P 2p
+F(p)M1P“M29“(k2(t))ﬁ,
2 2
K(t):=T(q)M, ¥*>M 93 (k (t))a+3
(= (@M, M (k4 (1) a0

2p 2 4

2p. B 2
+T(p)MP M, P (k2 (t))?fs

Integrating (3.31), we obtain in the two-dimensional
case

ol [f@7am < [ k(t)at

o-1 7 ! (3.35)
< [Tkdt=K(t'),

from which we obtain a lower bound for t* of the form

(3.36)

where K™ is the inverse function of K . In the three-
dimensional case, we obtain

zzc—j) <[R@Mac<[REOaA=R(r), 637
from which we obtain a lower bound for t* of the form
PeR_IF3 (3.38)
2 (0' - l)
These results are summarized in the following
AM
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Theorem 2
Under the assumption (3.30), a lower bound for the
blow-up time t* of the solution (u,v) of (1.1) is given by
(3.36) in the two-dimensional case and by (3.38) in the
three-dimensional case.
In the particular case in which k, (t) and k,(t) are
constant, we have
1 q 2q
t* ZU—H{F(Q)MI q+1M2q+1qu+1
o-1
(3.39)

o o2
+F( p)Mlp+lM2 p+l k2p+1}

in the two-dimensional case and

2 29  4q
o+3 { w3

t'>-272 _Ip(q)M, *PM Ik
2(0__1) (q) 1 2 1

s ap (3.40)
+F( p) M 1p+3 M 5 p+3 k2p+3 }

in the three-dimensional case.
Theorem 2 could easily be extended to systems of n
parabolic equations of the form

oy,

E=Aui+ki(t)fi(uj),j#i=1,~--,n. (3.41)

4. Sobolev Type Inequality in R?

The Sobolev type inequality (3.8) in R* may be known,
but for the convenience of the reader we present a proof
here.

Lemma 1

Let u(x,y) be a nonnegative piecewise C' -function
defined in a bounded domain Q that vanishes on the
boundary 0Q. Let g be any constant >1. Then we
have the following Sobolev type inequality

[y [ ol a0y, )

valid for Qc R”.
For the proof of (4.1), we follow the argument of
Payne in [21]. We note that (4.1) is equivalent to

[fa*9dxdy < % [[ gV |val’ axdy([ o*%dxdy,  (4.2)

where Q is the convex hull of Q, and
a=u,(xy)eQ, 0=0,(x,y)e Q\Q. It is therefore suf-
ficient to establish (4.1) for Q2 convex. For the proof,
let P:= (7, 7) be an arbitrary pointin Q R, Let

P =(%.Y)edoQ =(X,y,)edQk=1,2 be two pairs
of boundary points associated to P with X, <X,, y, <Y,.
Since U vanishes on 0Q, we have for any constant
g=1

Copyright © 2012 SciRes.

2 _ P 2g-1 _ P 2g-1
u q(P)72q.fplu 9 uxdxf—qu'qu ludx,  (4.3)
from which we obtain

2 Py 2g-1

u “(P)qup1 U fu, |dx. 4.4)
Similarly we have
u*(P)< qjszuzq" |uy|dy. 4.5)
1

Multiplying (4.4) by (4.5) and integrating over Q
leads to

[Ju dxdy < g [f u" |u,|dxdy [] u** |uy|dxdy
<q? (”ﬂuz(q")uf dxdy [ u*@u; dxdy)”2 [ u dxdy

1 orr 2(a-) joy 2 2
<74 [Ju™ ™ vl dxdy ([ u* dxdy, (4.6)
which is the desired inequality (4.1). We note that we
have used the Schwarz and the arithmetic-geometric
mean inequalities in the two last steps of (4.6).
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