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ABSTRACT 

Blow-up phenomena for solutions of some nonlinear parabolic systems with time dependent coefficients are investi-
gated. Both lower and upper bounds for the blow-up time are derived when blow-up occurs. 
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1. Introduction 

It is well known that the solutions of parabolic problems 
may remain bounded for all time, or may blow-up in fi-
nite or infinite time. When blow-up occurs at time t , 
the evaluation of  is of great practical interest. t

In a recent paper [1] Payne and Schaefer have investi-
gated the blow-up phenomena of solutions in some para- 
bolic systems of equations under homogeneous Dirichlet 
boundary conditions. The contribution of this note is to 
extend their investigations to a class of parabolic systems 
with time dependent coefficients. The case of a single pa- 
rabolic equation was investigated recently in [2]. 

There is an abounding literature dealing with blow-up 
phenomena of solutions to parabolic partial differential 
equations. We refer the interested readers to [3-5]. A 
variety of physical, chemical, biological applications are 
discussed in [5,6]. Further references to the field are 
[1,7-19]. In this note we investigate the blow-up pheno- 
mena of the solution  of the following parabolic 
system 
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(1.1) 

where  is a bounded domain in . The 
initial data  as well as the data 

 ,N N 
 0 0,u v    , ,k t1k t 2  

1 2  ,  f t f
 ,u v

t  are assumed nonnegative, so that the solu-
tion  of (1.1) will be nonnegative by the maxi-
mum principle. More specific assumptions on the data 
will be made later. 



In Section 2 we derive conditions on the data of prob-
lem (1.1) sufficient to guarantee that blow-up will occur, 
and derive under these conditions some upper bound for 
t . In Section 3 we derive some lower bounds for the 
blow-up time t  when blow-up occurs. However this 
section is limited to the case of  in  and in  
respectively, because our technique makes use of some 
Sobolev type inequalities available in  and in  
only. For convenience we include the proof of one of 
these inequalities in Section 4. 

 2

2

3

3

2. Conditions for Blow-Up in Finite Time t* 

Let 1  be the first eigenvalue and 1  be the associated 
eigenfunction of the Dirichlet-Laplace operator defined 
as 

1 1 1 1 1= 0, > 0, ;  = 0, ,x x           (2.1) 

1d = 1.x
                 (2.2) 

Let the auxiliary function  be defined in  t  *0, t  
as 

     := ,t t t               (2.3) 

with 

   1 1:= d , := d ,t u x t v   
 x

      (2.4) 

where  ,u v  is the solution of problem (1.1). We as-
sume in this section that   is a bounded domain of 

, and that , 2N N
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    1 2
>0

, =: >min
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k t k t K 0.           (2.6) 
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We then compute 

   
   

1 1 1

1 1

= d

dp

t u k f v

t k t v

 

1

x

x 




    

  




        (2.7) 

Making use of Hölder’s inequality, we have 

   
1

1 1= d dp .pt v x v x  
 

          (2.8) 

Combining (2.7) and (2.8), we obtain 

        1 1 .
p

t t k t t             (2.9) 

A similar computation leads to 

        1 2 .
q

t t k t t             (2.10) 

Adding (2.9) and (2.10), we obtain 

        1= ,q pt t t t K            

.

* .t

 (2.11) 

where  is defined in (2.6). We first investigate the 
particular case . Making use of Hölder’s inequal-
ity, we have 

K
=p q

    1 12 = 2
qqq q q q t            (2.12) 

Inserted in (2.11), we obtain the first order differential 
inequality 

   1
1 2 , 0,q qt K t             (2.13) 

Integrating (2.13) from 0 to , we obtain the inequa- 
lity 
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Suppose that the data satisfy the condition 
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Then  t  vanishes at some time 0 , and > 0t  t  
must blow up at some time 0t t  . We obtain 
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In the general case, we suppose without loss of gener-
ality that , and make use of the inequality >p q
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valid for arbitrary . Choosing > 0c :=
p

c
q

, we obtain 

,q p Q                  (2.18) 

with 

:= > 0.
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Inserted in (2.12), we obtain the first order differential 
inequality 

  1
12 q qt K KQ =: .           (2.20) 

Suppose that the initial data are so large that  
  0 > 0 . Then  t  is increasing for t small. 

Since    is increasing in   from its negative mi- 
nimum, it follows then that  is increasing for 

. This shows that 
  t 

> 0t  t   remains positive, so that 
 t  blows up at time t . Integrating (2.20) leads to 

the following upper bound for  t

   0 0

d
= d

t
t t


.




  
           (2.21) 

These results are summarized in the following. 
Theorem 1 
1) Assume (2.5) with , (2.6), and (2.15). 

Then 
= > 1p q

 t  defined in (2.3) blows up at finite time t  
bounded above by (2.16). 

2) Assume (2.5) with , (2.6), and  > > 1p q
  0 > 0  with    defined in (2.20). Then  t  

blows up at finite time t  bounded above by (2.21). 
To conclude this section, we note that if the condition 

(2.6) is replaced by 

    1 2
>

, =: >min
t

k t k t K


0,        (2.22) 

then we have to replace the initial data  by  0     
in Theorem 1. Clearly we may use a lower bound for 
   . For instance we may integrate the differential 

inequality 

1                   (2.23) 

that follows from (2.11), leading to the lower bound 

  1 0 .e                 (2.24) 

3. Lower Bounds for t* 

In this section we assume that the data 1 2, ,f f  satisfy 
the conditions 

   1 20 , > 1;0 , > 1,p qf s s p f s s q s    > 0,   (3.1) 

and that the data   1 2,k t k t   are nonnegative for all 
. Moreover the solution is assumed to blow up in 

the sense that 
> 0t

 t   as , where t t  t  is 
defined as 

   1 1
1 2:= ,t M U t M V t           (3.2) 
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with 

  2
1 0:= d , := d ,qU t u x M u x

  2q
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       (3.3) 

  2
2 0:= d , := d .pV t v x M v x

         (3.4) 

Differentiating (3.3) and making use of (1.1), (3.1), we 
obtain 
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with 

  22( 1):= d .qJ t u u


 x          (3.6) 

Making use of Schwarz and Hölder’s inequalities we 
have 
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In  we make use of the following Sobolev type 
inequality 
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derived in the last section of the paper. Combining (3.7) 
and (3.8), we obtain 
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where we have used the arithmetic-geometric mean ine-
quality. Making use of the inequality 
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valid for arbitrary  to be chosen later. Inserted in 
(3.9) and (3.5), we obtain 
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A similar computation leads to 
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where  V t  is defined in (3.4). In , we replace (3.7) 
by 
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and make use of the Sobolev type inequality 
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derived by Talenti in [20] with 1 3 1 2 2 3:= 4 3 π   . Insert- 
ed in (3.17), we obtain 
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Moreover we make use of (3.10) to write 
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with arbitrary  to be chosen later. Combining (3.5), 
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and select  to satisfy c    1 21 = 2 qq c qc  q , leading to 
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Integrating (3.31), we obtain in the two-dimensional 
case 
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from which we obtain a lower bound for  of the form t
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where 1K   is the inverse function of . In the three- 
dimensional case, we obtain 
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These results are summarized in the following 
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Theorem 2 
Under the assumption (3.30), a lower bound for the 

blow-up time t* of the solution  ,u v  of (1.1) is given by 
(3.36) in the two-dimensional case and by (3.38) in the 
three-dimensional case. 

In the particular case in which  and  1k t  2k t  are 
constant, we have 
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in the three-dimensional case. 
Theorem 2 could easily be extended to systems of n 

parabolic equations of the form 

   = , = =i
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4. Sobolev Type Inequality in  2
2The Sobolev type inequality (3.8) in  may be known, 

but for the convenience of the reader we present a proof 
here. 



Lemma 1 
Let  ,u x y



 be a nonnegative piecewise -function 
defined in a bounded domain  that vanishes on the 
boundary . Let  be any constant . Then we 
have the following Sobolev type inequality 
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where  is the convex hull of , and   
   := , , ,  = 0, , \ .u u x y u x y    It is therefore suf- 

ficient to establish (4.1) for   convex. For the proof, 
let  := ,P x y  be an arbitrary point in  Let  2. 
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           (4.6) 

which is the desired inequality (4.1). We note that we 
have used the Schwarz and the arithmetic-geometric 
mean inequalities in the two last steps of (4.6). 
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