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ABSTRACT 

We have used a nonlinear one-dimensional heat transfer model based on temperature-dependent blood perfusion to pre- 
dict temperature distribution in dermis and subcutaneous tissues subjected to point heating sources. By using Jacobi 
elliptic functions, we have first found the analytic solution corresponding to the steady-state temperature distribution in 
the tissue. With the obtained analytic steady-state temperature, the effects of the thermal conductivity, the blood perfu- 
sion, the metabolic heat generation, and the coefficient of heat transfer on the temperature distribution in living tissues 
are numerically analyzed. Our results show that the derived analytic steady-state temperature is useful to easily and ac- 
curately study the thermal behavior of the biological system, and can be extended to such applications as parameter 
measurement, temperature field reconstruction and clinical treatment. 
 
Keywords: Regional Hypothermia; Dermis and Subcutaneous Tissues; Jacobi Elliptic Functions;  

Temperature-Dependent Blood Perfusion 

1. Introduction 

The purpose of this work is to use Jacobian elliptic func- 
tions to construct a nonlinear heat transfer model in der- 
mis and subcutaneous tissues. To predict the temperature 
in these two biological living tissues, we use a Pennes 
type of bio-heat transfer equation with a temperature- 
dependent blood perfusion term. 

Since the pioneer work of Pennes [1] in which a linear 
mathematical model was proposed for describing the 
thermal interaction between human tissues and perfused 
blood, taking the effects of the metabolism into account, 
alternative nonlinear models for describing the heat ex- 
change between tissues and blood have been developed 
[2-7]. The Pennes model assumes a constant rate blood 
perfusion within each type of tissues. However, it has 
been shown by several experiments and numerical simu- 
lations that physiological responses such as blood perfu- 
sion and metabolism in living tissues are temperature- 
dependent (see for example [5,8]). A more accurate de-
scription of the heat transfer in living biological tissues 
will then be obtained only by including, if possible, a 
temperature-dependent blood perfusion and a variable 

metabolic heat generation terms in Pennes equation. 
By including a temperature-dependent blood perfusion 

term in Pennes equation, the temperature distribution in 
the living biological tissue at hand will be governed by a 
nonlinear time-dependent partial differential equation. In 
such biological tissues, the temperature will not be uni- 
formly distributed in space and time. Moreover, it will be 
very difficult and even impossible to find analytical solu- 
tions of the governing equation; in such situations, only 
numerical solutions are attempted, and we talk of nu- 
merical temperature distribution in living biological tis- 
sues. 

In the present work we use a Pennes type model of 
bio-heat transfer equation to numerically investigate 
temperature distribution in dermis and subcutaneous tis- 
sues; here, we include in Pennes equation a tempera- 
ture-dependent blood perfusion term and maintain a con- 
stant metabolic heat generation term. Our investigation is 
based on the following one-dimensional (1D) modified 
Pennes bio-heat transfer model [8]:  
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*Corresponding author: kengem01@uqo.ca, ekengne@uottawa.ca. where  , , k are the density, specific heat and ther- c
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mal conductivity of the tissue, respectively, bc  is the 
blood specific heat, b  is the blood density, T is the 
local tissue temperature, aT  is the arterial blood tem- 
perature which is treated as constant,  is time,  is 
the metabolic heat production per volume, and 

t mQ
 t,rQ x  

is the heat deposited per volume due to spatially distrib- 
uted heating (it is the external spatial heating), m  is 
the temperature-dependent blood perfusion, and x  de- 
notes the distance from the skin surface to the body core. 
In this work, we take the temperature-dependent blood 
perfusion to be of the form [8]  

   1m  0T  ,T              (2) 

where 0  is the baseline perfusion and   is the linear 

coefficient of temperature dependence. Because the inte- 
rior tissue temperature usually tends to a constant a short 
distance from the skin surface, such as 0.02 - 0.03 m (see 
for example [9,10]), we consider in Equation (1) that 

 0,x L , with  m. 0.03L 

The aim of this paper is to investigate via Equation (1) 
with blood perfusion (2) the temperature distribution in 
dermis and subcutaneous tissues in the hypothermia case 
when both skin surface and spatial heating are used. We 
restrict ourselves to positive temperatures. This paper is 
carried out in a case of hypothermia state where the tis- 
sue temperature is below 35˚C. In this work, we show 
how to increase the tissue temperature by applying point 
heating sources at different depths of the tissue and by 
controlling the equation parameters. The technique we 
used here is first to find the tissue temperature prior to 
heating, using Jacobi elliptic functions; this allows us to 
obtain the steady-state temperature (temperature of the 
tissue at time t = 0 s whose values are in the range of the 
temperature of a hypothermia of deep degree (below 
20˚C). We then use the obtained steady-state temperature 
to numerically investigate the temperature distribution 
when the tissue is subjected to spatial point heating. The 
rest of the work is organized as follows: in Section 2 we 
use Jacobi elliptic functions to investigate the initial 
temperature distribution for the basal state of dermis and 
subcutaneous tissues. The numerical nonuniform (in time 
and space) temperature distribution is studied in Section 
3, and our work is summarized in Section 4. 

2. Investigation of the Initial Temperature 
Distribution for the Basal State of Dermis 
and Subcutaneous Tissues via Jacobi 
Elliptic Functions 

Up to now, no author has applied Jacobi elliptic func- 
tions to analytically solve the steady-state problem of 
bioheat transfer equation with temperature-dependent 
blood perfusion. In most of the existing analytical studies, 
the solutions to the bioheat transfer problem for a steady- 

state are for temperature-independent blood perfusion, 
which may not be practical for real bio-thermal situations. 
Therefore it is still desirable to obtain possible way to 
analytically solve the most widely accepted Pennes’ equ-
ation in the bioheat field. 

In this section, we investigate, by the means of Jacobi 
elliptic functions, the initial temperature field for the 
basal state of dermis and subcutaneous tissues. If we de- 
note by  0T x  the steady-state temperature field prior to 
heating, sT  the surrounding air temperature, and 0  
the apparent heat convection coefficient between the skin 
surface and the surrounding air under physiologically 
basal state ( 0h  is also considered as an overall contribu- 
tion from natural convection and radiation), then 

h

 x0T  
will be the solution of the boundary value problem  
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Because a biological body tends to keep its core tem- 
perature to remain stable, the body core temperature c  
is treated as a constant given by 

T
 , cx L

, whence 
the following additional boundary condition  

T x t T

 0 .cx L
T x T


                 (5) 

Because we work in a hypothermia case, the core tem- 
perature c  will be chosen below 35˚C. If we multiply 
Equation (3) by 

T
 0dT x xd  and integrate the result, we 

obtain the first integral  
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where cst in a constant of integration. Using the bound- 
ary condition (4), we find that  
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where  0 0 0T T . The following notation,  
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reduces Equation (6) to  
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      (9) 

Particular solutions of Equation (9) can be found in 
terms of Jacobi elliptic functions [11]: 

    2
0 sn , ,T x A B x L m         (10) 

where sn , x m


 is the Jacobi elliptic sine function with 
modulus 0,m 1  and A, , 0B  0  , and m are 
four constants verifying the nonlinear algebraic system  
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Because of our restriction on the positivity of  0T x  
for all  0,x L , we must have A > 0; moreover, if B < 
0, the additional condition > 0A B  is required. Solv-
ing the first three equations of (11), we obtain, under the 
condition ,  2

2 1a a 33 0a 
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Inserting A in the fourth equation of system (11) yields  
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Because  

4 2 4 6 8 10 12
3 1 3 6 7 6 3 0a m m m m m m        

for all m, we must have  

2 3
0 3 1 2 3 227 9 2 0.a a a a a a    

Thus, the boundary value problems (3)-(5) will have 
solutions of the form (10) if and only if  

 and  The last 
condition means that the constant of integration, cst, in 
Equation (6) must satisfy the condition  
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Comparing the right-hand sides of Equations (7) and 
(13) we obtain that the apparent heat convection coeffi- 
cient  must satisfy the equation  0h
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It follows from Equation (10) that  0 .T L A  This 
last equality and condition (5) give cA T , which to- 
gether with the expression for A in Equation (12) give the 
equation 
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for determining m. A necessary condition for Equation 
(15) to have a solution is that  should be 
non-positive. 

33 ca T a

We summarize the obtained result as follows: if the in-
itial temperature at skin surface satisfies Equation (14) 
and if 2

2 1 33a a a   then the boundary value problems 
(3)-(5) admits particular solutions of the form (10) with 

cA T , B, and   given by Equation (12) and  0,1m
3a

 
is a solution of Equation (15), where , , and  
are defined by Equation (8). 

1a 2a

Solutions as (10) are expected to be very useful in a 
variety of bio-thermal practices: 1) for extreme situations 
where perfusion will change significantly with the exter- 
nal heating; 2) if the average perfusion in a specific tem- 
perature range was known (here, the analytical solution 
will provide intuitive temperature prediction); 3) for 
those bioheat transfers under small heating (in this case, 
a good accuracy from the analytical prediction can be 
expected). 

Figure 1 shows the temperature distribution at the ini- 
tial time t = 0 of dermis (left plot) and subcutaneous 
(right plot) tissues for different values of the linear coef- 
ficient γ of temperature dependence of blood perfusion. 
Here we have used for both dermis and subcutaneous 
tissues the following typical tissue parameters [12]: Ta = 
37˚C, Ts = 15˚C, cb = 3500 J/kg˚C, Qm = 43800 w/m3, ω0 
= 19 × 10–5 ml/100 g·min, ρb = 1060 kg/m3. As thermal 
conductivity of tissue, we used k = 0.45 w/m·˚C and k = 
0.19 w/m·˚C for dermis and subcutaneous tissues, re- 
spectively. To investigate the effect of the linear coeffi- 
cient of temperature dependenceγon the initial tempera-
ture distribution, we used three values of γ [13]: γ = 
0.122, γ = 0.122597, and γ = 0.1226. 

1) Dermis tissue: With the above equation parameters, 
we compute the elliptic moduli as m = 0.383359, m = 
0.028886, and m = 0.0201884. Solution (10) then gives 
T0(0) = 12.7348˚C, T0(0) = 12.7˚C, and T0(0) = 12.6736˚C, 
respectively. Inserting these values of 0 0  in Eq- 
uation (14) yields h0 = 35.142 w/m˚C, h0 = 35.0382 w/m2, 
and h0 = 34.7618 w/m2·˚C, respectively. 

(0)T  T

2) Subcutaneous tissue: For the subcutaneous tissue, 
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we found m = 0.383359, m = 0.028886, m = 0.0201884 
T0(0) = 12.7797˚C, T0(0) = 2.7043˚C, and T0(0) = 
12.6927˚C; h0 = 44.0957 w/m2·˚C, h0 = 43.513 w/m2·˚C, 
and h0 = 43.328 w/m2·˚C. 

The temperature curves of Figure 1 show that in- 
creased perfusion causes a decline in the local tempera- 
ture, while the local temperature decreases with the ellip- 
tic modulus. Also, the temperature distribution becomes 
more oscillatory when the blood perfusion increases. 
Because dermis tissue and subcutaneous tissue differ 
only in thermal conductivity, we can also conclude from 
the plots of Figure 1 that an increased thermal conduc- 
tivity causes a decline in local temperature. 

3. Numerical Simulations 

3.1. Numerical Techniques 

Equation (1) with temperature-dependent blood perfusion 
(2) is a time-dependent nonlinear partial differential equ-
ation, and its numerical solutions can be obtained using a 
Crank-Nicolson scheme. In this section, we will stress on 
the solution of Equation (1) using a second- order central 
difference scheme in space and a Crank- Nicholson type 
of scheme in time. The boundary condi- tions associated 
to Equation (1) is a segment that starts from the skin sur-
face (x = 0) and ends at the body core (x = L) and is de-
scribed as follows: a given temperature boundary condi-
tion is applied at the body core, i.e., T = Tc at x = L; a 
c o n v e c t i v e  b o u n d a r y  c o n d i t i o n  i s  u s e d  a t  

the skin surface, 0 s

T
k h T T

x


  


 at x = 0, which is  

the normal case to which the skin surface is subjected. 
Because Equation (1) is time-dependent (first order dif- 
ferential equation in time), we need an initial condition. 
We will consider that prior to heating (i.e., at t = 0), the 
temperature at any depth x is  0T x , where  0T x  is 
the steady-state temperature field found in the previous 
section (see Equation (10)); therefore    0T x,T x t   at 
t = 0. Mathematically, we will numerically solve the fol- 
lowing initial boundary value-problem  
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The Newton’s heating/cooling law  
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Figure 1. Effect of linear coefficient of temperature depen- 
dence γ of blood perfusion on initial temperature distribu-
tion in dermis (left plot) and subcutaneous (right plot) tis-
sues in case of deep hypothermia (hypothermia of pro- 
found degree). As thermal conductivity, we used k = 0.45 
w/m·˚C and k = 0.19 w/m·˚C for dermis and subcutaneous 
tissues, respectively. 
 
time, the skin surface has exactly the same temperature 
as the heating/cooling medium:    0,T t f t , where 
 f t  denotes the time-dependent temperature of the 

cooling medium. This condition is typical at the skin 
surface for thermal comfort analysis; it is also used for 
cancer hyperthermia. 

Denote by   and h the time step discretization and 
the space mesh, respectively (here h is selected such that 
N L h  is a positive integer) and let  1jx j h  , 

1, 2, ,j 1N  , and  1nt n   , . Let 1, 2, ,n M
n
jT  be the scalar numerical value of the temperature at 

depth xj and time , i.e., nt  , n
j j nx tT T

 Tn n n

, and the vector  

value be 0 2, , ,j NT T T
n

T  an   matrix  1 1N  

(column vector), where 1, 2, ,n M  . Then, by apply-
ing a second-order central difference scheme in space 
and a Crank-Nicholson type scheme in time for solving 
problem (16), i.e., for finding all the n

jT , we find that 
the vector 

n
j


T  is the solution of an algebraic linear sys-

tem of form  
1

left right ,
n n
j jQ Q


 

 
T T F

1

        (17) t   means that, at any  
where  and  are two  tridi-leftQ rightQ   1N N  
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agonal matrices and F an  1 1N  

11 1
left

n n
j j Q

  

T

 matrix (column 
vector); moreover left  is diagonally dominant. Hence, 
system (17) admits a unique solution 

Q

leftQ QT right .


F  

3.2. Numerical Experiments and Discussion 

For the numerical simulation, we use the following pa- 
rameters in Equation (1): Ta = 37˚C, Ts = 15˚C, Tc = 
12.7˚C, cb = 3500 J/kg·˚C, Qm = 43800 w/m3, ω0 = 19 × 
10–5 ml/100 g·min, ρb = 1060 kg/m3, ρ = 1200 kg/m3, c = 
3300 J/kg·˚C. As thermal conductivity of the tissue, we 
used k = 0.45˚C and k = 0.19 w/m·˚C for dermis and sub- 
cutaneous tissue, respectively. The linear coefficient of 
temperature dependence γ is chosen among the following 
values: γ = 0.122, γ = 0.122597, and γ = 0.1226. 0  will 
be chosen in a way that Equation (10) will give a non- 
trivial solution 

h

 0  of problems (3)-(5) (we point out 
that we shall use this solution as initial temperature dis-
tribution in the tissue). Although any spatial heating style 
like  can be dealt with by the present numerical 
simulation, in this work we use only point heating to in-
vestigate the temperature response of the tissue [12,13]. 
Practical examples of point heating can be obtained in 
clinical treatments where heat is deposited by inserting a 
conducting heating probe in the deep tumor site or deliv-
ering thermal dose to it. Here, we use a point heating 
source of the form [12]  

T x

 ,rQ x t 

     os expt x  

t

 0
r rQ x t p x x    ,0 1, cp

0 1 cosp

 (18) 

where r P t p    is the strength of the point 
heating source (it is the time-dependent heating power on 
the skin surface),   is the Dirac delta function, and 

 0,0x L
p

  the location of the point heating; 0  is a 
constant, 1  the constant oscillation amplitude of sinu- 
soidal heating, r

p

  the heating frequency, and   the 
scattering coefficient. The reason for choosing an oscil- 
lating heating, especially a sinusoidal heating, is that 
sinusoidal surface heating can be generated by an in- 
strument with repeated irradiation from regulated laser 
and used to estimate the blood perfusion (see [14,15]). It 
follows from Equation (18) that  
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and this, of course, means that all the heat coming from 
the heating source is concentrated at the point 0 .x  We 
will indicate for each example the values used for the 
heating parameters 0 , 1 , p p  , r , and 0x . In all the 
following examples, we have applied a point heating 
source at three different depths between the skin surface 

and the body core, exclusively; in fact, the skin surface is 
maintained at the same temperature as the cooling me- 
dium, and the body core temperature is maintained at c  
(core temperature). Without loss of generality, we only 
work with dermis tissue, and all the obtained results may 
be transferred to subcutaneous tissue. 

T

Figure 2 depicts the spatial and temporal temperature 
distributions of dermis tissue in the absence of spatial 
heating for γ = 0.1226. Due to the surface heating by the 
flowing of medium, the tissue temperature increases and 
is above the initial (steady-state) temperature. Because of 
the oscillatory aspect of the steady-state temperature field 
(see the plot of Figure 1 with γ = 0.1226), temporal 
temperature curves at the beginning of the process tend 
to be oscillatory (see the left plots on the top Figure 2). It 
is also important to point out that, at the beginning of the 
process (during about the first 110 s of the heating pro- 
cess), the temperature of the tissue at any depth is below 
the temperature at the skin surface (see left bottom plots). 
With time passing, the temperature first increases when 
one goes from skin surface to body core, reaches a high- 
est value at some depth between x = 0.01285 m and x = 
0.01585 m (see the bottom middle plots), and then de- 
creases when one approaches the body core (see the right 
top plots). As one can see from the right plots (top and 
bottom), each point of the tissue reaches it stationary 
state after some duration of the process (near 3000 s). 
Moreover the highest temperature of each point during 
the process remains in the hypothermia range (see the top 
and bottom plots). Because of the continuous heating, the 
temperature of each point of the tissue increases rapidly 
in the early heating time and then slowly approaches its 
stationary value; this is easily seen from the bottom plots. 

Figure 3 depicts spatial and temporal temperature dis- 
tributions in dermis tissue in the presence of spatial 
heating when a point-heating source is applied. In this 
example, we used γ = 0.1226, p0 = 500,000/3 w/m2, p1 = 0 
w/m2 and applied a point-heating source at three different 
points, namely, at x0 = 0.008571 m, x0 = 0.01585 m, and 
x = 0.02357 m. We first point out that all effects ob- 
served in the absence of spatial heating occur when a 
spatial heating source is applied; particularly, the tem- 
perature at each depth of the tissue increases gradually 
until it reaches steady-state. As the top plots show, the 
positions of higher temperatures stay at the site of the 
point sources. This is very beneficial, not only for hypo- 
thermia therapy, but also for hyperthermia therapy; in 
fact, one can selectively apply a point-heating source to 
heat the deep regional tumor in case of hyperthermia 
therapy. A comparison of Figures 2 and 3 show that the 
point-heating source may affect other points of the tissue 
only after a long heating time. A suitable localization of 
the heating source may prevent the destruction of the 
tissue cell that are outside the tumor region (in the case  
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Figure 2. Spatial temperature distribution (top) and temporal temperature distribution (bottom) in dermis tissue (hypother- 
mia of severe degrees) without spatial heating (Qr = 0). Here, we used γ = 0.1226, which corresponds to an oscillatory steady- 
state temperature field (see Figure 1).  
 

 

Figure 3. Spatial (top) and temporal (bottom) temperature distribution in dermis tissue subjected to a point-heating source 
applied at three different points: x0 = 0.008571 m, x0 = 0.01585 m, and x0 = 0.02357 m, with the heating parameters η = 20 m–1, 
p0 = 500,000/3 w/m2, and p1 = 0. For this figure, we have used γ = 0.1226, which corresponds to an oscillatory initial tempera- 
ture (see Figure 1). 
 
of hyperthermia therapy). In any case, the adoption of 
point-heating source is beneficial in medical therapy. 

Figure 4 shows the spatial and the temporal tempera- 
ture distributions in dermis tissues subjected to sinusoidal 
point-heating. Exactly as in the case of constant point- 
heating source, the local higher temperatures are in the 
position where the heating source is placed (see top 
plots). Also, the temperature of each point of the tissue 
increases gradually and after some time of heating, os- 
cillates around a value that we may consider as its 
steady-state (see bottom plots). As we can see from the 

bottom plots, it is clear that there are about 12 cycles in 
the history of temperature variation, which is due to the 
value of the heating frequency r . For 0.02r  , the 
period 2π r  of 0 1p p  cos r t  is 10  seconds, 
and there are approximatively 12 cycles in 4000 seconds. 
Comparing the plots of Figures 3 and 4, we can conclude 
that one of the effects of sinusoidal heating is to increase 
the temperature in dermis tissue. 

0π

Figure 5 shows the temperature changes with time at 
the skin surface with and without spatial sinusoidal heat- 
ing. In the case when point-heating source is applied, we    
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Figure 4. Spatial (top) and temporal (bottom) temperature distributions in dermis tissue subjected to a sinusoidal point- 
heating source applied at three different points: x0 = 0.008571 m, x0 = 0.01585 m, and x0 = 0.02357 m, with heating parame- 
ters η = 20 m–1, p0 = 500,000/3 w/m2, and m–1, p1 = 250,000/3 w/m2. For this figure, we have used γ = 0.1226, which corre-
sponds to an oscillatory steady-state temperature field (see Figure 1). 
 

 

Figure 5. Effect of the position of a point-heating source on the temperature distribution at the skin surface. A: No spatial 
heating; B: One point-heating source placed at x0 = 0.02357 m; C: One point-heating source placed at x0 = 0.01585 m; D: One 
point-heating source placed at x0 = 0.008571 m; E: Two point-heating sources placed at x0 = 0.01585 m and x0 = 0.02357 m. 
The heating parameters were η = 20 m–1, p0 = 500,000/3 w/m2, and m–1, p1 = 250,000/3 w/m2. For this figure, we have used γ = 
0.1226, which corresponds to an oscillatory initial temperature (see Figure 1).  
 
distinguished first the situation when only a point-heating 
source is applied at a single point of the tissue and sec- 
ondly, the situation when a point-heating source is ap- 
plied at two points of the tissue. In the later case, a point- 
heating source is applied at two points of the tissue, far 
from the skin surface. This combination (a point-heating 
source applied at a single point, near and far from the 
skin surface, a point-heating source applied at two points 
far from skin surface) allows us to investigate how much 
a point-heating source may affect the temperature distri- 
bution at the skin surface which theoretically has the 
same temperature as that of heating/cooling medium. We 
found that the effect of a point-heating source on the 
temperature of the skin surface is negligible when the 
heating point is applied at a point far away from skin 
surface. Plots of Figure 5 allows us to conclude that the 
application of a point-heating source will increase the 
temperature of all points of the tissue and, consequently,  

any two point-heating sources (point-heating source ap- 
plied at two different points of the tissue) will interact 
between each other. It is seen from the right plots that the 
damage caused by one point-heating source placed near 
the skin surface may be more important than that caused 
by two point-heating sources placed far from skin sur-
face. 

4. Conclusions 

The temperature distribution in dermis and subcutaneous 
tissues is numerically investigated in the hypothermia 
situation. The mathematical model we used is a time- 
dependent bioheat equation of Pennes type containing a 
nonlinear term due to the blood perfusion term. In order 
to investigate the temperature distribution in the tissues 
in a hypothermia situation, we have used Jacobi elliptic 
functions to write out an analytical expression for the  
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steady-state tissue temperature. Considering temperature 
to be time-dependent and considering the biological tis- 
sue to be subjected to a spatial point-heating source, the 
problem of temperature distribution in the tissue is 
solved by means of a second-order central difference 
scheme in space and a Crank-Nicholson type scheme in 
time. 

We have conducted two numerical experiments, hy- 
pothermia and sinusoidal point-heating, which are typical 
heat transfer processes involved in soft tissues in bio- 
logical bodies, such as heat therapy and skin burn. As 
results of our experiments, we found that: 1) the local 
highest temperature is where the heating source is placed; 
2) the tissue in the heated position is more likely to be 
damaged (in the case of a higher strength of point heating 
source) than that in locations which are not heated; 3) the 
temperature of any point, near or far from the position of 
the heating source is affected by the heating source; 4) 
two heating sources will interact between each other. 

In order to minimize the damage to the biological tis- 
sue due to the heating source, we recommend to con- 
secutively place the point-heating source at the point of 
the tissue to be analyzed. We point out that the problem 
of sources isolation (how to place more than one point- 
heating source at different points of tissues such that two 
heating sources will not interact) remains unsolved, and 
we hope, in our future research, to bring out a positive 
result in this direction.  

REFERENCES 
[1] H. H. Pennes, “Analysis of Tissue and Arterial Blood 

Temperatures in the Resting Forearm,” Journal of Ap-
plied Physiology, Vol. 1, No. 2, 1948, pp. 93-122. 

[2] A. Szasz and G. Vincze, “Dose Concept of Oncological 
Hyperthermia: Heat-Equation Considering the Cell De-
struction,” Journal of Cancer Research and Therapeutics, 
Vol. 2, No. 4, 2006, pp. 171-181. 
doi:10.4103/0973-1482.29827 

[3] C. K. Charney, “Mathematical Models of Bioheat Trans-
fer,” Advanced Heat Transfer, Vol. 22, 1992, pp. 19-155. 
doi:10.1016/S0065-2717(08)70344-7 

[4] P. Deuflhard and R. Hochmuth, “Multiscale Analysis of 
Thermoregulation in the Human Microvascular System,” 
Mathematical Methods in the Applied Sciences, Vol. 27, 
No. 8, 2004, pp. 971-989. doi:10.1002/mma.499 

[5] T. R. Gowrishankar, D. A. Stewart, G. T. Martin and J. C. 
Weaver, “Transport Lattice Models of Heat Transport in 
Skin with Spatially Heterogeneous, Temperature-Depen- 

dent Perfusion,” BioMedical Engineering on Line, Vol. 3, 
No. 4, 2004, pp. 1-17. 

[6] A. Lakhssassi, E. Kengne and H. Semmaoui, “Modified 
Pennes’ Equation Modelling Bio-Heat Transfer in Living 
Tissues: Analytical and Numerical Analysis,” Natural 
Science, Vol. 2, No. 12, 2010, pp. 1375-1385. 
doi:10.4236/ns.2010.212168 

[7] C. R. Davies, G. M. Saidel and H. Harasaki, “Sensitivity 
Analysis of One-Dimensional Heat Transfer in Tissue 
with Temperature-Dependent Perfusion,” Journal of Bi- 
omechanical Engineering, Vol. 119, No. 1, 1997, pp. 
77-80. doi:10.1115/1.2796068 

[8] J. Lang, B. Erdmann and M. Seebass, “Impact of Nonlin-
ear Heat Transfer on Temperature Control in Regional 
Hyperthermia,” IEEE Transactions on Biomedical Engi-
neering, Vol. 46, No. 9, 1999, pp. 1129-1138. 
doi:10.1109/10.784145 

[9] J. Liu and L. X. Xu, “Estimation of Blood Perfusion Us-
ing Phase Shift in Temperature Response to Sinusoidal 
Heating at the Skin Surface,” IEEE Transactions on Bio-
medical Engineering, Vol. 46, No. 9, 1999, pp. 1037- 
1043. doi:10.1109/10.784134 

[10] S. Weinbaum, L. M. Jiji and D. E. Lemons, “Theory and 
Experiment for the Effect of Vascular Microstructure on 
Surface Tissue Heat Transfer—Part I: Anatomical Foun-
dation and Model Conceptualization,” Journal of Biome-
chanical Engineering, Vol. 106, No. 4, 1984, pp. 321- 
330. doi:10.1115/1.3138501 

[11] P. F. Byrd and M. D. Friedman, “Handbook of Elliptic 
Integrals for Engineers and Scientists,” 2nd Edition, Sp- 
ringer-Verlag, Berlin, 1971. 

[12] Z. S. Deng and J. Liu, “Analytical Study on Bioheat 
Transfer Problems with Spatial or Transient Heating on 
Skin Surface or Inside Biological Bodies,” Journal of 
Biomechanical Engineering, Vol. 124, No. 6, 2002, pp. 
638-650. doi:10.1115/1.1516810   

[13] S. Karaa, J. Zhang and F. Yang, “A Numerical Study of a 
3D Bioheat Transfer Problem with Different Spatial 
Heating,” Mathematics and Computers in Simulation, Vol. 
68, No. 4, 2005, pp. 375-388.  
doi:10.1016/j.matcom.2005.02.032 

[14] W. Shen and J. Zhang, “Modeling and Numerical Simu-
lation of Bioheat Transfer and Biomechanics in Soft Tis-
sue,” Mathematical and Computer Modelling, Vol. 41, 
No. 11-12, 2005, pp. 1251-1265. 
doi:10.1016/j.mcm.2004.09.006 

[15] A. T. Patera, B. B. Mikic, G. Eden and H. F. Bowman, 
“Prediction of Tissue Perfusion from Measurement of the 
Phase Shift between Heat Flux and Temperature,” Pro-
ceedings of ASME Winter Annual Meeting, Advances in 
Bioengineering, 1979, pp. 187-191.  

 

Copyright © 2012 SciRes.                                                                                  AM 

http://dx.doi.org/10.4103/0973-1482.29827
http://dx.doi.org/10.1016/S0065-2717(08)70344-7
http://dx.doi.org/10.1002/mma.499
http://dx.doi.org/10.4236/ns.2010.212168
http://dx.doi.org/10.1115/1.2796068
http://dx.doi.org/10.1109/10.784145
http://dx.doi.org/10.1109/10.784134
http://dx.doi.org/10.1115/1.3138501
http://dx.doi.org/10.1115/1.1516810
http://dx.doi.org/10.1016/j.matcom.2005.02.032
http://dx.doi.org/10.1016/j.mcm.2004.09.006

