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Abstract 
 
A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is 
suggested within the theory of perfect plasticity with the help of small parameter method. A characteristic 
equation for a critical radius of a plastic zone is obtained as a first approximation. The formula for the critical 
angular velocity, determining the stability loss of the disc according to the self-balanced form, is derived. 
The method using which we can take into account the disc’s geometry and loading parameters is also speci-
fied. The efficiency of the proposed method is shown in Section 5 while considering an illustrative example. 
The values of critical angular velocity of rotating are found numerically for different parameters of the disc. 
 
Keywords: Axisymmetric Elastoplastic Problem, Boundary Shape Perturbation Method, Rotating Circular 

Annular Disc, Stepped Disc, Stability Loss, Critical Angular Velocity 

1. Introduction 
 
The analytical methods of studying the stability loss [1-6] 
at radial tension are known to be applied to plane discs 
(with constant thickness) in elastoplastic state. In [7] a 
method of calculation of possible stability loss was pro-
posed for the case of the simplest non-planar rotating 
circular disc, namely, the stepped disc, loaded by radial 
stress on the boundary. This method underlies the present 
approach to approximate calculation of critical radius of 
the plastic zone and critical angular velocity of the rotat-
ing annular disc of variable thickness. Besides, the real 
profile is roughly replaced by a step-like one, so that the 
disc is considered to be composed of partial annular discs 
of constant thickness. The applicability of the algorithm 
to the analysis of the small perturbations dynamics in 
case of the discs with arbitrary profiles is discussed. 
 
2. Problem Statement 
 
Consider a stability loss of the rotating annular disc with 
an arbitrary smooth profile  y r  (Figure 1) as a result 
of its attaining an equilibrium form, different from a cir-
cular one, in the plane of rotation. We will assume the 
disc to be almost circular, and present the equation of 

external boundary in its middle plane 0y =

const,

, being a 
plane of symmetry of the disc, with the accuracy to the 
first-order infinitesimals, in the following form 

= cos , 2,r b d nθ n d    

or 
= 1 δcosρ nθ               (1) 

 
Figure 1. Stability loss of the disc according to self-balanc-
ing form. 
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where b is the external radius of the unperturbed disc 
(the radius of circumference profile), = r b  is the 
non-dimensional current radius,   is a small parameter, 

, n   is a polar angle. Let a be the internal radius 
of the disc, s  be the yield strength of the material,  
be the modulus of elasticity, 

E
  be the density, v be 

Poisson’s coefficient,   be the angular velocity of ro-
tation and 0  be the current radius of the plastic zone 
for the unperturbed disc. 

r

Let’s assume that the maximal thickness of the disc is 
small as compared to its other dimensions. Based on this 
assumption, the stresses located on the internal and ex-
ternal boundaries of the disc will be considered as re-
sulted from certain efforts 0 i  and  

 [7,8], acting on the disc in its middle 
plane. 

=i ip p p 
0=e ep p p e

For the boundary form, described by (1), we need to 
obtain (as a first approximation) the characteristic equation 
for the critical radius of the plastic zone 0  and to find 
the corresponding critical angular rotation velocity 

r 

 . 
 
3. The Unperturbed Elastoplastic State of 

the Rotating Disc 
 
Consider the equation of quasi-static equilibrium [9] 

  2

1 d
=

d
rr

rr y
y r r b

 ,r
  


          (2) 

where 
2 2= .b    

Basing on yield condition (of maximum shear theory) 
and taking into account that the problem statement gives 

  = ,rr ia p   

in the plastic region  0,r a r , we present the solution 
of linear differential Equation (2) 

2

d 1 1 d
=

d d
rr

rr

y
r

r r y r r b
 

 
   
 

 

in general form 
 = ; ,rr i .x r a p             (3) 

Moreover, 
= .s                   (4) 

Taking into account the condition on the external 
boundary 

  =rr eb p  

and yield condition (constant stress intensity), suppose 
that in the disc elastic region  0 ,r r b  the stress com-
ponents are 

 = , ; ,rr ez r C b p  ,          (5) 

 = , ; , ew r C b p 

Here the constant C is to be found. 
Having in mind that non-dimensional values will be 

used in further calculations we refer the values with the 
dimension of pressure to the yield strength s . The 
values with the dimension of length will be referred to 
the characteristic length b. Introducing the notations 

0 0:= , := ,r b a b   

we use the continuity condition for the stress components 
at transition through the boundary 0=  . Equating the 
right-hand sides of (3) and (5), and those of (4) and (6) at 

0=  , we get the system of equations 

   0 0; , = , ;1, ,i s e sx p z C p      

 01 = , ;1, .e sw C p   

Its solution 

   0 0= , =sC        

fully describes the stress state (3)-(6) and determines the 
dependence of the angular velocity of disc rotation on the 
radius of plastic region. 
 
4. Principal Result 
 
Along with relations (3), (5), (6), consider an approxi-
mated stress state, obtained at dividing the given disc of 
an arbitrary profile into partial discs of constant thick-
ness 1 0

 (Figure 2). In [7] it has been shown 
that the dependences corresponding to (3), (5), (6) for the 
stepped annular disc are 

2 , , 2 nh h

 

 

 

2 1
1

2 2
1 20

2
1 0

1 , ,
3

1 , ,
= 3

1 ,
3

s

p
s

j
j

s

C
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C



    
 
    

  
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,

,
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
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   (8) 

 

 

Figure 2. The disc of arbitrary profile divided into partial 
discs of constant thicknesses. .          (6) 
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where 1 1 1 10 0
= , , =n nr b r b    , 

0
= 1n ,  

    = 3 8 s    ,     = 3 1 8 s     , and the 

constants 1, , jC C  and    
1, 2, 2,0, , ,1,, 0j j nC nC C C  are 

found as solutions of the systems 
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respectively. Here 2 2
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whereas 0 1 0 1 0 0
, , , , , ,j j n n n ns t s t s t   

   and 
0
,nA

0
,nB

0nD , 
are found from the recurrence relations 
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Dependences (7-9) with account of the relation 
 provide a zeroth approximation to the solution 

of the problem on plastic equilibrium, determining the 
position of elastoplastic boundary. In addition, 
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, =1ij i j

a , for . 0e   is the determinant of the matrix 
The number of sections 0n  of the stepped profile, 

which approximately substitutes a real one, still remains 
unknown, and constant half-thicknesses of partial annu-
lar discs can be introduced by the average theorem: 

 
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                     (11) 

where 

       (10) 

where 
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First assume that 0  equals to a certain fixed small 
natural number. Then, with regard to (10), one has a 
characteristic equation [2-4,7] 

n

  0 = 0,  
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,
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are the known functions of two vari-
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 are 
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,
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t appr
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oxima
ven pr

tions o
ofile 
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 

ding 
sc i y r . 

Let   be an arbitrary positive number. Let it be con-
nected with the absolute error of the stress state, ap-
peared due to transition to a stepped disc, by the condi-
tion 

0 0

, ,1

0max sup p e ex

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 

,10 0 0
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,
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

 

(12) 

where the functions   (3 nd (7)-(9) are taken 
for 0 0=

), (5), (6) a
   . If for 0   being the solution of charac-

teristic equ ion 11), inequality (12) fails, one should 
take 0 0:= 1n  , redetermine 

at
n

 (

jh , and also (7)-(9) ac-
cording to (10) and solve Equation (1 ce1) on  again. The 
fulfillment of condition (12) with new 0   allows to 
complet solution of the problem on the stability loss of 
the disc with given profile, with the accuracy of  . If 
equality (12) 
peated with 

fails, the descri
1

bed 
d so on

procedure u
an . 

 
5. Example 
 
Let’s calculate the stability loss for the disc of a hy

m st be re-

0 0n n:=  

per-
bolic profile 

= , , > 0.sy k k s               (13) 

Many real profiles can be approximately expressed by 
Equation (13). For such discs, as well as for those of 
constant thickness ( = 0s  in (13)), the stress-strain state 
can be obtained in a closed form [9]. 

From Equality (4), Equation (2) in the plastic region is 
presented as 

r

2

d 1
= s

rr


.

d
rr s

r
r r r b

 
            (14) 

f the corresponding initial problem is of Solution (3) o
the following form 
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s ss
rr i

a
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p
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  
 

1 2 1.
1 3

s si

s ss s
  

 
1 1p  



       

 
    


 

(15) 

In the elastic region the stress components of the un-
perturbed annular disc with a hyperbolic profile can be 
sought as [9] 

   

21 2
1 2 2

1 2
1 21 2

2
2

= ,

= 1 1

,

rr C r C r r
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
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    (16) 

where 1C , 2C , 1 , 2 ,  ,    
ndi

are yet to be speci-
fied. Substitution ng expressions (16) 
for 

 of the correspo

rr  and   in equilibrium Equation (14) gives 

1
= .

3 s


 


                  (17) 

After substitution of expressions (16) into 

   1dd
1 = 0, =

d d
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rrr mr m m
r r





,        

obtained by exclusion of radial displacement 
coupling equations for deformations and stresses, based 
on (17), we get 

from the 

   
3 1 3

= , = .
8 3 1 8 3 1m s m m s m

   m m

   
   (18) 

B usi he method of undetermined coeffiesides, ng t -
cients, find the indices 1 2,  : 

2

1,2 = 1 1 .
2 4

s s s

m
          (19) 

The condition on the external boundary leads to the 
relations 

  1 2
1 2= , = .eC b p Cb C C       

Taking them into account in (16), from the system of 
stress continuity equations at transition through the elas-
toplastic boundary, we get 
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(20) 
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estimatio  with previously given n (12)  . In some ases 
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Table 1 gives the results of problem solution for a 
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, = 1b , 
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0n = 2n = = 0a b .2 , = 0.3 , 
= 0.01s E , = 0i , = 0e , = 1 3 , e i

 
6. Concluding Remarks 
 
The proposed scheme allows determining the critical 

 = 0 . 

 
Table 1. Critical radius and squared relative critical veloc-
ity. 

n0 3 10 20 25 30 

β0* 0.7331 0.8399 0.9199 0.9359 0.9466



2 2q  0.8863 5195 0.5042 0.49390.5929 0.
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