The (2,1)-Total Labeling of $S_{n+1} \lor P_m$ and $S_{n+1} \times P_m$

Sumei Zhang, Qiaoling Ma, Jihui Wang

School of Science, University of Jinan, Jinan, China
E-mail: ss_maqil@ujn.edu.cn

Received June 14, 2010; revised September 3, 2010; accepted August 7, 2010

Abstract

The (2,1)-total labeling number $\lambda^T_2(G)$ of a graph G is the width of the smallest range of integers that suffices to label the vertices and the edges of G such that no two adjacent vertices have the same label, no two adjacent edges have the same label and the difference between the labels of a vertex and its incident edges is at least 2. In this paper, we studied the upper bound of $\lambda^T_2(G)$ of $S_{n+1} \lor P_m$ and $S_{n+1} \times P_m$.

Keywords: Total Labeling, Join of Graph, Path Graph

1. Introduction

Our terminology and notation will be standard. The reader is referred to [1] for the undefined terms. For a graph G, let $V(G)$, $E(G)$, $\Delta(G)$ and $\delta(G)$ denote, respectively, its vertex set, edge set, maximum degree and minimum degree. We use $N(v)$ to denote the neighborhood of v and let $d(v) = |N(v)|$ be the degree of v in G. Let $d(x,y)$ denotes the distance of vertices x,y of G, $\lceil x \rceil$ is the smallest integer greater than x.

Motivated by the Frequency Channel assignment problem, Griggs and Yeh [2] introduced the $L(2,1)$-labeling of graphs. This notion was subsequently extended to a general form, named as $L(p,q)$-labeling of graphs. Let p and q be two nonnegative integers. An $L(p,q)$-labeling of graph G is a function f from its vertex set $V(G)$ to the set $\{0,1,2,\cdots,k\}$ for some positive integer k such that $|f(x) - f(y)| \geq p$ if x and y are adjacent, and $|f(x) - f(y)| \geq q$ if x and y are at distance 2. The $L(p,q)$-labeling number $\lambda_{p,q}(G)$ of G is the smallest k such that G has an $L(p,q)$-labeling f with max $\{|f(v)| \mid v \in V(G)\} = k$.

Whittlesey et al. [3] investigated the $L(2,1)$-labeling of incidence graphs. The incidence graph of a graph G is the graph obtained from G by replacing each edge by a path of length 2. The $L(2,1)$-labeling of the incidence graph of G is equivalent to an assignment of integers to each element of $V(G) \cup E(G)$ such that adjacent vertices have different labels, adjacent edges have different labels, and incident vertex and edge have the difference of labels by at least 2. This labeling is called $(2,1)$-total labeling of graphs, which was introduced by Havet and Yu [4], and generalized to $(d,1)$-total labeling form. Let $d \geq 1$ be an integer. A $k-(d,1)$-total labeling of graph G is an integer-valued function f defined on the set $V(G) \cup E(G)$ such that

$$|f(x) - f(y)| \geq \begin{cases} 1, & \text{if vertices } x \text{ and } y \text{ are adjacent;} \\ 1, & \text{if edges } x \text{ and } y \text{ are adjacent;} \\ d, & \text{if vertex } x \text{ incident to edge } y. \end{cases}$$

The $(d,1)$-total labeling number, denoted $\lambda^T_d(G)$, is the least integer k such that G has a $k-(d,1)$-total labeling.

When $d = 1$, the $(1,1)$-total labeling is the well-known total coloring of graphs, which has been intensively studied [5-7].

It was conjectured in [4] that $\lambda^T_1(G) \leq \Delta + 2d - 1$ for each graph G, which extends the well-known Total Coloring Conjecture in which $d = 1$. It was also shown in [4] $\lambda^T_d(G) \leq 2\Delta + d - 1$ for any graph G. The $(d,1)$-total labeling for some kinds of special graphs have been studied, e.g., complete graphs [4], outerplanar graphs for $d = 2$ [8], graphs with a given maximum average degree [9], etc.

In this paper, we studied the $(2,1)$-total labeling of joining graph with star and path $S_{n+1} \lor P_m$, and the cartesian product of star and path $S_{n+1} \times P_m$. The following two lemmas appeared in [4], which are very useful.

Due work was supported by the Nature Science Foundation of Shandong Province (Y2008A20), also was supported by the Scientific Research and Development Project of Shandong Provincial Education Department (TJY0706) and the Science and Technology Foundation of University of Jinan (XKY0705).
Lemma 1.1. Let G be a graph with maximum degree Δ, then $\lambda_2^G (G) \geq \Delta + d - 1$.

Lemma 1.2. If $\lambda_2^G (G) = \Delta + d - 1$, then the vertices with maximum degree of G must be labeled 0 or $\Delta + d - 1$.

2. The (2, 1)-Total Labeling of $S_{n+1} \cup P_m$

Let G_1 and G_2 be two graphs, by starting with a disjoint union of G_1 and G_2, adding edges by joining each vertex of G_1 to each vertex of G_2, we can obtain the join of graph G_1 and G_2, denoted $G_1 \cup G_2$.

Let S_{n+1} be a star with $n+1$ vertices v_0, v_1, \cdots, v_n, in which $d(v_0) = n$, we call v_0 the center of S_{n+1}. Let P_m be a path with m vertices u_1, u_2, \cdots, u_m. Then $G = S_{n+1} \cup P_m$ has the following propositions:

1) $\Delta(G) = d(v_0) = m + n$;
2) $d(u_i) = d(u_0) = \cdots = d(u_{m-1}) = n + 3$;
3) $d(v_j) = d(v_1) = \cdots = d(v_m) = m + 1$.

For $n \geq 1$, S_{n+1} is a path, S. M. Zhang [10] had studied the $(2, 1)$-total labeling of $P_m \cup P_n$. So in the sequel, we only consider the case $n \geq 3$.

Theorem 2.1. Let $G = S_{n+1} \cup P_m$, if $m \geq 2 + n$, then $\lambda_2^G (G) = \Delta + 1$.

Proof. By lemma 1.1, it’s need to prove $\lambda_2^G (G) \leq \Delta + 1 = m + n + 1$.

Now, we give a $(m + n + 1)$ - $(2, 1)$-total labeling of G as follows:

For $i = 1, 2, \cdots, n$ and $j = 1, 2, \cdots, m$, let

$$f(v_i) = (i + j - 1) \mod (m + 1),$$

$$f(v_i) = m + n + 1;$$

$$f(v_i) = n + j (j = 1, 2, \cdots, m),$$

$$f(v_i) = n + 1;$$

$$f(u_{i,j}) = \begin{cases} m + n, & 1 \leq j \leq m - 2 \text{ and } j \text{ is odd} \ 1 \leq j \leq m - 2 \text{ and } j \text{ is even} \\
1 + m, & \end{cases}$$

It’s easy to see that f is a $(m + n + 1)$ - $(2, 1)$-total labeling of $S_{n+1} \cup P_m$, so we have $\lambda_2^G (G) \leq \Delta + 1 = m + n + 1$.

Theorem 2.2. Let $G = S_{n+1} \cup P_m$, if $m = n + 1 \geq 7$ then $\lambda_2^G (G) = \Delta + 1$

Proof. By lemma 1.1, it’s need to prove $\lambda_2^G (G) \leq \Delta + 1 = 2n + 2$.

Now, we give a $(2n + 2)$ - $(2, 1)$-total labeling of G as follows:

For $i = 1, 2, \cdots, n$ and $j = 1, 2, \cdots, m + 2$, let

$$f(v_i) = (i + j - 1) \mod (n + 2)$$

$$f(v_i) = m + n + 1;$$

$$f(v_i) = n + j (j = 1, 2, \cdots, n);$$

$$f(u_{i,j}) = \begin{cases} m + n, & 1 \leq j \leq n - 2 \text{ and } j \text{ is odd} \\
1 \leq j \leq n - 2 \text{ and } j \text{ is even} \\
1 + m, & \end{cases}$$

For $n \geq 6$, it’s easy to see that f is a $(m + n + 1)$ - $(2, 1)$-total labeling of G, so we have $\lambda_2^G (G) \leq \Delta + 1 = n + 4$.

Then f is a $(m + n + 1)$ - $(2, 1)$-total labeling of G, so we have $\lambda_2^G (G) \leq \Delta + 1 = n + 4$.

Copyright © 2010 SciRes.
The cartesian product of graph G and H, denoted $G \times H$, which vertex set and edge set are the follows: $V(G \times H) = \{(u,v) | u \in G, v \in H\}$, $E(G \times H) = \{(u,v)(u',v') | v = v', uu' \in E(G); or u = u', vv' \in E(H)\}$.

Let $w_{ij}(j = 0, 1, \ldots, n; j = 1, 2, \ldots, m)$ denote the vertex (v_{ij}, u_{ij}) of the graph $S_{n+1} \times P_m$.

Obviously, for $m = 2$, $\Delta(G \times H) = n + 1 = d(w_{0ij})(j = 1, 2)$, the degree of other vertexes is 2. For $m \geq 3$,

$$\Delta(G \times H) = n + 2 = d(w_{0ij})(j = 1, 2, \ldots, m),$$

where $d(w_{0ij}) = d(w_{0ij})(j = 1, 2, \ldots, n)$, the degree of other vertexes is 3.

For $n = 1, 2$, S_{n+1} is a path, S. M. Zhang [11] had studied the $(2, 1)$-total labeling of $P_m \times P_n$. So in the sequel, we only consider the case $n \geq 3$.

Theorem 3.1. Let $G = S_{n+1} \times P_m$ then $\lambda^T (G) = \Delta + 1$.

Proof. By lemma 1.1, it’s need to prove $\lambda^T (G) \leq \Delta + 1$.

Case 1. if $m = 2, n \geq 4$, then $\Delta = n + 1$.

We give a $(n + 2) - (2, 1)$-total labeling of G as follows:

By lemma 1.2, we let $f(w_{0ij}) = 0$, $f(w_{0ij}) = n + 2$,

$$f(w_{0ij}) = \begin{cases} i + 1, & i = 1, 2, \ldots, \frac{n}{2} \text{ and } j = 1, 2 \\ i + 2, & i = \frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n - 2; j = 1, 2 \\ i, & i = n, j = 2. \end{cases}$$

$$f(w_{0ij}) = \begin{cases} i + 1, & i = 1, 2, \ldots, \frac{n}{2} \text{ and } j = 1, 2 \\ i + 3, & i = \frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n - 2; j = 1, 2, \ldots, m. \end{cases}$$

$$f(w_{ij}) = \begin{cases} 4, & j \text{ is odd, } \end{cases}$$

$$f(w_{ij}) = \begin{cases} 5, & j \text{ is odd, } \end{cases}$$

$$f(w_{ij}) = \begin{cases} 6, & j \text{ is even}, \end{cases}$$

For $1 \leq j \leq m - 1$,

let $f(w_{ij}, w_{ij + 1}) = \begin{cases} 0, & i = 1, 2 \text{ and } j \text{ is odd, } \\
1, & i = 1, 2 \text{ and } j \text{ is even}. \end{cases}$

For $1 \leq j \leq m$,

let $f(w_{ij}) = \begin{cases} 1, & i = 3, 4, \ldots, n - 1 \text{ and } j \text{ is odd, } \\
2, & i = 3, 4, \ldots, n - 1 \text{ and } j \text{ is even}. \end{cases}$

$$f(w_{ij}) = \begin{cases} 3, & j \text{ is odd, } \end{cases}$$

For $1 \leq j \leq m - 1$,
$f(w_j, w_{i+j}) = \begin{cases}
\left\lfloor \frac{n}{2} \right\rfloor + 2, & i = 0, 3, 4 \cdots n; \text{and } j \text{ is odd,} \\
\left\lfloor \frac{n}{2} \right\rfloor + 3, & i = 0, 3, 4 \cdots n; \text{and } j \text{ is even.}
\end{cases}$

If $n \geq 4, 1 \leq j \leq m$ and j is even, we can see that

$$f(w_{0,j}) - f(w_{0,j}w_{i+j}) = n + 3 - \left\lfloor \frac{n}{2} \right\rfloor + 3 \geq 2,$$

$$f(w_{0,j}) - f(w_{2,j}) = n + 3 - 6 \geq 1,$$

then f is a $(n + 3) - (2, 1)$-total labeling of $S_{n+1} \times P_m$.

Case 3. If $m \geq n = 3$, then $\Delta = 5$.

We give a $6 - (2, 1)$-total labeling of $S_2 \times P_m$ as follows:

$$f(w_{0,j}) = 4(j = 1, 2 \cdots m),$$

For $1 \leq j \leq m$, let

$$f(w_{0,j}) = \begin{cases}
0, & \text{j is odd,} \\
6, & \text{j is even.}
\end{cases}$$

$$f(w_{0,j}w_{j}) = \begin{cases}
5, & \text{j is odd,} \\
0, & \text{j is even.}
\end{cases}$$

$$f(w_{0,j}w_{3,j}) = \begin{cases}
6, & \text{j is odd,} \\
1, & \text{j is even.}
\end{cases}$$

$$f(w_{i,j}) = \begin{cases}
1, & i = 1, 2; \text{and j is odd,} \\
2, & i = 1, 2; \text{and j is even.}
\end{cases}$$

$$f(w_{i,j}) = \begin{cases}
2, & j \text{ is odd,} \\
3, & j \text{ is even.}
\end{cases}$$

For $1 \leq j \leq m - 1$,

let $f(w_{0,j}w_{i+j}) = \begin{cases}
2, & j \text{ is odd,} \\
3, & j \text{ is even.}
\end{cases}$

$$f(w_{1,j}w_{i+j}) = \begin{cases}
5, & j \text{ is odd,} \\
6, & j \text{ is even.}
\end{cases}$$

$$f(w_{2,j}w_{i+j}) = \begin{cases}
4, & j \text{ is odd,} \\
6, & j \text{ is even.}
\end{cases}$$

$$f(w_{3,j}w_{i+j}) = \begin{cases}
0, & j \text{ is odd,} \\
5, & j \text{ is even.}
\end{cases}$$

It is easy to see that $\lambda_2^T(S_{n+1} \times P_m) = \Delta + 1$. This proves the theorem.

4. References

