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Abstract 
 
In this paper a new method based on neural network has been developed for obtaining the solution of the 
Stokes problem. We transform the mixed Stokes problem into three independent Poisson problems which by 
solving them the solution of the Stokes problem is obtained. The results obtained by this method, has been 
compared with the existing numerical method and with the exact solution of the problem. It can be observed 
that the current new approximation has higher accuracy. The number of model parameters required is less 
than conventional methods. The proposed new method is illustrated by an example. 
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1. Introduction 
 
CFD stands for Computational Fluid Dynamics, a sub-
genre of fluid mechanics that uses computers (numerical 
methods and algorithms) to represent, or model, prob-
lems that engage fluid flows. CFD software is usually 
used to solve equations in a discretized way. The domain 
is transferred into a grid or mesh – a regular/irregular and 
2D/3D surface of cells. After discretization, an equation 
solver runs to solve the equations of fluid motion (Euler 
equations, Navier-Stokes equations, etc.). Algorithms 
from numerical linear algebra, like: Gauss-Seidel, suc-
cessive over relaxation, Krylov subspace method or al-
gorithms from Multigrid family are typically used. These 
methods involve millions of calculations, so, as it can be 
easily observed, computing is time consuming. Also in 
many problems, even with parallel programming and su- 
percomputers, only approximate solutions can be reached. 

There are various optimization methods of computer 
science which can be used for CFD. Simulated Anneal-
ing, Genetic Algorithms, Evolution Strategy, Feed-For- 
ward Neural Networks are popular and we reimplemented 
in many projects. 

In [1] a framework is created for evolutionary optimi-
zation which is then tested on aerodynamic design ex-
ample. The framework was based on covariance matrix 
adaptation, with the feed-forward neural network as an 
approximate fitness function. An aerodynamic design 
procedure which combines neural networks with poly-
nomial fits is introduced in [2] and [3] discussed an arti-

ficial neural network which is an approximate model that 
is used for optimization of the blade geometry by simu-
lated annealing method. Parallel stochastic search algo-
rithm is introduced in [4] and tested on defining a shape 
of two airfoils. In this work, a performance neural net-
work for solving Stokes equations is presented. 

Lagaris, et al. [5] used artificial neural networks (ANN) 
for solving ordinary differential equations and partial 
differential equations for both boundary value and initial 
value problems. Canh and Cong [6] presented a new 
technique for numerical calculation of viscoelastic flow 
based on the combination of neural networks and Brownian 
dynamics simulation or stochastic simulation technique 
(SST). Hayati and Karami [7] used a modified neural 
network to solve the Berger’s equation in one-dimen-
sional quasilinear partial differential equation. 

The Stokes equations describe the motion of a fluid in 
( 2 3)nR n or . These equations are to be solved for an 

unknown velocity vector 1( , ) ( ( , )) n
i i nu x y u x y R    

and pressure ( , )p x y R . 
We restrict our attention here to incompressible fluids 

filling all of nR  (n = 2) as follow: 
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with boundary conditions:  
0 0 0

1 2 1 2( , ) ( , ) , onu u u u u u    . 

Here, 0u  is given, C  divergence-free vector field 
on  , 1 2,f f  are the components of a given, externally 
applied force ( e.g. gravity). The first and second equa-
tions of (1) are just Newton’s law f ma  for fluid 
element subject to the external force 1 2( , )f f f  and to 
the forces arising from pressure and friction. The third 
equation of (1) says that the fluid is incompressible. For 
physically reasonable solutions, we want to make sure 

1 2( , )u u u  does not grow as ( , )x y  . Hence we 
will restrict our attention to the force f  and initial con- 
dition 0u  that satisfy  

 0 ( ) 1
K

x Ku x C x



   , on nR , for any and some 

K , 
 ( ) 1

K

x Kf x C x



   , on nR , for any and some 

K . 
We accept a solution of (1) as physically reasonable 

only if it satisfies , ( )np u C R  and 

( )u x dx C


  (bounded energy). 

 
2. Description of the Method 
 
The usual proposed approach for problem (1) will be 
illustrated in terms of the following general partial dif-
ferential equation: 
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   (2) 

subject to certain boundary conditions (BC’s) (for exam-
ple Dirichlet and/or Neumann), where  

1( ,..., ) ,n n
nx x x R D R    denotes the definition do-

main and 1 2( ) , ( ), ( )x x x    are the solutions to be 
computed. 

If 1 1 2 2 3( , ),  ( , ),  ( , )t t tx P x P x P   denote trial solu-
tions with adjustable parameters 1 2 3, ,P P P , the problem 
(2) is transformed to 

        
1 2 3

2 2 2
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

        (3) 

subject to the constraints imposed by the BC’s. 
In the proposed approach, the trial solutions 1 1( , ),t x P  

2 2 3( , ),  ( , )t tx P x P   employ a feed forward neural net-
work and parameters 1 2 3, ,P P P  correspond to the weights 
and biases of the neural architecture. We choose trial 
functions 1 1 2 2 3( , ),  ( , ),  ( , )t t tx P x P x P    such that by 

construction satisfy the BC’s. This achieves by writing it 
as a sum of two terms 
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where 
1

( , ) ( )
H

k i i
i

N x P z 


   and 
1

n

i ij j ij
z w x u


   

( 1, 2,3)k   are single-outputs feed forward neural net-
work with parameters 1 2 3, ,P P P  and n input units fed 
with the input vector x . The terms ( ) ( 1,2,3)iA x i   
contain no adjustable parameters and satisfy the bound-
ary conditions. 

The second terms ( , ( , )) ( 1,2,3)i i iF x N x P i   is con-
structed so as not to contribute to the BC’s, since  

1 1 2 2 3( , ),  ( , ),  ( , )t t tx P x P x P    must also satisfy the BC’s. 
These terms employ a neural network whose weights and 
biases are to be adjusted in order to deal with the mini-
mization problem. Note at this point that the problem has 
been reduced from the original constrained optimization 
problem to an unconstrained one (which is much easier 
to handle) due to the choice of the form of the trial solu-
tion that satisfies by construction the BC’s. In the next 
section we present a systematic way to construct the trial 
solution, i.e., the functional forms of both Ai and Fi. We 
treat several common cases that one frequently encoun-
ters in various scientific fields. As indicated by our ex-
periments, the approach based on the above formulation 
is very effective and provides in reasonable computing 
time accurate solutions with impressive generalization 
(interpolation) properties. 
 
3. Neural Network for Solving Stokes  

Equations 
 
To solve problem (1) with [0,1] [0,1]   , we apply the  

operators 
x




 and 
y




 on the first and second equa- 

tions respectively. Then we obtain:  
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Using the third equation in (1), the Equation (5) may 
be written as:  

2 2

1 22 2
( ) ( )x y

p p
f f

x y

 
  

 
          (6) 

this is the Poisson equation, and has infinitely many so-
lutions. By imposing some boundary conditions, we are 
going to obtain an appropriate solution for Equation (6) 
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by the neural network. 
The trial solution is written as 

),,()1()1(),(),( PyxNyyxxyxAyxpt     (7) 

where ( , )A x y  is chosen so as to satisfy the BC, namely 
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where 

0 1 0( ) (0, ),  ( ) (1, ),  ( ) ( ,0)h y p y h y p y g x p x    and  

1( ) ( ,1)g x p x . 
Note that the second term of the trial solution does not 

affect the boundary conditions since it vanishes at the 
part of the boundary where Dirichlet BC’s are imposed. 
In the above PDE problems the error to be minimized is 
given by 
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where 1 2( ) ( )x yF f f   and ( , )i ix y  is a point in Ω. 
By solving the optimization problem (9), the weights 
, ,i ij iv w u  are obtained and then a trial solution for tp  is 

obtained. By substituting the trial solution tp  in the 
first equation of (1) we obtain: 

1 1

( )tp
u f

x


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
              (10) 

which is a Poisson equation for 1u , by using (9) and by  

substituting 1tu  and 1

( )tp
f

x





 for or p  and F , res- 

pectively, we can obtain a trial solution for 1tu . To ob-
tain 2u , we can substitute the trial solution tp  in the 
second equation in (1) to obtain: 

22

)(
f

y

p
u t 




 .              (11) 

In a similar manner we can obtain 2tu . 
 
4. Numerical Examples 
 
In this section we present one example to illustrate the 
method. We used a multilayer perceptron having one 
hidden layer with five hidden units and one linear output 
unit. For a given input vector 1 2( , )x x x  the output of 

the network is 
5

1

( , ) ( )i i
i

N x P z 


   where  

2

1i ij j ij
z w x u
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   and 

1
( )

1 x
x

e
 


. The exact ana- 

lytic solution is known in advance. Therefore we test the 

accuracy of the obtained solution. 
Example. Consider the problem (1) with Ω = [0,1] × 

[0,1]. We choose 1f  and 2f  such that the exact solu-
tion for 1 2,u u  and p  be as follows:  

2 2 2
1

2 2 2
2

2 2

10 (1 ) (1 3 2 )

10 (1 ) (1 3 2 )

5( ).

u x y x y y

u y x y x x

p x y

   

    

 

 

The domain Ω is first discretized by uniform mesh of 
size 1/ 3h   (4 points). This initial mesh is succes-
sively refined to produce meshes with sizes 1/ 4h   
and 1/ 5h   (respectively 9 and 16 points). Table 1 
reports the maximum error at nodal points (Maximum 
error) at the training set points and the distances 

2
t L

p p  and (1)t H
p p  between the exact solution 

and the training solution. 
In Figure 1 the error function tp p  for N = 25 is 

depicted which shows the solution is very accurate. 
We used the Equation (10) and obtained the solution 

1tu . Table 2 reports the maximum error at the training 
set points and the distances 1 1 2tu u  and (1)1 1t H

u u  
between the exact solution and the training solution. 

In a similar manner we obtained 2tu . Table 3 reports 
the maximum error at the training set points and the dis-  
 
Table 1. Maximum error at training set points and the dis-
tances 

2tp p  and 1t H
p p ( ) . 

N = 16 N = 9 N = 4  

1.8433e-75.1007e-4 0.0058 Maximum Error  

4.1647e-157.5171e-8 1.0025e-5 
2tp p  

4.9101e-137.5120e-6 4.1569e-4 (1)t H
p p  

 
Table 2. Maximum error at training set points and the dis-
tances 1 1 2tu u  and ( ) 11 1t H

u u . 

N = 25 N = 16 N = 9  

1.733e-8 2.0723e-8 0.0372 Maximum error 

2.576e-17 4.487e-17 4.091e-4 1 1 2tu u  

1.632e-15 6.4928e-15 0.040 1 1 (1)t H
u u  

 

Table 3. Maximum error at training set points and the dis-
tances 2 2 2tu u  and ( ) 12 2 t H

u u . 

N = 25 N = 16 N = 9  

2.6507e-072.6141e-05 0.0379 Maximum error 

1.3238e-141.2722e-010 4.0684e-04 2 2 2tu u  

2.7010e-121.8825e-008 0.0407 (1)2 2t H
u u  
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tances 2 2 2tu u  and (1)2 2t H
u u  between the exact 

solution and the training solution. 
In Figures 2 and 3 the error functions 1 1tu u  and 

2 2tu u  for N = 25 is depicted which shows the solu-
tions are very accurate (even between training points). 

In Figures 4-7 differential of the error functions 1 1tu u  
and 2 2tu u  respect to x  and y , for N = 25 are de-
picted, respectively, which show the solutions are dif-
ferentiable. 

Aman and Kerayechian [8] used linear programming-
methods to solve the above problem. They converted the 
Stokes problem to a minimization problem, then by dis-
cretizing the minimization problem. They obtained a 
linear programming problem and solved it. Table 4 pre-
sent the comparison between the proposed method and 
with Aman – Kerayechian method for 25 points. 
 

 

Figure 1. Error function  tp p . 

 

 

Figure 2. The error function 1 1tu u . 

 
Figure 3. The error function 2 2tu u . 

 

 
Figure 4. The differential of error function 1 1tu u  respect 

to x . 

 
Table 4. The comparison of our proposed method with 
Aman – Kerayechian method. 

Errors 
The proposed  

method 
Aman-  

Kerayechian method

Maximum error 

1 1tu u  1.7335e-008 0.007885 

(1)1 1t H
u u  1.6328e-015 0.082281 

Maximum error 

2 2tu u  2.6507e-007 0.007885 

(1)2 2t H
u u  2.7010e-012 0.082281 

Maximum error 

tp p  1.6392e-005 0.035104 

2tp p  2.2448e-011 0.027446 
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Figure 5. The differential of error function 1 1tu u  respect 

to y . 

 

 
Figure 6. The differential of error function 2 2tu u  respect 

to x . 

 
5. Conclusions 
 
In this paper a new method based on ANN has been ap-
plied to find solution for Stokes equation. The solution 
via ANN method is a differentiable, closed analytic form 
easily used in any subsequent calculation. The neural 
network here allows us to obtain fast solution of Stokes 
equation starting from randomly sampled data sets and 
refined it without wasting memory space and therefore 
reducing the complexity of the problem. 

If we compare the results of the numerical methods 
(see [8]) with our method, we see that our method has 
some small error. Other advantage of this method, the 
solution of the Stokes problem is available for each arbi-
trary point in training interval (even between training 
points). Indeed, after solving the Stokes problem, we 

 

Figure 7. The differential of error function 2 2tu u  respect 

to y . 

 
obtain an approximated function for the solution and so 
we can calculate the answer at every point immediately. 
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