
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPLICATION OF ADOMIAN’S APPROXIMATION TO
BLOOD FLOW THROUGH ARTERIES IN THE PRESENCE OF

A MAGNETIC FIELD

K. HALDAR

Abstract. The present investigation deals with the application of Ado-
mian’s decomposition method to blood flow through a constricted artery
in the presence of an external transverse magnetic field which is applied
uniformly. The blood flowing through the tube is assumed to be Newtonian
in character. The expressions for the two-term approximation to the solu-
tion of stream function, axial velocity component and wall shear stress are
obtained in this analysis. The numerical solutions of the wall shear stress
for different values of Reynold number and Hartmann number are shown
graphically. The solution of this theoretical result for a particular Hart-
mann number is compared with the integral method solution of Morgan
and Young [17].
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1. Introduction

There are many frontier problems which exist in physics, engineering, biology,
medicine, astrophysics and in many other disciplines. These problems are for-
mulated by nonlinear ordinary or partial differential equations or by the systems
of them subject to certian boundary conditions. The exact solutions of these
problems are not always possible due to their nonlinear character. In order to
solve them we need some simplications which change the physical problems to
mathematically tractable ones; but the solutions of the simplified problems de-
viate much from the actual solutions of the original problems. As a result we
take the advantage of traditional numerical techniques which result in massive
computations, to obtain solutions of the problems up to desired accuracy.
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Recently, a powerful method known as decomposition method which has been
developed by Adomian [1-6], can provide analytic approximations to a wide
class of nonlinear ordinary and partial differential equations or systems of them.
This method gives an accurate and computable solution of the problem for a
sufficiently small number of terms and demands to be parallel to any modern
supercomputer. The advantages of this method are avoidance of simplifications
which convert the physical problems to mathematically tractable ones whose
solutions are not consistent with those of the original problems. Theoretical
applications of decomposition method to fluid mechanics have been discussed by
Adomian [4]; but specific problems in this field have yet not been studied.

The basic equations of motion in fluid mechanics are represented by the
Navier-Stokes equations which are the nonlinear partial differential equations
and govern the flow field of air round aircraft, in ramjet, blood circulation in
the cardiovascular system of human body and in many other fields. The main
object of this paper is to study the specific problem of blood flow with the help
of this method under the influence of an externally applied magnetic field.

It has been reported by Barnothy [7] that the biological systems, in general,
are affected by the application of external magnetic field. Gold [8] has obtained
an exact solution of one-dimensional steady flow of an electrically conducting
fluid through a non-conduction circular tube under the influence of a uniform
transverse magnetic field. The corresponding unsteady problem has been studied
by Gupta and Bani Singh [9] considering an exponentially decaying pressure
gradient. Ramchandra Rao and Deshikachar [10] have studied the physiological-
type flow in the presence of a transverse magnetic field. Sud and Sekhon [11]
have used the finite-element method to study the blood flow through the human
arterial system in the presence of a steady magnetic field.

In all the above works the effects of different types of magnetic field on flow
characteristics in the tubes of uniform circular cross-section have been studied;
but the corresponding problem in the presence of a constriction are more inpor-
tant from the physiological standpoint of view. Deshikachar and Ramchandra
Rao [12] have studied the steady blood flow through a channel of variable cross-
section in the presence of a transverse magnetic field and the corresponding
unsteady problem has been investigated by Ramchandra Rao and Deshikachar
[13]. Mc Michael and Deutsch [14] have analysed the steady flow problem in a cir-
cular tube of variable cross-section under the influence of an axial magnetic field
and the same problem in unsteady case has been investigated by Deshikachar
and Ramchandra Rao.

The present investegation gives an application of decomposition method to a
steady two-dimensional blood flow through a constricted artery in the presence
of a uniform transverse magnetic field.

2. Mathematical Model
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Consider a steady, laminar and axially symmetric flow of blood through a
locally constricted straight artery of infinite length under the influence of an
external transverse magnetic field which is applied uniformaly. Blood flowing
through the tube is supposed to be conducting and Newtonian in character.
The assumptions of constant fluid density and viscosity are used here. The
appropriate equations governing the flow field in the tube are the momentum
equations and these equations, after introducing the electro-magnetic force, in
cylindrical polar co-ordinates (x̄, r̄, θ̄) are

~U · ∇̄~U =
1
ρ
· ~∇~P + ν ~∇2 ~U +

1
ρ

(
~I × ~B

)
(1)

where ~U is the velocity vector of the field, P the pressure, ν the kinametic
viscosity, ρ the density of the fluid, ~I the current density, ~B the magnetic field
and the operator ∇̄2 is given by

∇̄2 =
∂2

∂r̄2
+

1
r̄
·
∂

∂r̄
+

1
r̄2

·
∂2

∂θ̄2
(2)

The current density and magnetic field are expressed by the Maxwell’s equa-
tions and Ohm’s law, namely

~I = σe

[
~E + µe

(
~U × ~B

)]
(3)

V̄ ~B = 0 (4)

V̄ × ~B = 0 (5)

where ~E is the electric field, σe conductivity of the fluid and µe is the magnetic
permeability.

In the present investigation, it is assumed that the effects of the induced
magnetic field and the electric field produced due to the motion of electrically
conducting fluid are very small and no external force is applied. With these
assumptions and assumption of axially symmetric flow of fluid, the governing
equations of motion of the fluid are the Navier-Stokes equations in cylindrical
polar coordinates

ū
∂ū

∂x̄
+ v̄

∂ū

∂r̄
= −1

ρ

∂p̄

∂x̄
+ ν

(
∂2ū

∂r̄2
+

1
r̄
· ∂ū
∂r̄

+
∂2ū

∂x̄2

)
− B2

0

ρ
· ū (6)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂r̄
= −1

ρ
· ∂p̄
∂r̄

+ ν

(
∂2v̄

∂r̄2
+

1
r̄
· ∂v̄
∂r̄2

− v̄

r̄2
+
∂2v̄

∂x̄2

)
(7)

and the continuity equation :
∂

∂x̄
(r̄ū) +

∂

∂r̄
(r̄v̄) = 0 (8)
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where (ū, v̄) are the components of the fluid velocity in the axial and radial
directions respectively, B0(= µeH0) is the electromagnetic induction and H0 is
the transverse component of magnetic field.

The geometry of the constriction is described by

R̄(x̄)
R0

= 1 − Σ̄
R0

f̄(x̄) (9)

where R0 is the radius of the normal tube, R̄(x) the radius of the tube in the
stenotic region and Σ̄ the maximum height of stenosis.

The boundary conditions are

ū = v̄ = 0 at r̄ = R̄(x̄) (10)

∂ū

∂r̄
= 0 at r̄ = 0 (11)

R̄(x̄)∫

0

r̄ūdr̄ = Q̄/2π (12)

where Q̄ is the constant volumetric flux across any cross-section of the tube.
It is convenient to write the system of equations from (6) to (12) in the non-

dimensional forms with the help of the following transformations

u = ū/U0, v = v̄/U0

r = r̄/R0, x = x̄/R0, p = p̄/ρU2
0

(13)

where (u, v) are the dimensionless velocity components, U0 is the characteristic
velocity and p is the non-dimensional fluid pressure.

The momentum equations (6) and (7) are

u
∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
+

1
Re

[
∂2u

∂r2
+

1
r

∂u

∂r
+
∂2u

∂x2

]
−M2u (14)

in the axial direction and

u
∂v

∂x
+ v

∂v

∂r
= −∂p

∂x
+

1
Re

[
∂2v

∂r2
+

1
r

∂v

∂r
− v

r2
+
∂2v

∂x2

]
(15)

in the radial direction where Re and M are the Reynolds number and Hartmann
number defined by

Re = U0R0/ν
M2 = B2

0σeR
2
0/µ

(16)

Similarly, the dimensionless continuity equation (8) is

∂

∂x
(ru) +

∂

∂r
(rv) = 0 (17)
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and the geometry of constriction takes the form

η(x) = 1 − Σf(x) (18)

where
η(x) = R̄(x̄)/R0

f(x) = f̄(x̄)/R0

Σ = Σ̄/R0

(19)

The corresponding non-dimensional boundary conditions are

u = v = 0 at r = η; (20)

∂u

∂r
= 0 at r = 0 (21)

η(x)∫

0

rudr = −1
2

(22)

Next we introduce the stream function ψ defined by

u = −
1
r
·
∂ψ

∂r
, v = −

1
r
·
∂ψ

∂x
(23)

Then the continuity equation (17) is satisfied identically and using (23) elim-
ination of p between (14) and (15) gives the following governing equation

Re

[
1
r
· J − 2

r2
· ∇2ψ · ∂ψ

∂x

]
= ∇4ψ −M2r

∂

∂r

(
1
r
· ∂ψ
∂r

)
(24)

where J is the Jaccobian defined by

J =
∂(∇2ψ, ψ)
∂(r, x)

=

∣∣∣∣∣∣∣

∂

∂r
(∇2ψ)

∂ψ

∂r
∂

∂x
(∇2ψ)

∂ψ

∂x

∣∣∣∣∣∣∣
(25)

and the operator ∇2 is given by

∇2 =
∂2

∂r2
− 1
r

∂

∂r
+

∂2

∂x2
(26)

The boundary conditions in terms of ψ are

−1
r

∂ψ

∂r
= 0, ψ − 1

2
at r = η (27)

−
∂

∂r

(
1
r

∂ψ

∂r

)
= ψ = 0 at r = 0 (28)

3. Method of Solution

21

K. HALDAR



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The equation (24) is a non-linear partial differential equation and the exact
solution of this equation is not always possible. This equation can be solved by
using traditional numerical techniques which result in massive numerical compu-
tations. Recently, a modern powerful method known as decomposition method
has been developed by Adomian [1-6] and applied here to obtain analytic ap-
proximations to this non-linear equation. Let L = ∂2

∂r2 − 1
r

∂
∂r and the equation

(24) becomes

L2ψ = ReNψ − ∂4ψ

∂x4
− 2

∂2

∂x2
(Lψ) +M2Lψ (29)

where

Nψ =
1
r
· J −

2
r2

·
∂ψ

∂x
· ∇2ψ (30)

If we operate both sides of (29) by the inverse operation L−2 [2], then we get

ψ = ψ0 + L−2

[
ReNψ − ∂4ψ

∂x4
− 2

∂2

∂x2
(Lψ) +M2Lψ

]
(31)

Here ψ0 is the solution of the hogoneous equation

L2ψ0 = 0 (32)

and it is given by

ψ0 =
1
16

A(x)r4 +B(x)L−1
1 r log r +

1
2
C(x)r2 + F (x) (33)

The integration constants A, B, C and F involved in (33) are to be determined
from the given boundary conditions (27), (28) and L−1

1 =
∫
(.)dr.

Next we decompose ψ and Nψ into the following forms

ψ =
∞∑

n=0

λnψn (34)

Nψ =
∞∑

n=0

λnPn (35)

where Pn are Adomian’s special polynomials which are to be discussed later.
The parameter λ used in (34) and (35) is not a perturbation parameter; it is
only used for grouping the terms of different orders. Then the parameterixed
form of (31) as [2]

ψ = ψ0 + λL−2

[
ReNψ − ∂4ψ

∂x4
− 2

∂2

∂x2
(Lψ) +M2Lψ

]
(36)
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Now we substitute (34), (35) into (36) and them comparing the like-power
terms of λ on both sides of the resulting expression we get

ψn+1 = L−2

[
RePn −

∂4ψn
∂x4

− 2
∂2

∂x2
(Lψn) +M2Lψn

]
(37)

where n = 0, 1, 2, · · · . Once the component ψ0 is determined, the other com-
ponents of ψ such as, ψ1, ψ2, ψ3 etc. can be easely determined from (37). The
decomposition refered to above is called regular decomposition of ψ.

If we further take parameterized decomposition of ψ0 given by

ψ0 =
∞∑

n=0

λnψ0,n (38)

we mean the double decomposition [3]. Substitution of (34), (35), (38) into (36)
gives the double decomposition components of ψ and these are given by the
relation

ψn+1 = ψ0,n+1 + L−2

[
RePn − ∂4ψn

∂x4
− 2

∂2

∂x2
(Lψn) +M2Lψn

]

(39)

n being zero and any positive integer.
Since the expression for ψ0 contains the constants A, B, C and F therefore,

the parameterized decomposition forms of all these constants are

A =
∞∑

n=0

λnAn

B =
∞∑

n=0

λnBn

C =
∞∑

n=0

λnCn

F =
∞∑

n=0

λnFn

(40)

If we substitute (38) and (40) into (33) and then if we compare the like-power
terms of λ on both sides of the resulting expression we get

ψ0,n+1 =
1
16

An+1r
4 +Bn+1L

−1
1 r log r +

1
2
Cn+1r

2 + Fn+1 (41)

The relations (39) and (41) together give the components of ψ. The constants
involved in each ψn will be determined by their respective boundary conditions.

The polynomials P0, P1, · · · Pn are Adomian’s polynomials [1, 2]. They are
defined in such a way that P0 ≡ P0(ψ0), P1 ≡ P1(ψ0, ψ1), P2 ≡ P2(ψ0, ψ1, ψ2),
· · · Pn = Pn(ψ0, · · ·ψn). In order to determine these polynomials, we substitute
(34) and (35) into (30) and then comparison of the terms of like power of λ
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on both sides of the resulting equation gives the following set of Adomian’s
polynomials

P0 =
1
r
· ∂(∇2ψ0, ψ0)

∂(r, x)
− 2
r2

· ∂ψ0

∂x
· ∇2ψ0

P1 =
1
r

[
∂(∇2ψ, ψ0)
∂(r, x)

+
∂(∇2ψ0, ψ1)
∂(r, x)

]

=
2
r2

[
∂ψ0

∂x
· ∇2ψ1 +

∂ψ1

∂x
· ∇2ψ0

]

· · · · · · · · · · · ·
· · · · · · · · · · · ·

(42)

Again substitution of (34) into the boundary conditions (27) and (28) gives
the boundary conditions for the respective components ψ0 ψ1, etc. as

−1
r
· ∂ψ0

∂r
= 0, ψ0 = −1

2
at r = η

− ∂

∂r

(
1
r
· ∂ψ0

∂r

)
= ψ0 = 0 at r = 0





(43)

−
1
r
·
∂ψn
∂r

= ψn = 0 at r = η

− ∂

∂r

(
1
r
· ∂ψn
∂r

)
= ψn = 0 at r = 0





(44)

for any positive integer.

4. Solution of the Problem

Before proceeding to the solutions we have to find out the inverse operator
L−2 and for that we consider the following equation for ψ

Lψ = F (45)

which, on solving, gives

ψ =
[
L−1

1 r
(
L−1

1 r−1
)]
F (46)

remembering that the boundary condition terms vanish and L−1
1 is an one-fold

indefinite integral. From the relation (46) it is obvious that the inverse L−1 is
identified as

L−1 =
[
L−1

1 r
(
L−1

1 r−1
)]

(47)

and hence we get

L−2 = L−1
1

[
rL−1

1

{
r−1L−1

1

(
rL−1

1 r−1
)}]

(48)
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Using the boundary conditions (43) in (33), we have the expression for ψ0 as

ψ0 =
1

2η4

(
r4 − 2η2r2

)
(49)

The expression for ψ1 can be obtained from (39) and (41) by putting n = 0
and this expression involves the operator L−2 given by (48). Performing the
operation of this inverse operator, we get

ψ1 = α(x)r10 + β(x)r8 + γ(x)r6

+
1
16

A1r
4 +B1L

−1
1 r log r +

1
2
C1r

2 + F1
(50)

where A1 B1 C1 and F1 are integration constants to be obtained by satisfying
the boundary conditions (44) obtained by putting n = 1 and these constants are
found to be

B1 = F1 = 0
A1 = −16η2

(
4αη4 + 3βη2 + 2γ

)

C1 = 2η4
(
3αη4 + 2βη2 + γ

) (51)

The expressions for α, β and γ are given by

α = (Re/960η11)
(
20η3

1 − 13ηη1η2 + η2η3
)

(52)

β = (Re/144η9)
(
4η1 − η2η3 + 11ηη1η2 − 16η3

1

)

= (1/576η8)
(
15η2η2

2 + 20η2η1η3 − 180ηη2
1η2 + 210η4

1 − η3η4
)

(53)

γ = (Re/48η7)
(
12η3

1 − 9ηη1η2 + η2η3 − 8η1
)

= (1/96η6)
(
η3η4 − 12η2η1η3 − 9η2η2

2 + 72ηη2
1η2 − 60η4

1 + 80η2
1 − 16ηη2

)

= +
M2

48η4
(54)

where η1, η2, η3 and η4 are the derivatives of η with respect to x indicating the
orders according to their suffices. The resulting expression for ψ1 is found to be

ψ1 = αr10 + βr3 + γr6

−η2
(
4αη4 + 3βη2 + 2γ

)
r4

+η4
(
3αη4 + 2βη2 + γ

)
r2

(55)

If we consider two-term approximation of the solution ψ we obtain from (34)

ψ = ψ0 + ψ1 (56)

where ψ0 and ψ1 are given by (49) and (55) remembering that λ = 1. Con-
vergence of solution ψ has now been well established [1, 2]. The axial velocity
component is found to be

u = −
[
1
r
· ∂ψ0

∂r
+

1
r
· ∂ψ1

∂r

]
(57)
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The wall shearing stress is defined by

T = −1
4

(
∂u

∂r

)

r=n

(
1 + η2

1

)
(58)

which, on substitution of u from (56), gives

T = (1/η3)
[
1 + 2η6

(
6αη4 + 3βη2 + γ

)] (
1 + η2

1

)
(59)

5. Numerical Discussion

For numerical discussion the function f(x) is described by

f(x) =
1
2

(
1 + cos

πx

L0

)
,−L0 ≤ x ≤ L0 (60)

Then the geometry of constriction (18) takes the following form

η(x) = 1 − 1
2
Σ

(
1 + cos

πx

L0

)
,−L0 ≤ x ≤ L0 (61)

The variations of the wall shear stress (58) along the length of the constricted
artery are shown graphically for different values of Reynolds number and Hart-

tion for each Reynolds number occurs just ahead of the throat of stenosis and
negetive distribution of the solution is observed over some length of the tube in
the diverging section. This negetive behaviour of the wall shear stress indicates
separation which involves circulation with back flow near the wall. As a result of
this back flow a low shear exists at the wall and a high velocity core surrounded
by the separated region is formed. With the increase of Reynolds number the
negetive behaviour of the solution increases showing the enlargement of circu-

wall shear stress with x for different values of Hartmann number. It is seen that
the negetive behaviour of the solution observed in the diverging section of the
tube decreases with increasing Hartmann number. As a result the circulation
diminishes indicating the favourable physiological condition. Therefore, it can
be concluded that the effect of an external transverse magnetic field applied
uniformly favours the condition of blood flow.

[17] for the Hartmann number equal to unity. The solution is in good agreement
with Morgan and Young [17] in the diverging section whereas same deviations
are observed in the converging region of the tube.

The theoretical result has been explained numerically for two-term approxi-
mation of the solution ψ. The result can be improved by considering three-term
approximation or more to the solution.
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The advantage of decomposition method is to give analytical approximate
solution of nonlinear ordinary or partial differential equation which is rapidly
convergent [2, 15, 16]. The speed of convergency depends upon the choice of op-
erator which may be a highest-ordered differential operator or a combination of
linear operators or a multidimensional operator. This method does not take the
help of any simplification for handling the nonlinear terms. Since the decomposi-
tion parameter is used only for grouping the terms, therefore, the non-linearities
can be handled easily in the operator equation and accurate approximate solu-
tion may be obtained for any physical problem.
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