Retraction Notice

Title of retracted article: Generation of Pascal Triangle Using Matrices
Author(s): Prema R. Balasubramani
Corresponding author Email: balguve@gmail.com
Journal: Advances in Linear Algebra & Matrix Theory (ALAMT)
Year: 2017
Volume: 7
Number: 4
Pages (from - to): 79 - 83
DOI (to PDF): http://dx.doi.org/10.4236/alamt.2017.74008
Paper ID at SCIRP: 2230137
Retraction date: 12-26-2017

Retraction initiative (multiple responses allowed; mark with X):
☐ All authors
☐ Some of the authors:
☒ Editor with hints from
☐ Journal owner (publisher)
☐ Institution:
☒ Reader:
☐ Other:

Date initiative is launched: 12-01-2017

Retraction type (multiple responses allowed):
☐ Unreliable findings
☐ Lab error
☒ Inconsistent data
☐ Analytical error
☐ Biased interpretation
☐ Irreproducible results
☐ Failure to disclose a major competing interest likely to influence interpretations or recommendations
☐ Unethical research
☐ Fraud
☐ Data fabrication
☐ Fake publication
☐ Other:
☐ Plagiarism
☐ Self plagiarism
☐ Overlap
☐ Redundant publication *
☐ Copyright infringement
☐ Other legal concern:

☐ Editoria error
☐ Handling error
☐ Unreliable review(s)
☐ Decision error
☐ Other:
☐ Other:

Results of publication (only one response allowed):
☐ are still valid.
☒ were found to be overall invalid.

Author’s conduct (only one response allowed):
☐ honest error
☐ academic misconduct
☒ none (not applicable in this case – e.g. in case of editorial reasons)

* Also called duplicate or repetitive publication. Definition: “Publishing or attempting to publish substantially the same work more than once.”
History
Expression of Concern:
☐ yes, date: yyyy-mm-dd
☐ no

Correction:
☐ yes, date: yyyy-mm-dd
☐ no

Comment:
The paper does not meet the standards of "Advances in Linear Algebra & Matrix Theory".

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. Aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof. Mubariz Garayev and Prof. Qingwen Wang (EiC of ALAMT)
Generation of Pascal Triangle Using Matrices

Prema R. Balasubramani

BRC, Tiruvannamalai, India
Email: balguve@gmail.com

Abstract
Pascal’s triangle can be generated in many ways. In this paper, we generate the numbers in the Pascal triangle by applying a small perturbation technique in matrices.

Keywords
Pascal Triangle, Perturbation, Matrices

1. Introduction
The great French mathematician Blaise Pascal introduced the concept of Pascal’s triangle during the 17th century and applied it to study the probability theory. The Pascal’s triangle is an unending equilateral triangle. The generation of numbers in this triangle is obtained by the simplest technique. Each number in this triangle is the sum of the two numbers directly above it. Although the creation of Pascal’s triangle is simple, it has connections throughout many areas of mathematics such as algebra, probability, number theory, combinatorics and fractals. Pascal’s triangle has many interesting features, however, it is primarily applied to write any binomial expansion.

There are some interesting patterns associated with the Pascal’s triangle. The sum of all elements in the nth row is equal to 2^n. From the inner diagonals, we obtain a sequence of triangular numbers $1, 3, 6, 10, \ldots$ There is a technique to obtain Fibonacci numbers from this triangle.

There are several methods to obtain numbers in the Pascal’s triangle and related numbers. V. E. Hoggatt (1967) discussed the binomial coefficients and Fibonacci numbers [1]. Marjorie Bicknell and V. E. Hoggatt, Jr. (1973) discussed the multinomial coefficient triangle and the convolution triangle formed from sequences [2]. Boris A. Bondarenga (1990) discussed the history of the Pascal Triangle and the binomial coefficients, and also described Pascal triangle of s^{th} order, Pascal pyramids and Hyper pyramids and triangle associated with the Fi-
bonacci and other analog of the binomial coefficients [3]. Bing Cheng Li (1992) studied the three-dimensional moments that had been widely used in computer vision, but until now obtaining 3D moments had always needed much computation, which has not been resolved well [4]. In this paper, he proposed a fast and simple algorithm for calculating 3D moments and Pascal triangle transform (PTT) method is used to calculate monomials with one variable. The calculation of monomials is extended to those with three variables. Finally, sequential and parallel algorithms that need no multiplications are provided for calculating 3D moments. We also concluded that the numbers in the Pascal’s triangle could be obtained through a pattern of tossing coins. Gragory S. Call and Daniel J. velleman (1993) discussed the Pascal’s matrices while working on a probability problem involving repeated flips of an unfair coin. In this paper, we provide a method of generating the numbers in the Pascal’s triangle by using the matrices [5].

2. Main Result

As usual, we denote by $\mathbb{C}^{m \times n}$ the set of all $m \times n$ matrices over the field of complex numbers \mathbb{C}.

Definition 1. Let $A=(a_{ij}) \in \mathbb{C}^{m \times n}$, choose $\varepsilon > 0$ and let $k \in \{0, 1, 2, \cdots, mn\}$. We define an (ε, k)-perturbations of A to be a matrix $B=(b_{ij}) \in \mathbb{C}^{m \times n}$, where k distinct entries of B, say $b_{ij_1}, b_{ij_2}, \cdots, b_{ij_k}$ are given by $b_{ij_k} = a_{ij_k} + \varepsilon$, and all the remaining entries of B are equal to the corresponding entries of A. We use the convention $0 > 0$-perturbations of A to mean the matrix A itself.

Lemma 1. Let $A=(a_{ij}) \in \mathbb{C}^{m \times n}$, and let $\varepsilon > 0$. Then for each $k \in \{0, 1, 2, \cdots, mn\}$, the number of all possible (ε, k)-perturbations of A is the same as the number of ways of selecting k objects from “mn” distinct objects without regard to the order.

The proof of the lemma is straightforward and hence omitted. The lemma and the binomial theorem, we get the following result:

$$\binom{mn}{k} = \frac{(mn)!}{k!(mn-k)!}$$

Theorem 1. Let $A=(a_{ij}) \in \mathbb{C}^{m \times n}, x \in \mathbb{C}$ and $\varepsilon > 0$. Then for each $k \in \{0, 1, 2, \cdots, mn\}$, the number of all possible (ε, k)-perturbation of A is the binomial coefficient of the term x^k in the binomial expansion of $(1+x)^{mn}$. By changing the positive integer $p=mn$ over the set of positive integers N, we generate the Pascal’s triangle.

Remark 1. Let $A=(a_{ij}) \in \mathbb{C}^{m \times n}$, and let $\varepsilon > 0$. Then for every $k \in \{0, 1, 2, \cdots, mn\}$, denote by A_k the number of all possible (ε, k)-perturbation of A. It then follows that

$$\sum_{k=0}^{mn} A_k = 2^{mn}$$

Example 1. Let $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2}$, and let $\varepsilon > 0$. Then $A_0 = 1$.

DOI: 10.4236/alamt.2017.74008
And $A_1 = 4$ since the $(\varepsilon,1)$-perturbations of A are
\[
\begin{pmatrix}
 a + \varepsilon & b \\
 c & d
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b \\
 c & d
\end{pmatrix},
\begin{pmatrix}
 a & b \\
 c + \varepsilon & d
\end{pmatrix},
\begin{pmatrix}
 a & b \\
 c + \varepsilon & d
\end{pmatrix},
\begin{pmatrix}
 a & b \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a & b \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix}
\]

Also $A_2 = 6$, since the $(\varepsilon,2)$-perturbations of A are
\[
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix}
\]

Moreover $A_3 = 4$, since the $(\varepsilon,3)$-perturbations of A are
\[
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix}
\]

Finally $A_4 = 1$, since the $(\varepsilon,4)$-perturbations of A is
\[
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon \\
 c + \varepsilon & d + \varepsilon
\end{pmatrix}
\]

So,
\[
\sum_{i=1}^{4} A_i = 1 + 4 + 6 + 4 + 1 = 16 = 2^4
\]

Example 2. Let $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in \mathbb{C}^{2 \times 3}$, and let $\varepsilon > 0$ then, $A_0 = 1$,

And $A_1 = 6$ since the $(\varepsilon,1)$-perturbations of A are
\[
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b & c + \varepsilon \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b & c + \varepsilon \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b & c \\
 d + \varepsilon & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b & c \\
 d + \varepsilon & e & f
\end{pmatrix}
\]

Also $A_2 = 15$ since the $(\varepsilon,2)$-perturbations of A are
\[
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b & c + \varepsilon \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b & c + \varepsilon \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d + \varepsilon & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d + \varepsilon & e & f
\end{pmatrix}
\]

Moreover $A_3 = 20$ since the $(\varepsilon,3)$-perturbations of A are
\[
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c + \varepsilon \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c + \varepsilon \\
 d & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d + \varepsilon & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d + \varepsilon & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d + \varepsilon & e & f
\end{pmatrix},
\begin{pmatrix}
 a + \varepsilon & b + \varepsilon & c \\
 d + \varepsilon & e & f
\end{pmatrix}
\]
Moreover also $A_4 = 15$ since the $(\epsilon,4)$-perturbations of A are
\[
\begin{pmatrix}
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
\end{pmatrix}.
\]
Moreover also then $A_5 = 6$ since the $(\epsilon,5)$-perturbations of A are
\[
\begin{pmatrix}
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
\end{pmatrix}.
\]
Finally $A_6 = 1$ since the $(\epsilon,6)$-perturbations of A is
\[
\begin{pmatrix}
 a+\epsilon & b+\epsilon & c+\epsilon \\
 d+\epsilon & e+\epsilon & f+\epsilon \\
\end{pmatrix}.
\]
So,
\[
\sum_{i=1}^{6} A_i = 1 + 6 + 15 + 20 + 15 + 6 + 1 = 64 = 2^6.
\]

Acknowledgements

The author is grateful to an anonymous referee for some helpful comments. We indebted to Dr. A. Sugumaran, Associate Professor of Mathematics, Government Arts College, Tiruvannamalai, India, for very helpful discussions concerning this work.

References

