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Abstract 
The use of beneficial microorganisms in forage grasses is a potentially advan-
tageous technique for a more sustainable pasture management by decreasing 
the need for chemical fertilization. Our aims were to determine the best me-
thod of microorganism inoculation on Brachiaria (Syn. Urochloa) brizantha 
cv. BRS Piatã, compare the responses of inoculated plants of this forage grass 
with fertilized and unfertilized controls and examine its effect on some mor-
phological, physiological and biochemical responses. On the first experiment, 
three inoculation methods were tested: in the seed, seed and soil, and soil, 
with Pseudomonas fluorescens (BRM-32111) and Burkholderia pyrrocinia 
(BRM-32113). In the second experiment, fertilized and unfertilized plants 
were either inoculated with BRM-32111, BRM-32113 and co-inoculated (BRM- 
32111 + BRM-32113). In a final experiment, B. brizantha was inoculated by 
soil drenching with BRM-32111, BRM-32113 and co-inoculated (BRM-32111 
+ BRM-32113), and compared to fertilized- and unfertilized-controls. The in-
oculation by soil drenching, at seedling stage, was more effective than inocu-
lation only in the seed or both in the seed and by soil drenching. The fertilizer 
may have suppressed the beneficial bacterial effects on the growth of B. bri-
zantha. P. fluorescens and B. pyrrocinia co-inoculated increased nitrate, pro-
tein, nitrogen concentration, Spad index (chlorophyll content), leaf area, 
number of tillers, net photosynthesis and total biomass production of B. bri-
zantha plants. Our results point out to a potentially valuable source of practic-
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al information in the search of an eco-friendlier approach to increase pasture 
productivity. 
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1. Introduction 

Increasing global population coupled with shifting dietary preferences in emerging 
economies is leading to a substantial increase in the consumption of livestock 
products, mainly beef. Sustainable intensification of current pasturelands in de-
veloping counties is an important tool to meeting future demands for beef [1]. 
The use of plant growth-promoting microorganisms in pastures is a potentially 
advantageous technique, as a more economical and eco-friendlier approach to 
increase pasture productivity, when compared to the sole use of chemical ferti-
lizers [2] [3] [4] [5]. 

Plant growth-promoting microorganisms are beneficial endophytic or rhi-
zospheric microorganisms, able to colonize roots and directly promote growth 
by regulating the pathway of plant hormones, increasing the biosynthesis of 
auxin, cytokinin, gibberellin, or minimizing the ACC synthesis, the ethylene 
precursor, delaying plant senescence [6] [7]. Another beneficial mechanism of 
growth-promoting microorganisms is to increase the availability of essential nu-
trients for plant growth, such as nitrogen and phosphorus, and to promote in-
duced resistance of plant defenses against diseases, pests, and abiotic stressors 
[6] [7]. Growth promotion, resulting from the association of beneficial microor-
ganisms, has been reported in wheat plants [8], forage grass [5], maize [9] and 
Sorghum bicolor [10]. 

In Brazil, around 80% of pasture areas are formed by grasses of the Brachiaria 
(Syn. Urochloa) genus, among which stands out B. brizantha, being the cultivar 
BRS Piatã one of the major current options for pasture formation [11] [12]. 
Most of these pasture areas is under low fertility soils, requiring chemical fertili-
zation to produce satisfactorily and, in particular, nitrogen fertilization to inten-
sify pasture management [2] [4] [5]. However, the efficiency of fertilizer uses by 
plants, particularly that of nitrogen, may vary greatly. This can create adverse 
environmental impacts by increasing greenhouse gas emissions and eutrophica-
tion [13] [14] [15]. 

The association between B. brizantha and diazotrophic bacteria could be 
highly beneficial, for nitrogen fixation and subsequent transfer of the fixed ni-
trogen to the host plant, increasing the sustainability of agriculture and reducing 
its impact on the environment. However, Brachiaria genus is known to be very 
allelopathic [16] [17]. This may deter the establishment of beneficial microor-
ganisms in the rhizosphere [6]. Therefore, research on the optimal inoculation 
method of beneficial microorganisms is crucial for this grass genus. 
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Studies proved that diazotrophic rhizobacteria identified as Pseudomonas 
fluorescens and Burkholderia pyrrocinia, isolated from the rhizosphere soil, in 
Pará, Brazil, when inoculated in seed, are growth promoters in rice plants, in-
creased chlorophyll content, photosynthetic rate, nutrient uptake, and biomass 
production [18] [19]. We hypothesize that these growth-promoting microor-
ganisms are capable of stimulating growth in B. brizantha cv. BRS Piatã, grown 
in low-fertility soils, being an important strategy for the sustainable intensifica-
tion of pasture production systems. Therefore, the aim of this study was to de-
termine the optimal inoculation method of plant growth promoting microor-
ganisms, and examine their effect on some morphological, physiological, and 
biochemistry responses of B. brizantha cv. BRS Piatã. 

2. Materials and Methods 
2.1. Study Site, Plant and Soil 

The experiment was conducted at the Plant Protection Laboratory and green-
house of the Federal Rural University of Amazonia (UFRA) (01˚27'25''S, 
48˚26'36''W) in Belém, Pará, Brazil. Seeds were sown in polyethylene pots (15 × 
25 × 0.5 cm) filled with low-fertility soil (Ferralsol, pH, 4.2; organic matter, 18.80 
g∙dm−3; P, 2 mg∙dm−3; K, 4 mg∙dm−3; Ca, 0.2 mmolc∙dm−3; Ca + Mg, 0.3 
mmolc∙dm−3; Al, 1.4 mmolc∙dm−3) and kept under greenhouse conditions. 

2.2. Preparation of Inoculum 

Pseudomonas fluorescens (BRM-32111) and Burkholderia pyrrocinia (BRM- 
32113) are currently stored and preserved in the in vitro collection of the Plant 
Protection Laboratory, at the Federal Rural University of the Amazon. The bac-
terial isolates were cultured in solid 523 medium for 48 h at 28˚C. The bacterial 
suspension was prepared in water and adjusted to A540 = 0.2 (108 CFU). 

2.3. Inoculation forms Tested 

 Seed (microbiolized seed): B. brizantha seeds were sterilized with 70% ETOH 
and 2% NaClO, both for 1 minute, washed in sterile water for 1 minute, and 
placed on sterile filter paper, for 1 hour. Before sowing, the seeds were 
steeped in the suspensions for for 24 hours, at 28˚C and at constant agitation. 

 Seed and Soil: microbiolized seed + soil drenched. 
 Soil (soil drenched): 5 mL of suspension of each treatment, bacterial isolates 

(108 CFU) drenched the trial soil at 14 days after seedling emergence (DASE). 

2.4. Experiment I 

The treatments consisted of two microorganisms, BRM-32111 and BRM-32111 
with three inoculation forms and a control. The experimental design was com-
pletely randomized with five replications. At 21 DASE, seedlings were harvested 
and separated into shoot (leaf blades and culms) and roots. Plant material was 
oven dried (60˚C) until constant mass. Total dry mass (TDM) was calculated by 
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adding shoot dry mass (SDM) and root dry mass (RDM). The experiment was 
repeated three times with similar results. 

2.5. Experiment II 

The treatments consisted of fertilized and unfertilized non-inoculated B. bri-
zantha plants, or fertilized plants, inoculated with BRM-32111, BRM-32113 and 
co-inoculated with BRM-32111 + BRM-32113 (MIX). The experimental design 
was completely randomized with eight treatments and five replications. Ferti-
lized plants were fertilized with 5 mg dm-3 of N, 14 mg∙dm−3 of P2O5, and 10 
mg∙dm−3 of K2O. Suspension of bacterial isolates (5 mL, 108 CFU), water 
drenched the trial soil at 14 DASE. At 21 DASE, seedlings were harvested to de-
termine biomass production. The experiment was repeated three times with sim-
ilar results. 

2.6. Experiment III: Growth Promotion Effects of Microorganism 
on B. brizantha 

The treatments consisted of non-inoculated B. brizantha fertilized-(positive) and 
unfertilized-controls (negative), inoculated with BRM-32111, BRM-32113 and 
co-inoculated with BRM-32111 + BRM-32113 (MIX). The experimental design 
was completely randomized with five replications and five treatments. All expe-
riment was conducted in a greenhouse, with mean air temperature of 30˚C ± 
2.5˚C and relative humidity of 74% ± 4% (mean ± s.d.), respectively. 

Plant growth parameters were calculated according to Hunt (1990) and Bar-
bero et al., (2013) [20] [21]. At 35 DASE, plants were harvested to determine 
biomass production. We calculated root /shoot dry mass ratio (RDM/SDM). 
Leaf area (LA) was determined over leaf disks of either 0.42 cm2 or 2.28 cm2, 
dried at 60˚C until constant mass. The biomass allocation pattern was estimated 
as the leaf, culm and root mass ratios (respectively, the ratio between total leaf, 
culm, and root dry mass per plant and total dry mass per plant). 

Five evaluation periods (14, 17, 21, 28 and 35 DASE) were used to determine 
the number of leaves (NL), height (H), culm length (CL) and chlorophyll con-
tent (SPAD index-soil plant analysis development), estimated by a portable 
chlorophyll meter (SPAD-502. Konica Minolta Sensing, INC. Japan). Relative 
growth rate (change in total mass per total dry mass of plant per day, RGR) was 
calculated for harvests at 14 and 35 DASE. Morphogenetic and structural para-
meters, calculated according to Gomide and Gomide (2000), were: leaf appear-
ance rate (ratio between the difference in the number of initial and final leaves 
the number of evaluation interval days, LApR), leaf elongation rate (ratio be-
tween the difference of the initial and final lengths of the expanded sheets and 
the number of days of the evaluation interval, LER), number of leaves per plant 
(NL) and number of tillers per plant (NT) [22]. 

Net photosynthesis (A), stomatal conductance (gs) and transpiration (E) were 
measured 35 days after seedling emergence, on one young, fully expanded blade 
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per plant, with an infrared gas analyzer (IRGA) (LI-6400XT; LICOR, Lincoln, 
NE). Measurements were made under CO2 of 400 μmol∙m−1 and a constant pho-
tosynthetic active radiation of 1000 μmol∙m−2∙s−1 (obtained by an artificial light 
source coupled to the IRGA chamber). 

2.7. Biochemical Assays 

For determination of free ammonium, nitrate, amino acid, total soluble proteins, 
and mineral analysis of nitrogen (N) we selected the treatment that promoted 
the greatest growth in B. brizantha (co-inoculated with BRM-32111 + BRM- 
32113) and two non-inoculated controls. 

For determination of the free ammonium, 50 mg of dry matter incubated with 
5 mL of sterile distilled water at 100˚C for 30 min, and was centrifuged at 2.000 g 
for 5 min at 20˚C and the supernatant was removed. The quantification of the 
free ammonium was carried out at 625 nm in accordance with Weatherburn 
(1967), with (NH4)2SO4 as standard [23]. 

For determination of nitrate, 100 mg of dry matter was incubated with 5 ml of 
sterile distilled water at 100˚C for 30 min. The homogenized mixture was cen-
trifuged at 3.000 g for 15 min at 25˚C, and the supernatant was removed. The 
quantification of the nitrate was carried out at 410 nm in accordance to Cataldo 
et al., (1975), with KNO3 as standard [24]. 

The amino acid was determined using the 50 μl ethanolic extract, 50 μl 
Na-Citrate (1 M + 0.2% Ascorbic Acid (100 mL NaCitrate + 0.2 g Asc. Acid)) 
and 100 μl Ninhydrin solution (1%). The mixture was incubated at 95˚C for 20 
min. and centrifuged at 12,000 g for 10 s. Absorbance was measured at 570 nm. 
The calibration curve was made using Leucine (1 mM) (Gibon et al., 2004) [25]. 
For total soluble proteins, each pellet was vigorously shaken in 1 mL absolute 
ethanol, incubated at 80˚C for 20 min, and centrifuged at 12,000 g for 5 min., at 
4˚C. The supernatant was discarded and the pellet was shaken with 1 mL 0.2 M 
KOH. After heating for 60 min at 90˚C, samples were cooled and centrifuged at 
12,000 g, for 5 min, at 4˚C. Quantification of the total soluble proteins was car-
ried out at 595 nm in accordance with Bradford (1976), with albumin bovine as 
standard. Shoot mineral analysis of nitrogen (N) was determined by inductively 
coupled plasma optical emission spectrometry (ICPOES) [26]. 

2.8. Statistical Analysis 

All data were subjected to analysis of variance and variables with significant F 
values were compared by Duncan test (P < 0.05). The LN, H, SL and SPAD were 
analyzed by ANOVA in a factorial arrangement (evaluation period × treatment). 
Post hoc contrasts were calculated for assessing differences between controls and 
inoculated plants for LN, H, SL, SPAD, MST, LA, A, gs and E. Parametric corre-
lation analysis was calculated between SPAD, LA, H, NT, N or A versus MST. 
The statistical package STATISTICA for Windows release 7 (StatSoft, Inc., Tul-
sa, USA) was used for all computations of the data. 
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3. Results 
3.1. Inoculation forms Tested 

No increase in biomass production could be observed when microorganisms 
were inoculated solely in the seeds or seed + soil drench (Table 1). When inocu-
lation was performed by soil drench P. fluorescens (BRM-32111) and B. pyrro-
cinia (BRM-32113) increased biomass production (F1,36 = 1989,23; P < 0.01) by 
242% and 112%, respectively (Table 1). 

3.2. Effects of Fertilizers and PGPR on B. brizantha 

No increase in biomass production could be observed when microorganisms 
were inoculated on fertilized plants (Table 2). However, inoculation of unferti-
lized plants with BRM-32113, BRM-32111 or Mix (BRM-32111 + BRM-32113) 
increased biomass production by 95%, 227% and 327%, respectively, relative to 
non-inoculated unfertilized-control plants (F1,32 = 3123,7; P < 0.01) (Table 2). 

3.3. Growth Promotion Effects of Microorganism on B. brizantha 

The total number of leaves (F1,75 = 537.6; P < 0.01), plant height (F1,75 = 2387.2; P 
< 0.01), culm length (F1,75 = 241.5; P < 0.01) and Spad index (F1,75 = 963.9; P < 
0.01) were higher in inoculated plants (Figure 1 and Figure 2). The beneficial 
effects of rhizobacteria on B. brizantha development could already be observed 
three days after inoculation (17 DASE) (Figure 2). 

Leaf area was increased (F1,20 = 186.9, P < 0.01) by inoculation. This increment 
was above 700% relative to unfertilized-control plants and 108% relative to ferti-
lized-control plants (Table 3). The RDM/SDM ratio was higher in co-inoculated 
plants (Table 3). The RGR ranged from 0.1 to 0.17, being higher in co-inocu- 
lated plants (Table 3). 

The rhizobacteria increased NT and the mean EF (Table 3). The L/C ratio was 
higher in plants co-inoculated and unfertilized-control plants (Table 3). LApR  

 
Table 1. Inoculation method of plant growth-promoting rhizobacteria on the biomass 
production of Brachiaria brizantha. Shoot dry mass (SDM), root dry mass (RDM), total 
dry mass (TDM). 

Inoculation Isolates 
Biomass (mg) 

SDM RDM TDM 

Seed 
Pseudomonas spp. 54 ± 1.03c 29.6 ± 0.89c 83.6 ± 1.71c 

Burkholderia spp. 50.9 ± 1.77c 28.2 ± 0.80cd 79.1 ± 2.46c 

Seed + Soil 
Pseudomonas spp. 55.7 ± 1.01c 26.8 ± 0.97d 82.5 ± 1.08c 

Burkholderia spp. 53.6 ± 0.51c 29.8 ± 0.93c 83.4 ± 1.36c 

Soil 
Pseudomonas spp. 202.2 ± 0.81a 89.2 ± 1.25a 291.4 ± 1.89a 

Burkholderia spp. 123.2 ± 1.21b 57.6 ± 1.44b 180.8 ± 1.93b 

 Control 54.6 ± 1.67c 30.8 ± 0.77c 85.4 ± 1.14c 

*Significant at the 0.05 probability level. Data are means ± SE. Means followed by different letters in each 
column are significantly different (P < 0.05, Duncan Test). 
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Table 2. Effects of fertilization and plant growth-promoting rhizobacteria on the biomass 
production of Brachiaria brizantha. Shoot dry mass (SDM), root dry mass (RDM), total 
dry mass (TDM). 

Treatments 
Biomass (mg) 

SDM RDM TDM 

Fertilized 

Pseudomonas spp. 104.6 ± 0.68d 47.8 ± 0.37d 150.8 ± 0.91d 

Burkholderia spp. 103.1 ± 0.71d 48 ± 0.32d 150.8 ± 0.58d 

Mix 102.8 ± 0.73d 47.8 ± 0.42d 150.4 ± 1.23d 

 Control 102.6 ± 0.76d 47.6 ± 0.75d 152.2 ± 1.39d 

Unfertilized 
Pseudomonas spp. 203.8 ± 1.35b 87 ± 0.83b 290.8 ± 2.18b 

Burkholderia spp. 116.4 ± 1.03c 56.6 ± 0.87c 173 ± 1.82c 

 Mix 282.4 ± 2.11a 96.6 ± 0.93a 379 ± 2.87a 

 Control 58.4 ± 0.81e 30.4 ± 0.67e 88.8 ± 1.24e 

*Significant at the 0.05 probability level. Data are means ± SE (n = 5). Means followed by different letters in 
each column are significantly different (P < 0.05, Duncan Test). 

 
Table 3. Leaf area (LA∙cm2), root dry mass (RDM-g∙day−1)/shoot dry mass (SDM) ratio, 
relative growth rate (RGR), number of tillers (NT), expanded leaf length (EF-cm), leaf 
appearance rate (LApR-L−1∙day−1) and leaf elongation rate (LER-cm∙day−1) of Brachiaria 
brizantha with growth-promoting rhizobacteria. 

Treatments LA 
RDM 
/SDM 

RGR NT E LApR LER 

C− 
19.02 ± 
1.96e 

0.65 ± 
0.02b 

0.01 ± 
0.0004e 

0 ± 0d 
22.74 ± 
0.59d 

0.19 ± 
0.02e 

0.90 ± 
0.08e 

C+ 
73.70 ± 
13.27d 

0.64 ± 
0.02b 

0.03 ± 
0.0003d 

1 ± 0c 
37.28 ± 
0.56c 

0.27 ± 
0.02d 

1.40 ± 
0.10d 

B 
187.20 ± 

9.57b 
0.54 ± 
0.01c 

0.12 ± 
0.0042c 

2 ± 0b 
45.66 ± 
0.50ab 

0.49 ± 
0.05c 

1.84 ± 
0.10c 

P 
153.51 ± 

7.74c 
0.62 ± 
0.02b 

0.13 ± 
0.0017b 

2 ± 0b 
43.54 ± 
0.72b 

0.66 ± 
0.04b 

2.53 ± 
0.19b 

MIX 
334.05 ± 
25.58a 

0.68 ± 
0.02a 

0.17 ± 
0.0036a 

4 ± 0a 
46.72 ± 
0.53a 

0.71 ± 
0.05a 

2.79 ± 
0.24a 

*Significant at the 0.05 probability level.Data are means ± SE (n = 5). Means followed by different letters in 
each column are significantly different (P < 0.05, Duncan Test). †C− = unfertilized-control; C+ = ferti-
lized-control; B = Burkholderia pyrrocinia; P = Pseudomonas fluorescens; MIX = B + P. 

 
and LER from inoculated plants were higher than those of the control plants, ei-
ther fertilized, or unfertilized (Table 3). The photosynthetic rate (F1,20 = 364.8, P 
< 0.01), stomatal conductance (F1,20 = 84.24; P < 0.01) and transpiration (F1,20 = 
72.70, P < 0.01) were higher in inoculated plants (Figure 3). 

Biomass production was higher in inoculated plants (F1,20 = 2289.5, P < 0.01), 
with an increment of shoot dry mass of more than 930%, relative to unferti-
lized-control plants, and over 334% relative to fertilized-control plants (Figure 
4(a)). For root dry mass production, this increment was above 770% and 262% 
relative to unfertilized- and fertilized-control plants, respectively (Figure 4(b)). 

When the rhizobacteria were inoculated individually, the increment in total 
biomass production was over 870% and 300%, respectively, relative to unferti-  
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Figure 1. Shoot (a)-(e) and root (f)-(j) of Brachiaria brizantha, 21 
days after inoculation (35 days after seedling emergence). Unfer- 
tilized-control (a) (f), fertilized-control (b) (g), inoculated with 
Pseudomonas fluorescens (BRM-32111) (c) (h), Burkholderia pyrro- 
cinia (BRM-32113) (d) (i) and co-inoculated with BRM-32111 + 
BRM-32113 (e) (j). 

 

 
Figure 2. Number of leaves per plant (a), plant height (H) (b), culm length (c) and SPAD 
index (d) of Brachiaria brizantha inoculated with growth-promoting rhizobacteria. Values are 
means ± SE (n = 5). Days = days after seedling emergence. C− = unfertilized-control; C+ = 
fertilized-control; B = Burkholderia pyrrocinia; P = Pseudomonas fluorescens; MIX = B + P. 
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Figure 3. Brachiaria brizantha responses to growth-promoting rhizobacteria. (a) Net 
photosynthesis (A), (b) stomatal conductance (gs) and (c) transpiration (E). At 21 days 
after inoculation (35 days after seedling emergence). Columns with different letters are 
significantly different among treatments (P < 0.05, Duncan Test). C− = unferti-
lized-control; C + = fertilized-control; B = Burkholderia pyrrocinia; P = Pseudomonas 
fluorescens; MIX = B + P. 
 

 
Figure 4. Brachiaria brizantha responses to growth-promoting rhizobacteria. (a) Shoot 
dry mass production (SDM), (b) root dry mass production (RDM), (c) total dry mass 
production (TDM) and, (d) biomass allocation pattern. 21 days after inoculation (35 days 
after seedling emergence). Columns with different letters are significantly different 
among treatments (P < 0.05, Duncan Test). Different upper-case letters within columns 
indicate significant differences among plant organs (P < 0.05, Duncan Test). C− = unfer-
tilized-control; C + = fertilized-control; B = Burkholderia pyrrocinia; P = Pseudomonas 
fluorescens; MIX = B + P. 
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lized- and fertilized-control plants. The maximum gain in total biomass produc-
tion was achieved by co-inoculation (MIX), which accounted for an increment 
of over 1300%, relative to unfertilized-control plants and nearly 500%, when 
compared to fertilized-control plants (Figure 4(c)). Biomass allocation data re-
vealed that, except for fertilized-control plants, in all treatments there was a pre-
ferential allocation to leaves (Figure 4(d)). The increment in total biomass pro-
duction correlated positively to the SPAD index, LA, H, NT and A (Table 4). 

3.4. Biochemical Effects of Microorganism on B. brizantha 

Relative to unfertilized- and fertilized-control plants, co-inoculated plants 
showed higher nitrate concentration in leaves (130% and 20%) and roots (60% 
and 16%); amino acid in the root (135% only relative to unfertilized); protein 
concentration in the leaves (33% and 12%) and root (142% and 21%) (Figure 5) 
and higher nitrogen concentration in leaves (30% and 11%) and root (75% and 
25%) (Figure 6). Higher concentrations of ammonium (leaf, root and total) and 
amino acids (leaves and total) were found in unfertilized-control plants (Figure 
5). 

4. Discussion 

P. fluorescens and B. pyrrocinia fostered the highest growth in B. brizantha cv. 
Piatã, when inoculated by soil drench, during seedling stage (Table 1). Failure to 
promote plant growth, when these bacteria were inoculated in the seeds, may in-
dicate that, during germination, B. brizantha might be able to recognize micro-
bial compounds, synthesizing substances capable of inhibiting the beneficial ef-
fects of these rhizobacteria on plant growth promotion [6]. A similar mechanism 
of plant immune stimulation probably was also activated, when plants were se-
quentially inoculated, both in the seed and by soil drench, inhibiting growth 
promotion, could be related to the allelopathic potential of Brachiaria (Syn. 
Urochloa) [16] [17]. Under this condition, allelopathy can also affect the rhi-
zosphere microbial community, and may be the cause of the observed lower Ba-
cillus spp. colonization in B. brizantha rhizosphere [27]. 
 
Table 4. Correlation coefficient (r) of the correlations between SPAD, leaf area (LA), 
plant height (H), number of tillers (NT), photosynthesis (A) and nitrogen concentration 
(N) versus total dry mass (TDM) of Brachiaria brizantha. 

Parameters r 

SPAD 0.84* 

LA 0.95* 

H 0.90* 

NT 0.96* 

A 0.78* 

N 0.89* 

*P < 0.05. 
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Figure 5. Brachiaria brizantha responses to growth-promoting rhizobacteria. (a) Free 
ammonium, (b) nitrate, (c) amino acid and, (d) total soluble proteins. 21 days after in-
oculation (35 days after seedling emergence). Columns with different letters are signifi-
cantly different among treatments (P < 0.05, Duncan Test). C− = unfertilized-control; C+ 
= fertilized-control; Mix = Burkholderia pyrrocinia + Pseudomonas fluorescens. 

 

 
Figure 6. Nitrogen concentration of Brachiaria brizantha inocu-
lated with growth-promoting rhizobacteria. 21 days after inocula-
tion (35 days after seedling emergence). Columns with different 
letters are significantly different among treatments (P < 0.05, 
Duncan Test). C− = unfertilized-control; C+ = fertilized-control; 
Mix= Burkholderia pyrrocinia + Pseudomonas fluorescens. 

 
The amount allelopathic root exudates compounds may also vary during the 

plant’s developmental stage [6]. However, allelopathic compounds exudated by 
Brachiaria roots are known to have no inhibitory effects at low concentrations 
[16]. Thus, we can infer that the allelopathic compounds, detrimental to rhizo-
bacteria, possibly exuded by B. brizantha roots in our study, might have de-
creased over time, because there was an increased growth of B. brizantha plants, 
inoculated by soil drench (Table 1). 
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Soil fertilization was antagonistic the bacterial activities on the growth of B. 
brizantha (Table 2). On the other hand, inoculation with rhizobacteria increased 
growth in unfertilized plants (i.e., exposed to nutrient limitation) (Table 1). It 
could be inferred that roots of unfertilized plants modified rhizodeposition pat-
terns, by secreting specific compounds, resulting in an increased microbial bio-
mass and activity around the roots [6] [28]. In maize plants, the nutritional sta-
tus affects the root colonizing bacterium, stimulating the repression of genes as-
sociated with protein synthesis, changing the composition of root exudates, and 
influencing the physiology of associative bacteria [28]. In temperate grasslands, 
Keuter et al., (2014) observed that fertilization decreases non-symbiotic biologi-
cal N fixation, through the inhibition of nitrogenase [14]. The higher N-fertilizer 
doses also reduce of the beneficial bacterial effects on the growth in wheat [8] 
[29] and Sorghum bicolor plants [10]. 

Our results attest the potential of P. fluorescens and B. pyrrocinia for increas-
ing plant growth in B. brizantha cv. Piatã (Figure 1). It seems that P. fluorescens 
and B. pyrrocinia probably acted synergistically in co-inoculated plants, as plant 
growth was higher when they were inoculated individually (Figure 4). Increases 
in biomass production in B. brizantha were of over 20% and 14%, after seed in-
oculation with Bacillus [30] and Azospirilum brasilense [4], and of over 100%, 
after root inoculation with endophytic bacteria [3]. 

Tillering, root development and a high root/shoot dry mass ratio are impor-
tant features for an efficient pasture establishment. In the present study, these 
attributes increased in co-inoculated plants as result of an increased nitrogen 
concentration in roots. Greater tillering and root biomass were also reported for 
Panicum virgatum inoculated with Burkholderia phytofirmans [31]. Inoculated 
plants developed a higher leaf length, area, and number, probably increasing 
their light capture ability. In addition, net photosynthesis, evaluated on an area 
basis, was enhanced by inoculation. These improved responses might have con-
tributed to the increased relative growth rate and biomass production measured 
on those plants. The positive effect of plant growth-promotion rhizobacteria on 
net photosynthetic is also reported in rice [19]. 

The relatively lower net photosynthetic rates of the co-inoculated plants, rela-
tive to plants individually inoculated, could be attributed to a likely more ad-
vanced physiological stage of these fast-growing, co-inoculated plants. In this 
regard, Wang et al. (2015) report a faster decline, with plant age, in the rates of 
photosynthesis, transpiration and stomatal conductance in Panicum virgatum 
inoculated with Burkholderia phytofirman [32]. That is, B. phytofirman accele-
rated development and maturation in Panicum virgatum seedlings, as well as 
induced earlier senescence and flowering in adult plants [32]. According to 
Larcher (2006), gas exchange ability changes during plant development, tending 
to correlate negatively with the physiological stage [33]. As the co-inoculated 
plants showed a higher number of tillers and relative growth rate, we could as-
sume these plants were in a more advanced physiological stage. 

In co-inoculated plats, the amino acids had rapid conversion into proteins, 
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increasing nitrogen concentration and Spad index (chlorophyll content). This 
increased the development of photosynthetic organs, enhancing leaf length, leaf 
appearance rate, leaf area and biomass allocation to the leaves. These are desira-
ble characteristics for forage grasses, since leaf blades are the preferred nutrient 
source for ruminants, for their higher protein content and digestibility. The in-
oculation with Azospirilum brasilense also promoted greater nitrogen uptake 
and biomass production in B. brizantha [4] and in wheat plants [8] [29]. Higher 
Spad index, nitrogen content and biomass production were also reported in 
Brachiaria with bacterial endophytes, under low nutrient conditions [3]. 

The increase in nitrate and nitrogen concentrations observed in the tissues of 
the inoculated plants is probably a response of organic matter mineralization by 
the rhizobacteria [15], followed by nitrification. It is possible that the rhizobac-
teria alters the nitrate fluxes at the root plasma membrane [15] [29], decreases 
the nitrate concentration at the root cell surface (rhizosphere), stimulating root 
development and increasing nitrate uptake capacity [13]. 

In forage grass, nitrate fertilization increases the protein contents and biomass 
production, but in excess can be toxic to cattle (0.35 to 0.45 dag/kg) [34] [35]. In 
our study, levels of nitrate in the leaves of co-inoculated plants did not reach 
toxic levels. In addition, the increase in nitrate concentration in B. brizantha, 
could improve its resistance to spittlebug attacks, as a higher nitrate concentra-
tion in the xylem is known to impair spittlebug nymphal development [36]. 

Our results showed that inoculation of rhizobacteria by soil drench, at seedl-
ing stage, enhanced beneficial morphological and physiological characteristics, 
and revealed a direct positive effect of plant growth-promoting rhizobacteria on 
biomass production of B. brizantha cv. Piatã, cultivated on a low-fertility soil. 
Because, nitrogen concentration and Spad index (chlorophyll content) was 
highly and positively correlated to total biomass production (Table 4). In addi-
tion, this might have contributed to higher net photosynthesis found in inocu-
lated plants (Table 4). The higher biomass production of inoculated plants also 
related to greater leaf area and the number of tillers, which, in turn, we could in-
fer, was possibly favored by an enhanced auxin biosynthesis in inoculated plants 
(Table 4). This, relationship will be investigated in future studies on changes in 
the plant hormones pathway of inoculated B. brizantha plants. 

5. Conclusion 

The inoculation of P. fluorescens and B. pyrrocinia by soil drenching, at seedling 
stage, was more effective for promoting growth in B. brizantha cv. Piatã. The 
fertilizer may have suppressed the beneficial bacterial effects on the growth of B. 
brizantha. P. fluorescens and B. pyrrocinia co-inoculated increased nitrate, pro-
tein, nitrogen concentration, Spad index (chlorophyll content), leaf area, num-
ber of tillers, net photosynthesis and total biomass production of B. brizantha 
plants. Our results point out to a potentially valuable source of practical infor-
mation in the search of an eco-friendlier approach to increase pasture produc-
tivity. 
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