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Abstract 
This paper describes the major environmental aspects related to the cultivation of rice. Rice is one 
of the most important agricultural products and it is cultivated in almost all countries in the world. 
Its production requires usually large flooded areas. Under these conditions, many greenhouse 
gases are generated, such as carbon dioxide, methane, nitrogen oxides and its derivatives. Cultiva-
tion of rice is responsible by the release of relevant amounts of these gases and contributes deci-
sively to global warming. In this sense, the major points described here are general environmental 
aspects, the mechanisms of production of greenhouse gases, bioremediation, mitigation using other 
techniques and possible improvements of the cultivation by fertilizers and chemicals. 
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1. Introduction 
It is well documented and recognized that many anthropogenic activities such as deforestation, energy produc-
tion (especially fossil fuels consumption) and several industrial activities play an important role in global warming 
[1] [2]. In fact, most of world concerns seem to be associated to modern civilization aspects, such as utilization 
of vehicles and large-scale production. Probably, much less attention has been devoted to other “natural” sources 
of global heating. For instance, nowadays agricultural production is responsible for about 10% to 12% of global 
greenhouse gas (GHG) emissions [3] [4]. A significant part of global warming is derived from the production of 
gases, collectively known as greenhouse gases (GHG). Probably the most relevant gases responsible by temper-
ature rise are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These gases, together with other 
components, such as ammonium (NH3) and other nitrogen compounds, are usually generated in animal and agri-
cultural activities. Here we will focus on the deleterious effects of gas production due to rice harvesting. For in-
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stance, considering anthropogenic production, about 47% of methane and 58% of N2O are derived from agri-
cultural practices [5]. 

Rice is one of the most important sources of food for the world population. Around 3 billion people or about 
50% of human population uses rice as food and nutrients source. China is the major producer of rice in the world. 
In a recent study [6], the release of methane was estimated in this country. In the first place, Table 1 presents 
comparison of methane production according to major activities in China. It can be seen that agricultural pro-
duction of methane is almost the same of energy production. 

On the other hand, considering only agricultural activity, as described in Table 2, rice cultivation is responsi-
ble for about 35.6% of methane generation. In other words, rice production in China renders about 5613.1 Gg of 
methane yearly. 

The atmosphere concentration of methane has more than doubled from the pre-industrial era to nowadays 
values, varying from around 700 ppb to 1800 ppb [7]. It shows an effect on greenhouse 25 times superior to 
carbon dioxide [8]. 

On the other hand, nitrogen dioxides are also generated in rice fields, since nitrogen is an essential nutrient for 
plants. The use of fertilizer is, of course, a common practice. The effect of nitrogen oxide in global warming is 
also very important; it is estimated that this gas is 300 times more potent to cause greenhouse effect than carbon 
dioxide [9]. Furthermore, the emission of nitrogen oxide has risen up to 17% from 1990 to 2005 and this growth 
tends to be more dramatic due to use of fertilizers [10]. Also in 2005 about 60% of all nitrogen dioxide emis-
sions were due to agricultural production. 

2. The Formation of Greenhouse Gases 
Greenhouse effect results in global warming and it is currently one of the main environmental concerns. The 
major gases involved in this phenomenon are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) 
[11]. It is well known that these gases are extremely important to retain heat in the atmosphere so that the tem-
perature remains within a range of values appropriate for the existence of life [12]. Table 3 [13] summarizes the 
main anthropogenic sources and the lifetime in the atmosphere of the main trace gases involved in greenhouse 
effect. 
 
Table 1. Activities contribution to CH4 emissions in China.                                                        

Activity % 

Agricultural 40.4 

Energy 41.9 

Waste management 17.7 

 
Table 2. Agricultural activity and its percentage on methane production.                                               

Agricultural activity % 

Enteric fermentation 51.2 

Manure management 10.9 

Rice cultivation 35.6 

Field burning of agricultural residues 2.3 

 
Table 3. Atmospheric trace gases for the significant increase in the greenhouse effect.                                     

 Methane (CH4) Nitrous oxide (N2O) 

Main source anthropogenic Flooded rice cultivation, livestock,  
fossil fuels, biomass burning. Fertilizers, land use conversion. 

Lifetime in the Atmosphere 10 years 150 years 

Adapted from [14]. 
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Among these gases, probably, the most relevant is methane because of the amount released and the activity 
performed in the absorption of radiation. The annual global emission of methane from rice fields represent 31 - 
112 Tg (Tg = 1012 g), which means approximately 5% - 19% of the overall methane emissions [13]. Some stu-
dies suggest the influence of factors such as solar radiation, organic fertilization, temperature, plant biomass, 
crop type, carbon substrate availability and soil types on the methane emissions in flooded rice fields [15] [16]. 
Recently [17] a study was conducted to assess the dynamics of methane emission in six different types of soil 
representing the irrigated rice cultivation in southern Brazil. It was suggested that the dynamics and the total 
quantities of CH4 emitted are influenced by the type of soil. In a similar study [18] it was found that CH4 emis-
sion is related to the amount of residues in the soil and how they were incorporated to them. Also it seems that 
anaerobic conditions [19] of the soil soaked stimulate the production and emissions of methane. The oxidation 
of CH4 is performed by methanotrophic bacterias in the oxygen zones the ecosystem (water interface-soil and 
rhizosphere rice). There is evidence [20] that flooded soils are cultivated under conditions conducive to the me-
thanogenesis, due to the high carbon content and low decomposition rate of the biomass in anaerobic conditions. 
This process is carried out by methanogenic bacteria which have ability to use carbon compounds of low mole-
cular weight for the production of energy. Thus, these bacteria are dependent on other hydrolytic and fermenta-
tive bacteria which reduce the molecular weight of the plant compounds. Methane is absorbed by the roots of 
rice plants [21] with water or gaseous, without the need for water absorption, being emitted to the atmosphere 
primarily by diffusion through the aerenchyma rice plants and also by gas bubbles as described in Figure 1. 

Some works [24] [25] describe between 40% and 60% of the total annual N2O emissions in the ecosystems 
rice-based in China occurred in the winter season. The production of N2O occurs when the floodplain soils suf-
fers cycles of wetting and drying, in which the microorganisms actually perform the sequential processes of mi-
neralization-nitrification-denitrification, as presented in Figure 2. It is important to note that the nitrification and 
denitrification processes are microbiological processes that occur in soils that contribute most to the emission of 
N2O. 

According to Gomes 2006 [26], the occurrence of nitrification and denitrification processes are determined by 
the soil conditions such as O2 supply, water content, temperature, pH, organic matter, presence of vegetable re-
sidues and concentration of 4NH+  and 3NO− . In the nitrification process the chemoautotrophic bacteria oxidize 

4NH+  (ammonium) in the soil producing N2O and NO. Nitrification is regulated by the presence of 4NH+ ; NO2 
(nitrite), NO3 (nitrate), 3

4PO −  (phosphate), O2, soil acidity, temperature and water potential. The availability of 
4NH+  is considered a limiting factor in nitrification, which is influenced by mineralization/ immobilization, the 

presence of plants, cation exchange and dissemination. The N2O production by biological nitrification occurs 
 

 
Figure 1. Flowchart adapted production and methane emis-
sion in rice fields [22].                                      
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Figure 2. Dynamics of N in flooded soils of rice production 
(adapted from [23]).                                         

 
when the bacteria to oxidize 4NH+  in the absence of O2, NO3 use as electron acceptor. Although N2O produc-
tion is possible by nitrification, high N2O emissions have been generally associated with denitrification. In the 
denitrification process the NO2− and 3NO−  ions are reduced to NO, N2O or N2. Cultivation operations include, 
among other practices, the addition of nitrogenous fertilizer and handling conditions that can cause alternation of 
oxidation/reduction conditions, which may favor changes in nitrification and denitrification processes, increas-
ing the production and emission of N2O. According to Dobbie and Smith [27], the use of nitrogen fertilizer, for 
example, may increase the mineral N content in the soil and as a result, the increase of N2O emissions from soil. 
In a recent paper [28] it is described N2O emissions from the application of two nitrogen fertilizers (ammonium 
sulfate and urea) at two different doses (100 and 300 kg N ha−1). The authors observed higher soil N2O emis-
sions for both fertilizers when applying 300 kg∙ha−1. On the other hand, a recent study [29] reported that N2O 
emissions were positively correlated with some variables such as the concentration of O2 in the soil, the ground-
water and rainfall, indicating that soil moisture/aeration and availability of C were the main drivers for emis-
sions of N2O. The growing world population implies an increase in food production. However, the environmen-
tal aspects, such as impacts to the environment must be considered when choosing the type of food cultivation. 
In feed, rice plays an important role since it is the source of many important nutrients for human beings. 

3. Mitigation of Methane from Paddy Wetland: Management Strategies 
Rice crop present a different behavior if compared to other common plants; rice can even grow in soil without 
oxygen at root level. Organic matter is completely converted to CO2 in high-fertility soil through aerobic path-
way, whereas in low-fertility soil only 7% of CO2 is produced by anaerobic pathways. Soil microorganisms re-
quire electron acceptor, usually oxygen, in their chemical reactions, especially aerobic respiration. However if 
oxygen is depleted other electron acceptors available are used in thermodynamically order (according to redox 
potential): nitrate ( )3NO− , Mn (IV), Fe (III) and sulfate ( )2

4SO −  [30] [31] also in a concentration cutoff value 
(Table 4). 

Methane is produced strictly in anaerobic environment where the redox potential is lower than −200 mV [32] 
essential condition to methanogenic bacteria starting their activities. These bacteria are strictly anaerobic, such 
condition is achieved when inorganic nutrients are reduced and organic matter acetate is converted in CO2 and 
CH4; other bacteria group oxidizes H2 by using CO2 which is reduced to CH4 [33]. 

Rice cultivation generally takes place in irrigated fields to maximize crop yields but constant water supply 
stimulates anaerobic soil environment formation which augments the CH4 emissions [34] In fact, rice paddy is 
the primary anthropogenic source of methane, accounting 11% of the total CH4 anthropogenic emissions [35]. 

Methane emission may be affected by different factors: physiological characteristic of rice cultivars (varieties),  
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Table 4. Concentration cutoff value of electron acceptors according to next most thermodynamically favorable electron ac-
cepting process.                                                                                           

Species Cutoff value (µM) 

O2 0.5 

3NO−  5 

Mn (IV) 0.9 

Fe (III) 8 
2
4SO −  1000 

 
application of both organic (manure) and inorganic fertilizers, water management, soil physicochemical condi-
tions, soil and air temperature, compositions and activity of soil microorganisms. 

Mitigation strategies to CH4 emission from rice paddies must be farm and eco-friendly, cost-effective without 
depleting crop yields. At farm level, some approaches (strategies) may arise: management of water, inorganic 
inputs and selecting rice cultivars [36] [37]. 

Methane may be partially oxidized in the rhizosphere converted into CO2 by aerobically oxygen released from 
plant roots or anaerobically by any electron acceptor available in soil. In this sense, methanogenesis in soil could 
be inhibited by presence of electron acceptors such as, nitrate, Mn (IV), Fe (III) and sulfate provided by inor-
ganic fertilization or input. Nitrogen-based fertilizers are commonly applied in rice cultivation to enhance crop 
yields which increases carbon supply for methanogens [38] and provides larger aerenchymal pathway to me-
thane transport from soil to the atmosphere [39] [40]. But nitrogen-based fertilizers also stimulates the growth 
and activity of methanotrophs (CH4 oxidizing bacteria) inducing to a methane emission [41] [42]. The effect of 
nitrogen fertilizers may vary according to form and amount, mode and time of application, also the effects are 
not consistent (contrasting effects) they range from stimulation, neutral and inhibition. 

Emission of methane during the first crop season CH4 with 4NH+  and 3NO−  ranged 1.2 - 2.6 and 8.3 - 8.8 g 
CH4 m−2 respectively for both rice varieties. In second crop season it was observed intensification on CH4 emis-
sion vales ranges were 34.3 - 36.7 and 36.6 - 58.6 g CH4 m−2. Methane emission rates from the 3NO−  amended 
plots were 1.5- - 3.7-fold higher than NH4

+ amended plots during the growth period. The authors explain a 
higher inhibition effect of CH4 emission by ammonium sulfate rather than potassium nitrate due to easily leach-
ing of nitrate from soil during the rainy season (period) in Chia-Yi County, Taiwan. In this study a non-fertilizer 
field was used as control, and then a comparison to reducing CH4 emission effect was not possible. 

In this study methane emission was monitored over 4 years in a paddy rice field with typical Chinese water 
management (midseason aeration for a few days instead of continuous flooding) with nitrogen addition rates of 
0, 150 and 250 kg N ha−1 (urea plus ammonium phosphate). The preliminary addition of 150 kg N ha−1 pre-
sented a negative effect compared to no-nitrogen amendment. It was observed average emission decreased of 
38% and 49% in 150 and 250 kg N ha−1, respectively. Considering that addition rate of 250 kg N ha−1 is already 
applied in some parts of China, the authors expect that this rate could be pronounce to others sites in China as an 
effective management of methane emission reduction and increasing of rice crop yields [43]. In a recent works 
[44] [45], it was not observed a substantially methane emission reduction when nitrogen input changed from 150 
to 250 kg N ha−1 or more. 

On the other hand [46], the contrasting effects on CH4 mitigation by N-fertilizers could be related to nitrogen 
rate input. At low levels of nitrogen, great part is uptake by plants and the remaining nitrogen in soil is insuffi-
cient to oxidizing CH4 or to inhibit methanogens activity, so in this scenario methane emission is increased. On 
the other hand (In opposition), when higher level of N-fertilizer is applied (range 100 - 200 kg N ha−1) the 
excess of nitrogen in soil may promote net effect in mitigation of methane emission  

Although methane emission can be reduced by nitrogen-fertilizer management, this process is accompanied 
by a high NO2 emission, which has a 296 times higher GWP (global warming potential) than CO2 and 12 times 
larger than CH4 [14]. However NO2 emission is not the scope of this review. Ferric iron or Fe (III) is considered 
major soil characteristic regulating CH4 emission from rice soils [47] Methane emission is suppressed by en-
hancing the activity of iron reducing bacteria and inhibiting the activity of methanogens for the common elec-
tron donor. According to Silva et al. while inorganic nutrients (electron acceptors) are available (attainable), like 
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Fe (III), Mn (IV) and Mn (III), the organic matter using is limited which reduce methane emission. 
In a labor scale [48] could observe a net reduction of methane emission of 43% and 84% by addition of 15 

and 30 g of ferrihydrate /kg of soil over 143 days during growth and harvest period of rice in beakers. When this 
assay was applied in rice paddy field, [49] the 1.58 kg of ferrihydrate supply into 2 × 2 m plot could mitigate 50% 
of methane emission in comparison with a no-Fe (III) supplied area. 

Ferric hydroxide and ferrihydrite were used as Fe (III) source in in the field treatment over the paddy 
rice-winter wheat rotation cycle. The Fe (III) fertilizer was applied at the rate of 4.0 and 8.0 t∙ha−1, representing 
medium (Fe-M) and high (Fe-H) application levels in the rice based soils of Southeast China, respectively. 
Compared with the control, Fe (III) fertilization decreased CH4 by 27% and 44% for the Fe-M and Fe-H plots, 
respectively. Besides mitigation CH4 emission from Fe (III) amended soil observed increased in rice crop yield, 
suggesting win-win management approach [50].  

Industrial by-products with high concentration of active iron (Fe) was applied in rice paddy fields (China) in 
order to evaluate the mitigation potential of steel slag fertilizer in a range of 2 - 8 Mg per ha. In this study was 
observed an overall decrease CH4 emission ranging from 26.6% to 49.3% [51]. 

The addition of sulfate-based fertilizers reduces methane emissions once sulfate reducing bacteria will com-
pete with methane producing bacteria for same substrate. The methane emission from plots amended with 6.66 
tons ha−1 gypsum was reduced by 55% - 70% compared to non-amended plot [52]. Similar mitigation methane 
emission was also observed [53] but when phosphogypsum was applied CH4 emission reduced only 50% at a 
higher level of supplementation (10.0 t∙ha−1). Linquist and coworkers concluded that mitigation of CH4 emission 
is a sulfate rate linear regression, i.e., when there is an increase in sulfate rate is observed a decrease in methane 
emission. 

4. Influence of Chemicals on Gas Production 
Nitrification inhibitors (NI) are used to decrease emission of N2O. The ammonia monooxygenase (AMO) is one 
enzyme involved in the oxidation of 4NH+  to 3NO−  in soils [54]. Different nitrification inhibitors of nitrous 
oxide (N2O) were studied in one experiment with four treatments: (a) pearled urea; (b) urea þ dicyandiamide 
(DCD); (c) urea þ Nimin; (d) þ urea Karanjin. CH4 emission was significantly higher with applications of DCD 
and Karanjin during the rainy and dry season, respectively. N2O emission was inhibited with Nimin application 
more significantly during the rainy and dry seasons (69% and 85% respectively). Applying Nimin increases 
methanotrophic bacterial population in the soil, and this increase may be related to the low emission of CH4. In 
this study it was concluded that, with Nimin and Karanjin, there was a decrease in soil denitrification [55]. 

Another experiment was conducted to study the effect of the joint application time of hydroquinone as urease 
inhibitor (HQ) and dicyandiamide as a nitrification inhibitor (DCD) in N2O emissions in rice fields. These re-
sults indicate more efficient inhibition on N2O emission registered to HQ and DCD applied with fertilizer at til-
lering stage [56]. 

The impact of the nitrification inhibitor in rice production, 2-chloro-6 (trichloromethyl) pyridine (CP), was 
studied using five treatments: CK (no N applied), N180 and N240 and their counterparts N180 + CP and N240 + 
CP (N use plus CP). The use of 180 kg∙ha−1 N with CP and the use of 240 kg∙ha−1 N without CP resulted in the 
same yield. Despite the increase in NH3 volatilization with CP, and the consequent increase in indirect emissions 
of N2O, it is estimated that CP has led to an overall decrease in global warming potential [57]. 

Use of two nitrification inhibitors was studied, viz., S-benzylisothiouronium butanoate (SBTbutanoate) and 
mometasone S-benzylisothiouronium (SBT-furoate) benzylisothiouronium furoate (SBT-furoate). The nitrifica-
tion inhibitors used in the study increased yield and decreased global warming potential in relation to the treat-
ment of urea [58]. 

A four-year field campaign was held in the Yangtze River Delta 2004-2007 to assess the effects of more 
NH4H2PO4 urea application on CH4 emissions in rice cultivation. For addition rate of 250 kg of N Ha−1, CH4 
emissions have been significantly reduced [59]. 

Wastewater disposal of livestock in paddy fields is a practical treatment adopted by some producers. The in-
fluence of such waste water at planting and N2O emissions was studied. Emissions of N2O cumulative varied to 
N750, the N2O emitted during the final draining, corresponded for 80% of cumulative emissions of N2O [60]. 

Influence of ammonia on the application of N2O emissions was also evaluated. The results revealed a 
trade-off between CH4 and N2O emissions influenced by the application of urea-based fertilizers, i.e., the nitro-
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gen fertilization reduced. Total CH4 and N2O, expressed in carbon dioxide equivalents, were affected by rate of 
addition of nitrogen, with minimal emissions occurring at 250 kg∙ha−1 [61]. 

A meta-analysis was performed to determine the effects of treatment medium management practices, both 
CH4 and N2O in rice cultivation. Low inorganic fertilizer N rates increased CH4 emissions by 18% relative to 
when no N fertilizer was applied, while high N rates decreased CH4 emissions by 15%. Replacing urea with 
ammonium sulfate at the same, N rate significantly reduced CH4 emissions by 40%, but might increase N2O 
emissions. Dicyandiamide led to lower emissions of both CH4 and N2O. When compared to inorganic N fertiliz-
ers, farmyard manure (FYM) increased CH4 emissions and the green manure (GrM) Sesbania by 192% [62]. 

An assessment of the effects of different types of manure about CH4 and N2O was performed. The concentra-
tion of Zn and Cu in rice and the nitrate content in drainage water were evaluated. The experiment included the 
following treatments: (a) anaerobically digested sludge cattle (ADCS); (b) ADCS filtered to remove the coarse 
fraction of soil organic matter; (c) anaerobically digested sludge pig (ADPS); (d) chemical fertilizers (CF). The 
application rate was 30 mg NH4-N2. Different amounts of C were added to fertilization: C 725 m2 on ADCS, 
352 g∙m−2 in ADCS filtered, and 75 g∙m−2 in ADPS. This study suggests that ADPS, containing minor amounts 
of C than ADCS can be used as an organic fertilizer in paddy field showing environmental impacts similar to 
chemical fertilizers (CF) [63]. 

Another field experiment was conducted to investigate the effect of biochar at doses of 0, 10 and 40 t∙ha−1 in 
rice productivity and CH4 and N2O with or without nitrogen fertilizer on a rice plantation. Soil CH4 emissions 
total C were increased in soils treated with biochar to 40 t∙ha−1 compared to treatments without biochar and with 
or without nitrogen fertilization, respectively. The results showed that biochar significantly increased rice pro-
duction and reduction of N2O emissions, but increased the total CH4 emissions [64]. 
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