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Abstract 
In this work, a new method is presented for determining the binding con-
straints of a general linear maximization problem. The new method uses only 
objective function values at points which are determined by simple vector 
operations, so the computational cost is inferior to the corresponding cost of 
matrix manipulation and/or inversion. This method uses a recently proposed 
notion for addressing such problems: the average of each constraint. The 
identification of binding constraints decreases the complexity and the dimen-
sion of the problem resulting to a significant decrease of the computational 
cost comparing to Simplex-like methods. The new method is highly useful 
when dealing with very large linear programming (LP) problems, where only 
a relatively small percentage of constraints are binding at the optimal solu-
tion, as in many transportation, management and economic problems, since 
it reduces the size of the problem. The method has been implemented and 
tested in a large number of LP problems. In LP problems without superfluous 
constraints, the algorithm was 100% successful in identifying binding con-
straints, while in a set of large scale LP tested problems that included super-
fluous constraints, the power of the algorithm considered as statistical tool of 
binding constraints identification, was up to 90.4%. 
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1. Introduction 

It is well-known, that in large linear programming (LP) problems there is a sig-
nificant number of redundant constraints and variables. Simplex method [1] [2] 
[3] [4] had reigned supreme as the preferred method for solving such linear 
programs for many decades. This method starts from the worst possible vertex 
(the origin) and converges to the best solution of the LP problem at a finite 
number of iterations after having created a set of basic feasible solutions (vertic-
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es). Nevertheless, Simplex method is expensive and demands too much compu-
tational time in large scale problems. If the number of constraints is too large, 
then so is the number of vertices, and therefore there is a large probability that 
Simplex will need a big number of iterations. Since real life LP problems are ac-
tually large scaled, the development of techniques for reducing considerably the 
dimension of the problem, became an inevitable need. This problem reduction, 
among others, results to less computational time and effort. 

In this direction, many researchers including Andersen and Andersen [5], Ba-
linsky [6], Boot [7], Brearly et al. [8], Boneh et al. [9], Caron et al. [10], Ioslovich 
[11], Gal [12], Gutman and Isolovich [13], Mattheis [14], Nikolopoulou et al. 
[15], Stojkovic and Staminirovic [16], Paulraj et al. [17] [18] and Telgen [19] 
have proposed several algorithms to identify redundant constraints in order to 
reduce the dimension of the initial large scale LP problem. Brearly et al. [8] pro-
posed a method to identify redundant constraints using the upper and lower 
bounds of the variables. Telgen [19] proposed a deterministic method to identify 
redundant constraints using minimum-ratio criteria as in Simplex method hav-
ing similar complexity with Simplex. Stojković and Stanimirović method [16] 
identifies redundant constraints applying the maximum and minimum prin-
ciple. Paulraj et al. [17] proposed a heuristic method to identify redundant con-
straints based on the intercept matrix of constraints of the LP problem. Ilya Ios-
lovich method [11] identifies the redundant constraints in large scale linear 
problems with box constraints and positive or zero coefficients. The Gaussian 
elimination or QR factorization has been proposed but causes many and serious 
difficulties including significant rise of the dimension of the problem and re-
quirement of floating point operations [16]. Unfortunately, all proposed algo-
rithms for the elimination of the excessive constraints do not guarantee com-
plete elimination. 

In this work, a new method is presented for determining the binding con-
straints of a general linear maximization problem. The method deals with the 
general n-dimensional linear maximization problem with more constraints than 
decision variables in a standard form, i.e. with functional constraints of the type 
lesser-than-or-equal and no negativity constraints. It is based on the notion of a 
kind of weighted average of the decision variables associated with each con-
straint boundary. Actually, this average is one coordinate of the point at which 
the bisector line of the first angle of the axis (the line whose points have equal 
coordinates) intersects the hyperplane defined by the constraint boundary equa-
tion. 

The proposed method is always applicable to linear programming problems 
which are defined with no excessive constraints. Sometimes, it is applicable even 
in the cases when there are superfluous constraints in the problems. It uses only 
objective function values at points which are determined by simple vector opera-
tions, so the computational cost is inferior to the corresponding cost of matrix 
manipulation and/or inversion. The new method has been implemented and 
tested and results are presented. 

https://doi.org/10.4236/ajor.2019.92004


E. I. Nikolopoulou et al. 
 

 

DOI: 10.4236/ajor.2019.92004 61 American Journal of Operations Research 
 

This paper is organized as follows: in Section 2, there is a discussion on the 
average of the optimum based on the weighted average of each constraint and in 
Section 3, the new method is presented using a geometrical approach. The pro-
posed algorithm is presented in Section 4 and the computational cost is pre-
sented in Section 5. In Section 6, the results of the algorithm tested in random 
LP problems are presented. Finally, in Section 7, we conclude with some remarks 
on the proposed algorithm and possible extensions. 

2. A Discussion about the Average of the Optimum 
2.1. Mathematical Framework 

Many real-life problems consist of maximizing or minimizing a certain quantity 
subject to several constraints. Specifically, linear programming (LP) involves op-
timization (maximization or minimization) of a linear objective function on 
several decision variables subject to linear constraints. 

In mathematical notation, a normal form of an LP multidimensional problem 
can be expressed as follows: 

( ) Tmax
subject to

0

z X C X
AX b
X

=

≤
≥

                      (1.1) 

where: 
X is the n-dimensional vector of decision variables, 

ij m n
aA

×
  = , [ ]i m

b b= , j m
C c =    

with ija ∈ , jc ∈  and 0jb >  for 1,2, ,i m=   and 1,2, ,j n=   are the 
coefficients of the LP-problem and ( ) Tz X C X=  is the objective function. 

The feasible region of this problem is the set of all possible feasible points, i.e. 
points in ℝn that satisfy all constraints in (1.1). The feasible region in n dimen-
sions is a hyper-polyhedron. More specifically, in two dimensions, the bounda-
ries are formed by line segments, and the feasible region is a polygon. An optim-
al solution is the feasible solution with the largest objective function value (for a 
maximization problem). In this paper we consider linear problems for which the 
feasible region forms a convex nonempty set. 

The extreme points or vertices of a feasible region are those boundary points 
that are intersections of the straight-line boundary segments of the region. If a 
linear programming problem has a solution, it must occur at a vertex of the set 
of feasible solutions. If the problem has more than one solution, then at least one 
of them must occur at an extreme point. In either case, the value of the optimal 
value of the objective function is unique. 

Definition 1: A constraint is called “binding” or “active” if it is satisfied as an 
equality at the optimal solution, i.e. if the optimal solution lies on the surface 
having the corresponding equation (plane of the constraint). Otherwise the con-
straint is called “redundant”. 

Definition 2: If the plane of a redundant constraint does not contain feasible 
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points (it is beyond the feasible region) then the constraint is called superfluous. 
Both types of redundant constraints are included in problem formulation 

since it is not known a priori that they are superfluous or nonbinding. 
Definition 3: The zero-level planes together with the planes of all the con-

straints except the superfluous define the boundary of the feasible region. We 
refer to these constraints as “functional”. 

Any redundant constraint may be dropped from the problem, and the infor-
mation lost by dropping this constraint (the amount of excess associated with 
the constraint) can be easily computed once the optimum solution has been 
found. 

The existence of superfluous constraints does not alter the optimum solutions, 
but may require many additional iterations to be taken, and increases the com-
putational cost. 

Most of the methods proposed to date for identification of redundant and 
nonbinding constraints are not warranted in practice because of the excessive 
computations required to implement them. 

Unfortunately, there is no easy method of assuring a convex solution path, 
except in two-dimensional problems nor is there any way of preventing degene-
racy [20]. 

We make the assumption that the feasible region is convex and it is formed by 
the whole set of constraints so that each constraint refers to a side of the polygon 
feasible region. So our problem should not contain superfluous constraints. 

2.2. A Notion about the Weighted Average 

Consider the LP problem (1.1). In this problem, constraints could be binding 
and redundant, nevertheless, as it was mentioned before, in the considered 
problem there are not superfluous constraints included. For the completeness of 
the present work, some necessary hypotheses are made and definitions are given. 

Let ( )1 2, , , nX x x x∗ ∗ ∗ ∗=   be the optimal solution of the problem (1.1). Since 
the binding constraints hold equality in the system of inequalities in problem 
(1.1), X ∗  is a solution of each binding constraint of the problem (1.1). 

Definition 4: Consider the LP problem (1.1). 
Let 

1 1 1

n n n
i ij ij ij i ijj j j

a x a b aλ
= = =

= =∑ ∑ ∑  

be the weighted average of the random constraint i. 
Then, the𝑛𝑛-dimensional vector ( )* , , ,i i i iλ λ λ λ=   is a solution of this con-

straint. The𝑛𝑛-dimensional vector *
iλ , 1,2, ,i m=   is defined by the weighted 

average of the i-constraints. The coordinates of *
iλ , 1,2, ,i m=   of the prob-

lem (1.1) are the points of the bisector line of the first angle of the axis(the 
hyperplane whose points have equal coordinates) intersects the hyperplane de-
fined by the constraint boundary equation. 

In most cases, i sλ , 1,2, ,i m=   are different from each other but it can 
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happen that two or more i sλ  are the same although the corresponding con-
straints are totally different. 

The 𝑚𝑚-dimensional vector that represents the weighted average for each con-
straint is given as: 

( )1 2, , , mλ λ λ λ=  .                     (1.2) 

Τhen, the weighted average of the 𝑘𝑘-th binding constraint of the LP problem 
(1.1) is given as: 

1
n

k k kjjb aλ
=

= ∑ .                      (1.3) 

Since the constraint k is binding, defines the optimal solution and then the 
corresponding *

kλ  can be considered as an estimator of the optimal solution of 
the LP problem (1.1) [21]. This estimation may differ from the actual solution. 

As it was presented in this section, i sλ , 1,2, ,i m=   have been considered 
as solutions of potential equality constraints, so the main reflection is how to 
identify necessary constraints using these *

i sλ , 1,2, ,i m=  . For this purpose, 
*
i sλ , 1,2, ,i m=   are used as a probabilistic order of the constraint impor-

tance of the LP problem (1.1). 
In this direction, the solutions *

i sλ , 1,2, ,i m=   are sorted. Point
( )min min min, , ,M λ λ λ  where { }min :min 1,2, ,i i mλ λ= =   is a point of the 

constraint having this specific solution: ( )*
min min min min, , ,λ λ λ λ=  . 

As the feasible area is defined by the planes of the convex polyhedron, point 
M is a feasible point. Point M is actually the only point at which the bisector 
plane of the first angle of the axes intersects the boundary of the feasible region, 
i.e. the other *

i sλ , apart from *
minλ  lie beyond the feasible area of the problem. 

Moreover, point M lies on the face “opposite the origin”. 
The proposed method starts by setting the value of the variables equal to 

minλ , so the starting point is the point M, which is a point of the feasible area, 
lies on a constraint and on the bisector plane. Moreover, point M is set across 
the origin, which is the Simplex starting point. 

Simplex method starts by setting the value of the variables equal to zero and 
then proceeds to find the optimum value of the objective function. The starting 
point is the origin. Hence, by setting the variables to zero as the starting point 
that is the origin. This starting point is relatively far from the optimum. 

Our method starts from the point M, which is in general a point across the 
origin. Point M is a boundary point of the feasible area, and its coordinates are 
the weighted average of a constraint of the problem, therefore point M lies on 
this constraint. In case the constraint is binding, the constraint defines the op-
timal solution and the coordinates of point M are considered as an estimator of 
the optimal solution of the LP problem. Since the main goal of optimization al-
gorithms in LP problems is to achieve the optimum, point M is certainly a better 
estimator of the optimum than the origin. 

The algorithm checks for binding constraints considering one decision varia-
ble each time. Using the weighted average and the intercepts of the constraints 
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with the zero level hyperplane of the variable under consideration, the algorithm 
moves from a constraint to an adjacent one until it locates a binding constraint. 

3. The New Method: A Geometrical Proof of Convergence 

The 2-dimensional case 
For a LP problem with two decision variables the feasible region is, as men-

tioned, a convex polygon with 2m +  edges in general (including the two axes). 
The maximum of the objective function is located on a vertex of this polygon, so 
it is defined by two binding constraints (one or two of them can be a no negativ-
ity constraint in the case that the solution is degenerated). Our scope is to locate 
these two binding constraints. 

Each axis defines two opposite directions. If we slide the objective function 
line along one of them then the objective function value increases, while along 
its opposite it decreases. To recognize which is which it suffices to compare the 
objective function value on two points. These two points can be chosen to be-
long on the edge defined by a constraint. Specifically, we choose the intersection 
of the constraint with the bisector and the intersection of the constraint with the 
other axis. Thus we can easily locate the increasing direction for any axis. 

Consider a random LP problem with two decision variables and five con-
straints. Figure 1 illustrates this procedure. Let us consider that we have two ad-
jacent edges (constraints). If the increasing directions on these constraints are 
opposite, then, it is clear, that the optimal vertex is the intersection of these 
edges (see Figure 1). That means that these two constraints are the binding ones. 

Given a constraint, to locate his adjacent to a specific direction, let’s say in re-
spect to 1x  it suffices to check the distance of the intersection of this constraint 
with the 2x -axis from the origin, due to the convexity of the feasible region. 
Specifically, if the increasing direction is the one decreasing the 1x  value, then 
the adjacent to a constraint j is the one whose intersection with the 2x -axis has 
the next smaller distance from the origin. The result for the opposite direction is 
obvious. 

We conclude that the location of the two binding constraints is the result of 
the directional search in respect to only one of the two variables. 

The n-dimensional case 
The above results can be easily generalized for the n-dimensional problem, 

since any plenary projection of the feasible region is a convex polygon. 
The adjacent constraint is defined with the aid of the distance of the cuts of 

the constraints with the 0ix =  plane from the origin, where i is the search di-
rection. The only issue is that there can be several adjacent constraints to a given 
constraint, so there is no guaranty that an adjacent constraint is not overlooked. 
Also since the adjacent constraints lie in several directions, one must repeat the 
procedure for more than one variable. During the search for binding constraints 
along each direction, an opposition of increasing directions defines one binding 
constraint. 
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Figure 1. Directions on binding constraints. 
 

Hence, for LP problems that their feasible region is a convex polyhedron and 
there are no superfluous constraints, the following theorem has been proved 
geometrically: 

Theorem: Let the problem (1.1). Assume that for this problem, the following 
are satisfied: 
 The feasible region is convex 
 There are no superfluous constraints 

Then, the constraint that is located by the proposed algorithm is binding. 

4. The Proposed Algorithm 

Consider the LP problem (1.1). The proposed algorithm is based on a geome-
trical approach, as it was shown in Section 3. We have to calculate the values of 
the objective function at specific points: point M and another point that arises 
from be the nonzero coordinates of the cut points of i-constraint with j-axis, 

1, 2, ,i m=  , 1,2, ,j n=  . 
First, we choose the constraint with the smallest weighted average iλ ,
1, 2, ,i m=   as it is defined in (1.3). Let this constraint be the k-th one and set

min kλ λ= . 
The value of the objective function at minλ  is: 

( ) 1
n

k j kjz cλ λ
=

= ∑ .                         (1.4) 

Then, we calculate the distance of the cuts of the constraints with the 0ix =  
plane from the origin. 

The nonzero coordinates of the cut points of i-constraint with j-axis, 
1, 2, ,i m=  , 1,2, ,j n=   are calculated as: 

ij i ijbx b a=                            (1.5) 

and, the objective function values of these points are calculated as: 

( ) 1
n

kj j kjjz bx c bx
=

= ∑ .                       (1.6) 
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Start the searching in respect to jx , 1,2, ,j n=  . During the search for 
binding constraints, an opposition of increasing directions defines one binding 
constraint. 

The increasing direction of the objective function is considered as the index 

0r  which is defined in the following equation: 

( ) ( )( ) ( )0 kj k kj kr z bx z bxλ λ= − − .              (1.7) 

If 0 0r >  then the increasing direction is the positive one, i.e. the direction 
that jx  is augmenting. Otherwise, the direction is the one that 

jx  is decreasing. Then find the adjacent constraint in the chosen direction 
that is described below: 

The distance of the cut of the constraint with the plane 0ix = , i j≠  from 
the origin is given as: 

2
1,

n
ij i ikk k jdx b a

= ≠
= ∑ .                     (1.8) 

To continue, we move to the constraint following the chosen direction re-
garding the distance ijdx , for 1,2, ,j m=  . 

The adjacent constraint in the chosen direction is the one having the next 
bigger (respectively smaller) distance in case the direction is increasing (respec-
tively decreasing). If there is no bigger (respectively smaller) distance in this di-
rection, then this constraint is binding, otherwise compute the 0r  index for the 
next constraint. 

If the 0r  index for the next constraint has different sign from the previous 
index, then the increasing direction has changed and the last constraint is bind-
ing. In case there is no constraint that has a different direction, then the corres-
ponding variable is considered as zero and this constraint is binding. Repeat the 
process for the next decision variable 1jx + . 

After finding n-binding constraints or after having exhausted the n-variables, 
stop the procedure. 

The steps of the proposed algorithm are described below: 

The proposed algorithm 
algorithm bi.co.fi 
input: The number of decision variables (n), the number of constraints (m), 

the coefficient matrix of the problem (A), the vector of the right-hand side coef-
ficients (b), the vector of the objective coefficients (C). 

output: The vector of binding constraints ( )1 2, , , nv v v= v  
Compute iλ , ( ) 1, 2, ,i i m∀ =   using Equation (1.3) 
Se min kλ λ= , where k is the constraint with minλ  
   If there are more than two constraints having the same minλ , 
then choose randomly one of them. 
   Compute ( )kz λ  using Equation (1.4) 
   If 0ija =  then set 10000000ijbx =  
else compute ijbx , ( ) ( ), 1, 2, , , 1, 2, ,i j i m j n∀ = =   using Equation (1.5) 
        end if 
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Compute ( )kjz bx , ( )1,2, ,j j n∀ =   using Equation (1.6) 
        if 

2
1, 0n

ikk k j a= ≠
=∑  

   then set 10000000ijdx =  
else compute ijdx , ( ) ( ), 1, 2, , , 1, 2, ,i j i m j n∀ = =   using Equation (1.8) 
end if 
for 1,2, ,j n=   do 

_  jdx Order Order dx←  

 place ← the order of _dx Order  in position k 
If ( ) ( ) 0kj kz bx z λ− =  then print 0 
If 0kj kbx λ− =  then print 0 
Compute 0r  in position k using Equation (1.7) 
   if sign of 0 1r =  then sequence (start = place, end = m, 1) 
         else sequence(start = place, end = 1, −1) 
         end if 
               for t = start, , end  

0jv ←  

new place ← t + sign of 0r  
                      if new place = 0 or new place = 1m +  then 

jv ←  the constraint in new place 
                  break 
                      end if 
                        set 0rpev r=  
Compute 0r  in new place 
gin = 0rpev r∗  
                      if gin < 0 then 

jv ←  the constraint in new place 
break 
                          end if 
end second for 
end first for 

5. Computational Cost 

Consider a LP problem of n variables and m constraints, with m and m n> , 
and large (so quantities such as m or n are negligible in comparison to m2 or 
mn). The array needed to solve this problem using Simplex is ( ) ( )1 1m n+ × + . 
Working on the proposed algorithm, only an array of n n×  is needed to solve 
the same problem, so the dimension reduction is obvious. The number of itera-
tions using the Simplex method is on average ( ) 2n m+  [22]. 

The number of iterations of the proposed algorithm is 𝑛𝑛 at the most, which is 
the number of variables. Sometimes, the number of needed iterations is even less 
(for example in 2-variable problems). 

The number of multiplications (or divisions) required in each iteration of the 
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Simplex algorithm is ( )( )1 1m n+ + , ignoring the cost of the ratio test, while the 
number of additions (or subtractions) is roughly the same [23]. On average, the 
total number of operations using Simplex algorithm is ( )( )( )1 1m n n m+ + + . 

To find the total number of operations of the proposed algorithm the compu-
tational cost of 0r , ιλ , ijbx  and ijdx , 1,2, ,i m=  , 1,2, ,j n=   must be 
added. The total evaluation cost of the multiplications is on average 

2 4 2 2mn mn n m+ + + +  and the total evaluation cost of the additions is on av-
erage ( )1mn n − . Finally, the total number of operations using the proposed al-
gorithm is 22 3 2 2mn mn n m+ + + + . 

It is obvious that for m n>  not only the number of iterations of the new 
method is less than the corresponding number of Simplex but also the total 
computational cost is significant inferior. If one adds the cost of solving an 𝑛𝑛𝑛𝑛𝑛𝑛 
system of equation for the binding constraints found ( 32 3n  operations) to 
compute the optimal solution (so that the results of the two methods are com-
parable) the total computational cost remains significantly inferior (gain of or-
der at least 2n ). The gain on computational cost increases as m becomes much 
bigger than n. 

6. Numerical Results 

In this section, the numerical results of the proposed algorithm are presented. In 
the first part, a LP problem is illustrated. In second part the comparative results 
of the approach of the proposed algorithm and Simplex method for identifying 
binding constraints in indicative LP problems are presented. Finally, the algo-
rithm was considered as a statistical tool for correctly identifying binding con-
straints in random linear programming problems and the results of this statistic-
al approach are presented in the third part of the section. The proposed algo-
rithm was implemented in R language [24] in more than 3000 LP problems. In 
LP problems where there were no superfluous constraints and the feasible area 
was a convex dome-shaped region, the proposed algorithm was 100% accurate in 
correctly identifying binding constraints. 

6.1. Illustration of a LP Problem 

The following numerical example serves to illustrate the proposed algorithm. 
Consider the LP maximization problem (1.9) with three decision variables and 
four constraints: 

( ) 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

20 10 15
3 2 5 55

m

2

ax
subject t

26
3 30

o

5 2 4 57
0

x x x
x x x
x x x

x x x
x x

z X

x
X

+ +

+ + ≤

+ + ≤

+ + ≤

+ + ≤

≥

=

 

where X is the 3-dimensional vector of decision variables 
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1

2

3

3 2 5 55
20

2 1 1 26
, , , 10

1 1 3 30
15

5 2 4 57

x
X x A b C

x

   
      
      = = = =                

   

 

and ( ) Tz X C X=  is the objective function. 
In this problem, according to Simplex method the third constraint is redun-

dant, so the first, the second and the fourth constraints are binding. It also 
known that the third constraint is not superfluous. 

According to (1.2), ( )5.5,6.5,6,5.18λΤ = . The smallest iλ , 1,2,3,4i =  is 

4 5.18λ =  and it is referring to the fourth constraint. Thus, min 4λ λ= . 

The matrices of 

4 3ijbx bx
×

  =  and 
4 3

 ijdx dx
×

 =    

are given below, however, not all of these elements of these matrices are needed 
to be calculated in advance. 

Each element is calculated whenever it is needed 

18.3 27.5 11
13 26 26
30 30 10

11.4 28.5 14.25

bx

 
 
 =  
  
 

, 

10.213 9.432 15.254
10.213 11.627 11.627
9.486 9.486 21.213

12.745 8.902 10.584

dx

 
 
 =
 
 
 

 

We start from the fourth constraint and the first variable, according to (1.4) 
and (1.6) respectively and we find ( )4 233.18z λ =  and ( )41 288z bx = . Then 
according to (1.7) we obtain 0 0.83 0r = − < . Then, according to (1.6), the next 
smaller distance is 1idx  for 1,2,3,4i =  is 11 10.213dx ≅  referring to the first 
constraint. For the first constraint, ( )11 366.6z bx =  and 11 9.2857 0r = > . Since 

11 0 0r r∗ <  the first constraint is binding. This process is illustrated in Figure 2 
below. 

Starting again from the fourth constraint and the second variable, we obtain
( )4 233.18z λ =  and ( )42 285z bx = . In this case, according to (1.7) 

0 2.2 0r = > . The next bigger distance 2idx  for 1,2,3,4i =  is 12 9.432dx ≅  
referring to the first constraint. For the first constraint, the calculation of (1.6) is
( )12 275z bx =  and the calculation of (1.7) is 12 1.25 0r = > . Then, we obtain 

12 0 0r r∗ > . So we must continue the search. The next bigger distance is

32 9.487dx ≅  referring to the third constraint. We set 12 0r r= . 
For the third constraint, ( )32 300z bx =  and 32 1.25 0r = > . Applying the re-

sults, we obtain 32 0 0r r∗ > . The next bigger distance 2idx  for 01, 2,3, 4i =  is

22 11.627dx ≅ , referring to the second constraint. We set 32r r= . 
For the second constraint, the calculation of (1.6) is ( )22 260z bx =  and the  
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Figure 2. Cut points with x1 = 0. 

 
calculation of (1.7) gives 22 1.6 0r = − > . So 22 0 0r r∗ <  Therefore, the second 
constraint is binding (Figure 3). 

Starting from the fourth constraint again and the third variable we obtain
( )4 247.5z λ =  and ( )43 213.75z bx = . Calculating 0r  according to (1.7) we 

obtain 0 2.143 0r = − < . Then, according to (1.4), the next smaller distance 3idx  
for 1,2,3,4i =  is 43 10.585dx ≅  referring to the fourth constraint itself. Since 
there is no smaller distance among the 3idx  for 1,2,3,4i = , the fourth con-
straint is binding (Figure 4). 

According to the new algorithm the binding constraints are the first the 
second and the fourth. The proposed algorithm identified successfully the three 
binding constraints of the problem. 

These results are briefly presented in the tables below. Table 1 shows the 
weighted average λ for the four constraints of the problem (1.9), while in Table 
2 the results of the distances described in (1.8) as well as the descending order 
according to the (1.8) results for the four constraints are presented. Finally, in 
Table 3, there is only the 0r  index (1.7) needed to determine the direction 
which leads to the binding constraints, the sign of the index needed and the des-
cending order of the constraints corresponding to the index needed. 

6.2. Comparative Results of the Approach of the Proposed  
Algorithm and Simplex Method for Identifying Binding  
Constraints in Indicative LP Problems 

The comparative results of the approach of the proposed algorithm and Simplex 
method for identifying binding constraints in indicative LP problems are  
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Figure 3. Cut points with x2 = 0. 

 

 
Figure 4. Cut points with x3 = 0. 

 
presented in the following table. Table 4 shows the number of decision variables, 
the number of constraints, the number of the binding constraints identified by 
Simplex algorithm, the number of the binding constraints identified by the pro-
posed algorithm and which of the constraints are binding. In all these problems, 
the algorithm identified successfully the binding constraints. 

https://doi.org/10.4236/ajor.2019.92004


E. I. Nikolopoulou et al. 
 

 

DOI: 10.4236/ajor.2019.92004 72 American Journal of Operations Research 
 

Table 1. Computations on weighted average λ for four constraints. 

i-constraint 
Weighted average computations 

λ z(λ) 

1 5.5 247.5 

2 6.5 292.5 

3 6 270 

4 5.182 233.182 

 
Table 2. Distances and ordering for four constraints and three variables. 

i- 
constraint 

Dxi1  Dxi2  Dxi3  

Value 
Descending 

order 
Value 

Descending 
order 

Value 
Descending 

order 

1 10.213 2 9.432 2 15.254 3 

2 18.385 4 11.628 4 11.627 2 

3 9.487 1 9.487 3 21.213 4 

4 12.745 3 8.902 1 10.585 1 

 
Table 3. Index to determine the direction which leads to the binding constraints. 

constraints 
1st variable 2nd variable 3rd variable 

r0 sign order r0 sign order r0 sign order 

1 
9.286 
(stop) 

+ 2 1.25 + 2    

2  -  
−1.667 
(stop) 

- 4    

3  -  1.25 + 3    

4 −0.833 - 3 2.222 + 1 
−2.143 
(stop) 

- 1 

6.3. Statistical Results of Correctly Identifying Binding  
Constraints Using the Proposed Algorithm in Random  
LP Problems 

The algorithm was applied in a large number of random LP problems to check 
its efficiency in identifying binding constraints. However, for random LP prob-
lems it is not known a priori whether there are superfluous constraints or not. 
Since there was no information about the constraints in these random problems, 
the proposed algorithm was considered as a statistical tool for correctly identi-
fying binding constraints. To check the efficiency of this tool, a statistical ap-
proach was used. 

For this purpose, three sets of 1000 different random no negative LP small, 
medium and large scale problems in normal form were derived for the numeri-
cal experiments to identify binding constraints using R language. 

The problems were created using a jitter function. At first, a vector that was 
considered as a solution of the problem was chosen. Then, linear problems were  

https://doi.org/10.4236/ajor.2019.92004


E. I. Nikolopoulou et al. 
 

 

DOI: 10.4236/ajor.2019.92004 73 American Journal of Operations Research 
 

Table 4. Comparison the results of the proposed algorithm and Simplex method for 
identifying binding constraints. 

 Size of the problem 
No. of binding constraints and which constraints are 

binding (in the parentheses) identified by: 

Example no. 

Simplex method The proposed algorithm 

No. of 
constraints 

No. of 
variables 

Total no. 
of binding  
constraints 

No. of binding 
constraints 

without duplicates 

1 4 3 3 (1,2,4) 3 (1,2,4) 3 (1,2,4) 

2 4 3 2 (1,2) 3 (1,2,1) 2 (1,2) 

3 5 3 2 (1,2) 3 (2,1,1) 2 (2,1) 

4 4 3 2 (2,3) 3 (2,2,3) 2 (2,3) 

5 4 3 2 (3,4) 3 (4,3,3) 2 (4,3) 

6 4 3 2 (2,3) 3 (2,2,3) 2 (2,3) 

7 4 3 2 (3,4) 3 (4,4,3) 2 (4,3) 

8 4 3 2 (1,2,3) 3 (2,1,3) 2 (2,1,3) 

9 5 4 3 (1,4,5) 4 (4,1,5,1) 3 (4,1,5) 

10 9 6 3 (1,2,3) 6 (3,3,2,1,2,2) 3 (3,2,1) 

11 [25]a 4 5 2 (1,4) 5 (1,1,1,1,4) 2 (1,4) 

a. See references. 

 
formed: the ija , ( 1, 2, , ,   1, 2, , )i m j n= =   coefficients were generated inde-
pendently and randomly from the uniform distribution. 

Then, we have the coefficient matrix  
m nijaA
×

  = . 
To form vector b we multiplied the above matrix A with the considered solu-

tion and added random noise to this vector. To form the objective coefficients 
vector C, the jc , 1,2, ,j n=   coefficients were generated independently and 
randomly from the uniform distribution. 

Using the above formulation, three samples of 1000 small, 1000 medium and 
1000 large scale problems were formed. These problems had redundant, binding 
and superfluous constraints. 

The trials were performed for different training data sizes and the observa-
tions of the trial sets are independent. In these problems, the binding constraints 
were characterized as binding ones according to Simplex algorithm. In view of 
the fact that the algorithm is considered as a statistical tool, we calculate the in-
correct rejection of a true null hypothesis and the failure to reject a false null 
hypothesis. 

Then, for each sample, consider the following assumptions to conduct the 
hypotheses test. 

Assumptions for the observed data, referring to constraint characterization 
according to Simplex: 

H0: The constraint is binding according to Simplex 
Ha: The constraint is not binding according to Simplex 
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And 
Assumptions for the predicted data, referring to constraint characterization 

according to the proposed algorithm: 
H0: The constraint is considered as binding according to the proposed algo-

rithm 
Ha: The constraint cannot be considered as binding according to the proposed 

algorithm 
Let 
P1: The probability that there are binding constraints (according to Simplex 

method) among the constraints that characterized as binding by the proposed 
algorithm. 

P2: The probability a constraint can’t be characterized as binding according to 
the proposed algorithm even though the constraint is binding according to 
Simplex method. 

P3: The probability a constraint that is not binding according to Simplex me-
thod is characterized as binding according to the proposed algorithm. 

P4: The probability a constraint that can’t be characterized as binding by the 
proposed algorithm isn’t binding according to Simplex method. 

P5: The probability that binding constraints according to Simplex method are 
included among the constraints that are characterized as binding by the pro-
posed algorithm. 

The probabilities about small, medium and large scale problems are presented 
in Table 5, Table 6 and Table 7 respectively. 

In small scale problems, the algorithm fails to identify correctly the binding 
ones in 22% of cases. Also, the algorithm doesn’t fail to correctly identify the 
binding constraints of the problem in 63.6% of cases and the probability that 
binding constraints are identified correctly by the algorithm is 86.9%. In small 
scale problems constraints that are not binding can’t be characterized as binding 
by the proposed algorithm in 76.6% cases. 

In medium scale problems, the algorithm fails to identify correctly the binding 
ones in 15.9% of cases. Also, the algorithm doesn’t fail to correctly identify the 
binding constraints of the problem in 70.3% of cases and the probability that 
binding constraints are identified correctly by the algorithm is 89%. Constraints 
 
Table 5. Probabilities referring to a sample of 1000 small scale problems. 

Probabilities 
95% Confidence Interval for mean  

Mean 
Standard 

Error 
Lower Bound 

Upper 
Bound 

Standard 
deviation 

Median 

P1 0.22 0.05 0.21 0.23 0.164 0.2 

P2 0.13 0.002 0.136 0.126 0.086 0.125 

P3 0.233 0.032 0.227 0.239 0.1 0.227 

P4 0.766 0.032 0.76 0.773 0.1 0.773 

P5 0.869 0.003 0.864 0.875 0.085 0.875 
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Table 6. Probabilities referring to a sample of 1000 medium scale problems. 

Probabilities 
95% Confidence Interval for mean  

Mean 
Standard 

Error 
Lower Bound 

Upper 
Bound 

Standard 
deviation 

Median 

P1 0.159 0.003 0.154 0.165 0.095 0.137 

P2 0.11 0.002 0.107 0.113 0.052 0.103 

P3 0.187 0.002 0.183 0.192 0.076 0.175 

P4 0.813 0.002 0.808 0.817 0.076 0.825 

P5 0.89 0.002 0.887 0.893 0.052 0.897 

 
Table 7. Probabilities referring to a sample of 1000 large scale problems. 

Probabilities 
95% Confidence Interval for mean  

Mean 
Standard 

Error 
Lower Bound 

Upper 
Bound 

Standard 
deviation 

Median 

P1 0.067 0.001 0.064 0.07 0.043 0.052 

P2 0.058 0.001 0.056 0.06 0.033 0.047 

P3 0.096 0.002 0.092 0.099 0.059 0.087 

P4 0.904 0.002 0.9 0.908 0.913 0.059 

P5 0.942 0.001 0.939 0.944 0.033 0.953 

 
that are not binding in medium scale problems can’t be characterized as binding 
by the proposed algorithm in 81.3% cases. 

In large scale problems, the algorithm fails to identify correctly the binding 
ones in 6.7% of cases. Also, the algorithm doesn’t fail to correctly identify the 
binding constraints of the problem in 84.6% of cases and the probability that 
binding constraints are identified correctly by the algorithm is 94.2%. In these 
problems, constraints that are not binding can’t be characterized as binding by 
the proposed algorithm in 90.4% cases. 

7. Concluding Remarks and Further Research 

In this paper, a method is proposed to reduce an LP problem’s dimension which 
is highly useful when dealing with very large LP-problems, where only a rela-
tively small percentage of constraints are binding at the optimal solution. A new 
algorithm was presented and has been implemented and tested in a large num-
ber of linear programming problems with impressive results. In fact, in all the 
well-conditioned problems, the algorithm behaved successfully. The number of 
operations required in the proposed method is small compared to other known 
algorithms. 

In convex LP problems without superfluous constraints, the algorithm suc-
ceeds to find the binding constraints. Specifically, the constraints that are found 
are definitely binding, so the dimension of the problem is reduced. Especially, in 
problems with two variables, only one iteration is required. Even when the 
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problem had several superfluous constraints, the algorithm succeeded to find 
most of the binding constraints. If one binding constraint is missing after the 
procedure, this is likely the constraint having the smallest λ . 

For very large LP problems, only a relatively small percentage of constraints 
are binding at the optimal solution. However, although the percentage is small, 
in these problems the algorithm fails to identify correctly the binding ones in 
6.7% of cases. In large scale problems also, the algorithm doesn’t fail to correctly 
identify the constraints of the problem in 84.6% of cases and the probability that 
binding constraints are identified correctly by the algorithm is 94.2%. Using the 
proposed algorithm, the reduction of the dimension of the problem is obvious, 
even though there is a small chance not to identify correctly the binding con-
straints. However, Telgen [19] suggested that, according to empirical results, it is 
not obligatory (even on the smallest problems) to identify all redundant con-
straints in order to enhance the solution of a single linear programming problem 
according. In large problems, Bradley et al. [8] suggested that huge reductions 
are no exception either. 

The proposed method can easily be modified for minimization problems, and 
for problems with different type of constraints. Future research involves applica-
tions of the algorithm in dual LP problems, in integer programming problems, 
in nonlinear programming problems and in multi-objective optimization prob-
lems. Since in the successful rate of correct identification of binding constraints 
it wasn’t included the number of degenerated solutions, research remains to be 
done in the topic of degenerated solutions identification. 
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