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Abstract 
The goal of the research is to develop a methodology to minimize the public’s 
exposure to harmful emissions from coal power plants while maintaining mi-
nimal operational costs related to electric distribution losses and coal logis-
tics. The objective is achieved by combining EPA Screen3, ISC3 and Japanese 
METI-LIS model equations with minimum spanning tree (MST) algorithm. 
Prim’s MST algorithm is used to simulate an electric distribution system and 
coal transportation pathways. The model can detect emission interaction with 
another source and estimate the ground level concentrations of emissions up 
to distances of 25 kilometers. During a grid search, the algorithm helps de-
termine a candidate location, for a new coal power plant, that would minim-
ize the operational cost while ensuring emission exposure is below the 
EPA/NIOSH thresholds. The proposed methodology has been coded in form 
of a location analysis simulation. An exhaustive search strategy delivers a final 
candidate location for a new coal power plant to ensure minimum operation-
al costs as compared to the random or greedy search strategy. The simulation 
provides a tool to industrial zone planners, environmental engineers, and 
stakeholders in coal-based power generation. Using operational and emis-
sions perspectives, the tool helps ascertain a list of compromise locations for a 
new coal power plant facility. 
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1. Introduction 

In 2017, the United States’ primary source of energy for power generation was 
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fossil fuels. Coal accounted for 30.1% of the total share followed by 31.7% for 
natural gas and 0.9% for liquid fuels [1]. World electric power consumption in 
2015 stood at 23.5 trillion kWh with expected growth to 34 trillion kWh by 2040. 
Currently, the worldwide coal usage per annum for electric power generation 
stands at 3.34 billion tons. Figure 1 shows worldwide coal consumption projec-
tions from various regions [2].   

Coal upon combustion produces CO2, SO2, NOx, CO, Metallic and Particle 
Matter (PM10 & PM2.5). The presence of these chemical compounds in the at-
mosphere in close vicinity to humans, livestock, and agriculture carries detri-
mental health consequences.  

Fuel and its delivery cost comprise the biggest expense in coal power plant 
operations. Delivery of electricity from generation to consumers requires in-
vestment in power lines and transmission grids. For example, a 69 kV overhead 
single transmission line costs about $285,000 per mile while a 138 kV overhead 
transmission line costs about $390,000 per mile [3].  

Placing a coal power plant or multiple power plants near dense population 
centers can lower transmission costs. If a coalmine is nearby, transportation 
costs can also be reduced. However, emissions from coal plants have played a 
key role in worsening health crises in many countries, like India and China [4] 
[5]. For example, a stoker fired boiler burning one ton of anthracite coal emits 
17.67 kg of SOx, 4.08 kg of NOx, 0.272 kg of CO, 2574 kg of CO2, 0.004 kg of 
Pb, and 0.136 kg of toxic organic compounds (TOC) etc. [6]. 

In the last two decades, awareness has risen regarding air pollution and in-
creasing global temperature due to increased carbon dioxide emission and ozone 
depletion because of chlorofluorocarbon (CFC) activity. With 40.665% of world 
electric energy demand being met by coal power plants [7], it is imperative that 
new coal power spatial placement must be done not only from an economical 
point of view but also from an environmental point of view. There is a need to 
balance coal power plant location decision based on transmission and opera-
tional costs with the environmental impact on the local population; keeping 
profits and environmental consequences balanced.  
 

 
Figure 1. World coal consumption 2015-2040 [2]. 
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The problem of study is to develop an approach that uses current location de-
cision techniques and strategies of optimization coupled with financial and 
emission dispersion models. Additionally, to use the approach to calculate an 
optimal location for a new power plant in a certain geographical area. The goal is 
to minimize the cost of electric transmission and emission interaction with other 
point source emissions.  

The purpose of this study is to develop a dynamic program that allows city 
planners, industrial zone managers, coal power plant owners, and supply chain 
managers to determine the best compromized location for a coal power plant. 
The program goal is to assure both minimal total cost (production and trans-
mission costs) and environmental impact.  

The following research questions are formulated for the study: 
1) Which plume dispersion model can be combined with the location optimi-

zation algorithm in the proposed dynamic program that results in a compro-
mized plant location, where National Ambient Air Quality Standards (NAAQS) 
pollutant criteria are met and operational cost criteria minimized? 

2) Does the developed methodology assure better location for a coal power 
plant where the cost of coal logistics as well as electric transmission is less, com-
pared to a random pick or a greedy decision? 

3) Does the power plant emission foot print for the determined location keeps 
the pollution factor less than the National Ambient Air Quality Standards 
(NAAQS) threshold for 95% of the location population? 

The following assumptions are made for the research: 
1) Coal power plant emissions are continuous and follow a Gaussian disper-

sion model with steady state weather conditions. 
2) Power plant coal consumption relates directly to the amount of power re-

quirement. Line losses are non-linear depending on load covered by distance on 
each edge of the transmission network.  

3) The pollutants from exhaust do not undergo any chemical transformation 
upon interaction with the environment.  

4) Target consumers and coalmine positions on the map remain static. 
Limitations of the study are as follows: 
1) Currently the range of emission modeling is for a 100 km × 100 km grid.  
2) Building downwash has not been considered. 
3) Assumption of a constant 90-degree east wind direction on all models.  
4) The model does not take into consideration deviation in plume dispersion 

due to any urban growth caused by installation of a new power plant.  
In the next section, a detailed literature review focuses on the background of 

various atmospheric dispersion models, health risks posed by various pollutants, 
the cost of coal transport, electric transmission losses, and location analysis 
strategies. 

2. Literature Review 

In the 21st century, the issue of environmental awareness has been on the rise. 
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Various studies and methodologies have been published which attempted to 
quantify the distribution of emissions from various industries over a geographi-
cal area.  

2.1. Atmospheric Dispersion Models 

The Environmental Protection Agency (EPA), as a part of their mission to pro-
tect human health and environment, has made significant contributions in de-
velopment of various atmospheric models. These models take inputs like me-
teorological conditions, emission rates, and stack heights to simulate emitted 
matter’s dispersion and chemical reactions in the atmosphere. Regulation agen-
cies use these models in permitting processes, determining additional control 
requirements, predicting future concentrations in atmosphere from multiple re-
sources and characterization of primary and secondary pollutants [8].  

The EPA has recommended AERMOD and CALPUFF modeling systems for 
state implementation plans, new source review, and prevention of significant 
deterioration programs. AEROMOD is a steady state plume modeler that meas-
ures pollutant dispersion, based upon characteristics of the surface boundary 
layer, the convective boundary layer and the planetary boundary layer, coupled 
with terrain characteristics and meteorological conditions. CALPUFF is a 
non-steady state model that measures pollutant dispersion and transformation 
over long-range distances under ever changing spatial and time varying meteo-
rological conditions as well as complex terrain. Other recommended models 
published are BLP, CALINE3, CAL3QHC/CAL3QHCR, CTDMPLUS, and OCD 
[8]. BLP is based upon a Gaussian plume dispersion model associated with mod-
eling industrial sources where plume rise and downwash effects are important 
from point sources. CALINE3 is a steady state Gaussian plume dispersion model 
for air pollution dispersion at receptor locations. CTDMPLUS is a Gaussian air 
quality model for stable meteorological conditions and complex terrain. A group 
of alternative models are also presented by the EPA and can be applied on a case 
by case basis with proper reasoning. These include ADAM, ADMS-3, AFTOX, 
ASPEN, DEGADIS, HGSYSTEM, HOTMAC/RAPTAD, HYROAD, ISC3, 
ISC-Prime, OBODM, OZIPR, Panache, PLUVUEII, SCIPUFF, SDM, and SLAB.  

Kaw Nation Environmental Agency in Kaw City, Oklahoma, used the 
AEROMOD modeler to estimate the concentration of SO2 and PM that origi-
nated from various stationary resources in Noble County and entered tribal lands. 
The source sites selected for input included various refineries, power plants, and 
coke production plants. Stack height, terrain, wind direction and turbulence, ho-
rizontal distance, and various metrological conditions affected the dispersion of 
emissions. In total, 21% of these emissions reached the tribal area. This value 
fluctuated between winter and summer season [9]. 

The issue of accurate modeling of emissions has gained attention in Japan 
where models like the AIST-ADMER and METI-LIS have been developed for 
emission studies. The AIST-ADMER model by the National Institute of Ad-
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vanced Industrial Science and Technology incorporates metrological data and 
emission characteristics to calculate the average distribution of chemical con-
centration and exposure to general population over a wide area. METI-LIS, de-
veloped by Ministry of Economy, Trade, and Industry, emphasizes calculation of 
pollutant distribution released from lower and elevated sources under fixed and 
dynamic meteorological conditions. Razi (2012) used the AIST-ADMER model 
to estimate regional concentration and distribution of mercury in the central re-
gion of Honshu Island, home to various medium and heavy scale industries in 
Japan. The METI-LIS modeler was then used to study mercury distribution and 
concentration, in close vicinity to industrial zones, as released from two hypo-
thetical coal power plants set 20 km apart. The model established that people 
located close to the emission source would be exposed to a higher level of 
mercury compared to the general population though exposure will not exceed 
the 0.04 ug/m3 level [10]. 

The issue of accurate prediction of emissions has also gained traction in India 
where 70% of electricity is generated from coal. Varma (2014) used the general 
Gaussian plume equation with various Pasquill-Gifford Stability classes, to de-
termine concentration of SO2, NOx, CO and Particle Matter emitted from the 
Rayalaseema Thermal Project at various grid points. Key findings show that 
concentration of suspended Particle Matter, SO2, and CO at 5 kilometers recep-
tor point from source were greater, while NOx concentration was less than air 
quality standards. Further, SO2 concentration was higher at all receptor points 
ranging from 5 kilometers to 30 kilometers from source and its reduction 
needed further attention [11]. 

Ill-advised spatial placement of a coal power plant can carry severe conse-
quences for the environment and public. Contradictory weather patterns over land 
can result in co-joining of emissions from multiple sources, which can drive dis-
tributed concentration of Particle Matter, SO2, and NOx, above the normal air 
quality limit. Guttikunda (2014) study used the ENVIRON-Comprehensive air 
quality model with extensions for integrated assessment of gaseous and particle 
air pollution over an estimated geographical area of 24.52 million square kilo-
meters and vertical height of 12 km. Estimated emissions had a +/−20% error 
due to non-uniform emissions reporting, operating conditions, and varying coal 
consumption rates. The key findings presented in the study were that there is a 
very strong correlation between clustering of power plants and high emissions 
concentration in local and intermediate geographical areas. Most coal plants are 
built near coalmines, irrespective of the fact that major population centers are in 
the immediate vicinity. Examples include Kobra cluster, Mundra cluster, and 
Mumbai cluster where population density can vary from 1000/km2 to 10,000/km2 
[4].  

This study was extremely helpful. It established a direct link between spatial 
placements of multiple coal power plants solely from a financial point of view 
including factors such as proximity to coal mines to reduce transportation costs, 
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placing multiple units in a small area to share company resources, committing to 
minimum air quality standards. Nevertheless, it leads to worsening pollution 
crises due to high levels of emissions, conversion of various emissions into sec-
ondary pollutants and emission interactions. The study provided a mathematical 
relationship between particle matter concentration, morbidity and mortality 
rates. Number of estimated health effects Eδ  followed following relationship;  

#grids
1 iiE C POPiδ β δ δ
=

= ⋅ ⋅∑                   (1) 

where β is the concentration-response function (a 3.9% change in mortality rate 
per 4 ug/m3 of change in the PM2.5 concentration), iCδ  is change in concentra-
tion from ambient standards at grid i and POPiδ  is the population exposed to 
incremental concentration Cδ  at grid i [4].  

Gourgue (2015) developed a model to study dispersion of NOx compounds 
released from CIBEL II Industrial unit boilers. The methodology used a general 
Gaussian pollutant dispersion equation in combination with Holland’s equation, 
which accounts for an ultimate increase in plume height due to plume buoyancy 
as well as convective airflow. The model recognizes that plume dispersion was 
affected by hilly terrain and land sea boundaries. Natural barriers created by hil-
ly terrain and wind patterns from the ocean drove NOx emission concentration 
as high as 140 ug/m3 in some areas [12].  

Weather and terrain have a significant effect on dispersion of pollutants. In 
cold weather, the phenomena of temperature inversion impacts air quality. An 
inversion condition happens when stable, cooler air near the Earth’s surface is 
followed by a layer of warmer air just above. Tran and Mölders (2012), Univer-
sity of Alaska, analyzed contribution of Particle Matter (PM2.5) from point emis-
sion sources to the near surface air layer in certain areas in Fairbanks, Alaska, 
where air quality is worse than National Ambient Air Quality Standards 
(NAAQS), aka “Non-Attainment Areas”. It has been often observed that Fair-
banks’ extremely cold winter creates a phenomenon of an inversion layer that 
results in formation of non-attainment areas [13]. In 2006, the National Am-
bient Air Quality Standards (NAAQS) tightened the criteria for Particle Matter 
(PM2.5) concentration for 24-hour period to less than 35 ug/m3, which required a 
push for development of strategies for further emission controls. Since emission 
controls are expensive investments, a statistical study investigated if emissions 
from the point sources have a significant contribution in non-attainment areas.  

The conclusion of the Trans & Molders study follows that the Particle Matter 
(PM2.5) concentration was high at breathing level very close to the point source, 
but emissions from point sources had a minor contribution on Particle Matter 
(PM2.5) in non-attainment areas. Wind speed, temperature, and mixing heights 
have a strong influence on the Particle Matter’s (PM2.5) ability to stay or leave a 
non-attainment area. Nonpoint source emissions are major contributors of Par-
ticle Matter (PM2.5) in non-attainment areas. Investment in emission controls at 
point sources would not guarantee any significant reduction of Particle Matter 
(PM2.5) in non-attainment zones [13]. The study exemplifies that using envi-
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ronmental pollution models with statistical analysis can justify a financial cost. 
Since a financial investment decision would not yield any major benefit in terms 
of reducing impact on environment, a company can save that money for future 
use.  

We have briefly discussed coal power plant involvement as a point source 
emitter of various pollutants. We have also discussed different modeling tech-
niques that simulate dispersion of emitted pollutants over a wide geographical 
area, under various meteorological conditions. Due to commonality of Gaussian 
Plume Dispersion in various industrial plume dispersion modelers, as well as its 
robust simplistic equation, we have also decided to use it in our methodology. 
The Gaussian plume dispersion Equation (4) is based upon the advec-
tive-diffusive Equation (2), which explains transfer and diffusion of pollutants 
from instantaneous sources. 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
CC div CV K C Ri Q t t x x y y z z
t

δ δ δ δ∂
∂ + = ∇ ∇ + + − − − −

∂
 (2) 

In the above advective-diffusive equation C is the mass concentration of pollu-
tant, V is wind velocity vector, K is turbulent diffusivity tensor, R represents 
chemical/photochemical transformation, Q is the source term, t is time at which 
emission occurred and x0, y0, z0 are emission source coordinates. Under conti-
nuous emission, wind velocity, and turbulent diffusivity, the advective-diffusive 
equation transforms into the Gaussian plume dispersion equation [14]. The 
Gaussian plume model is a steady state model, due to the emission rate remain-
ing continuous. However, a time dependent puff model is used for 
non-continuous emissions with varying wind direction and velocity. To account 
for the impact of air turbulence on distribution of airborne contaminants, dis-
persion coefficients from Pasquill-Gifford-Turner’s six stability classes (A - F) 
are used with the Gaussian plume dispersion equation. Stability is a qualitative 
atmospheric character, which governs the vertical motion of the air tract. In an 
unstable atmosphere, the turbulence is positive (high). In a neutral atmosphere, 
it is zero; while in a stable atmosphere, it is suppressed [15]. 

2.2. Health Impact 

A typical coal power plant of 600 MW can introduce up to 3.5 million tons of 
CO2 into the atmosphere each year. On the same note, an uncontrolled power 
plant can emit up to 14,100 tons of SO2 10,300 tons of NOx, 220 tons of volatile 
organic matter (VOC), 720 tons of CO, 220 lbs of arsenic, 170 lbs of mercury, 
114 lbs of lead, and 4 lbs of cadmium [16]. A case study published by Green 
Peace Research Labs, Exeter, UK, on “Hazardous Emissions from Philippine 
Coal-fired Power Plants” also mentions the presence of Chromium, Cobalt, 
Zinc, Nickel, and Copper in fly ash from the Sual, Mauban, and Masinloc coal 
power plants [17].  

According to the Environmental Protection Agency (EPA), when it comes to 
atmospheric pollution, power plants, in general, are responsible for 50% Mer-
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cury, 22% Chromium, 62% Arsenic, 28% Nickel, 60% SO2, 77% Acidic Rain, and 
13% NOx emissions [18]. The EPA lists Nickel dust as a potential carcinogen 
[19]. The distribution of organic, inorganic, and metallic compounds in coal 
power plant emissions depend upon a multitude of factors, such as coal type, 
operating temperature of the boiler, the age of the equipment, and the pre-burn 
processing of the coal.  

2.3. Coal Transportation  

The biggest expense in a coal power plant operation is the raw material. Ap-
proximately 0.454 metric tons (454 kg) of coal can generate one megawatt of 
electricity per hour [20]. The US Energy Information Administration notes the 
average price of coal in 2015 was $29.20 per ton.  

In a breakdown of coal expenses, transportation makes up the largest portion. 
Total delivery cost in 2014 for a ton of coal stood around $18.53/ton [20]. That 
equates to about 39% of total raw material expenses. Figure 2 lists the average 
commodity and transportation cost ($/ton) for coal in 2008-2014. Nominal 
transportation cost for coal from year 2001 to 2008 increased from $0.025 to 
$0.040 per ton-mile [21]. 

To lower transportation costs, coal power plants are often built near coal-
mines [22]. It is imperative from a financial standpoint that a coal power plant, 
which is consuming tons of coal per hour, be located near a coalmine to minim-
ize the operational cost. The cost of coal logistics plays a critical role in deter-
mining the feasibility of operating a coal power plant. In some cases, the logistics 
costs are more expensive than mining. 

2.4. Electric Transmission Losses 

Electric transmission from a power plant to regional sub-station is done using 
high voltage lines with ratings on these lines in the range from 132 kV to 755 kV. 
Electric distribution to local consumers begins after high kV is stepped down to 
at most 132 kV at a regional substation. A single regional sub-station can serve 
up to 200 houses in urban areas [23]. In total, transmission accounts for 17% of 
total electric distribution losses from power plant to consumers. Technical losses 
 

 
Figure 2. Average coal commodity and transportation cost [20]. 
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in transmission are categorized in terms of permanent and variable losses. Per-
manent technical losses range between 25% and 33% on distribution networks. 
Examples include corona losses, dielectric losses, open circuit losses, and leakage 
current losses, etc. Technical variable losses are proportionate to the square of 
current in a given network. Examples include impedance losses, losses due to 
contact resistance, and Joule losses per voltage level, etc. [24]. 

Corona losses 
The phenomena of Corona discharge are composed of a cumulative ionization 

process. Production of these ions extracts energy from the transmission supply 
and thus contribute to net electrical losses [25]. Factors that affect corona losses 
are atmosphere, conductor size, and spacing between conductors and line vol-
tage. Corona losses above disruptive voltage are quantified using Equation (3):  

( )( )2 5212.4 25 10c p c
rP f V U
dδ

−= + − ×              (3) 

where Pc is power loss, Vp is phase to neutral voltage, Uc is disruptive critical 
voltage, f is supply frequency, r is radius of transmission line, and δ is density of 
air. 

Ohmic losses 
Ohmic loss is heat generated by a wire due to its resistance to the flow of cur-

rent. Magnitude of ohmic loss is directly proportional to the length of the 
transmission line (m), wire resistance (ohm/m) and square of electric current 
(A) [26]. 

The losses described in this section were incorporated in the simulation model 
due to finance factor. The line losses can cost both the consumer and producer 
valuable capital over time, and, since these losses are proximity based, the best 
way to mitigate these losses is to optimally place a power plant near high de-
mand customers.  

2.5. Location Analysis 

Location analysis refers to modeling of the class of problems best designated as 
deployment of facilities in a provided space. Distances between the facility and 
customers can be calculated using rectilinear, Euclidean, or Chebyshev prin-
ciples [27]. In a network setting, the distance between two points present on the 
network is typically calculated using the shortest route from a set of given arcs. 
Classes of location objectives can be as follow:  
• Pull Problem (The objective function desires on minimizing the proximity 

between facilities and customer). 
• Capture Problem (The facility imbeds the cost of transportation in the com-

modity prices). 
• Push Problem (The objective function desires maximizing the distances be-

tween facilities and customer). 
• Equity (Attempt to have similar distances between multiple facilities and the 

customer). 
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• Free Entry Problem (A facility location problem that minimizes the sum of 
plant opening costs and distribution costs whereas the total number of facili-
ties is calculated as consequence of minimum cost solution). 

• Least Set Cover Problems [27]. 
In a single facility setup, the ultimate objective of location analysis is to find a 

“point” on a planer grid that minimizes the sum of total transportation cost to 
several customers.  

This objective problem can be represented by the Center of Gravity approach. 
The Center of Gravity approach provides a x-and-y coordinate solution for set-
ting up a new facility with the lowest total transportation cost. The Center of 
Gravity approach, however, does not take into consideration the real-life con-
straints. For example, the distances between facility and customers may be taken 
as straight-line distances whereas a path from point A to point B may be best 
represented by a network. They do not consider the volatility in set up costs as-
sociated with various possible locations. The volume of product flow assigned to 
each customer is represented by a static value, whereas the product demand may 
be subject to trend or seasonality [28].  

Another tool for facility location problem solving is mixed integer linear pro-
gramming. In mixed integer linear programming, the decision variables are con-
strained to be in integer values at an optimal solution. The mixed integer linear 
programming is considered non-convex problems, which can be solved using a 
Branch and Bound technique [29]. Mixed integer linear programming has the 
capability to optimally deal with the issue of fixed cost while insuring that cus-
tomer demand is met on a given network. The new location for a facility can be 
best expressed with an objective function that minimizes the fixed and linear va-
riable costs to transfer all products from facility to customers under various 
numbers of constraints. With increased number of constraints, the mixed integ-
er linear programming can be highly exhaustive in terms of computational de-
mand and an optimal solution is not always guaranteed [28].  

If optimality is not the core requirement when searching for a new location, 
heuristic methods can provide a sub-optimal solution within a reasonable 
processing time. Other location search techniques are guided linear program-
ming, dynamic warehouse location, the spatial interaction model, and multi cri-
teria decision analysis.  

In this research we have used a combination of “push” and “pull” location 
analysis strategy to calculate transmission losses and coal logistics cost with dis-
tances between power plant and stakeholders best represented by a network. The 
pull strategy will focus on finding a location, where the combined cost of electric 
transmission losses and coal delivery can be minimized. The pull strategy is 
suitable for this case since its main objective is to reduce the distance between 
customers and supplier. However, in our research, the objective function aims to 
minimize the combined electric transmission and coal logistics cost using a unit 
cost weight per length. This approach will ensure that on a given network the 
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coal power plant is located closest to the chief electric customer. The same idea 
will apply to a coalmine providing the highest percentage of coal to power plant.  

The push strategy will focus on minimizing emission exposure by maximizing 
distances between power plant and customers. The push strategy is suitable in 
this case since its main objective is to drive as much reasonable distance as poss-
ible, between coal power plant and customer. The push strategy is based on bi-
nary decision making to allocate the maximum distance between emission 
source and customer such that the pollutant exposure to that customers is less 
than NIOSH threshold for that pollutant. The maximum separation that can be 
achieved, however, is governed by the downwind range of Gaussian plume dis-
persion model.  

3. Methodology 

The methodology section is primarily composed of a Java based simulation us-
ing dynamic programming strategy. Dynamic programming is a useful mathe-
matical technique for making a sequence of interrelated decisions. The aim of 
the methodology is constantly improving the objective function of minimizing 
the electric transmission losses and coal logistics cost under environmental con-
straints. 

The methodology is simulation based due to dynamic range of several va-
riables. Simulation is especially helpful in measuring and predicting the effect of 
change in value of individual element onto the entire system [30]. For example, 
the wind speed, the stack height, the exhaust velocity and temperature of emis-
sions can take a range of different numeric values, resulting in various possible 
locations for coal power plant’s placement. In addition, the shear amount of 
computations and visual projection makes the manual calculation completely 
infeasible. For example, a 20 km × 20 km Gaussian plume contour grid with a 
resolution factor of 1/2 km contains about 1600 receptor points. To calculate re-
sultant plume concentration for any given plume interaction with a different 
source modeled at identical grid size, can require up to 2,560,000 calculations 
per grid point. Since there are 10,000 grid points on a 100 km × 100 km grid 
with resolution factor of one kilometer, the total amount of computations is 
enormous and simulation methodology can thus provide the best tool to deal 
with the problem.  

3.1. Step Wise Calculation Summary  

The program starts with initialization of static locations of multiple stakeholders, 
i.e. customers, supplier, and resources. Pollution dispersion equations are initia-
lized for current and future power plants, followed by integral placement of the 
future power plant on all possible locations of a 2D-spatial grid, with the rele-
vant costs of electric transmission and coal transportation calculated at each lo-
cation. A key point is that the algorithm calculates the shortest possible network 
for electric transmission from power plant to consumers.  
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At each grid point on the map, the program calculates the costs related to 
transmission losses and coal distribution, as well as the magnitude of emission’s 
concentrations of the pollutants at ground level. Useful data is saved in a de-
clared holding variable (integer, float, array) and during each step of the pro-
gram, a minimum cost function is run to either keep or update the holding va-
riables. The ultimate objective of the program is to find a compromized location 
for placing a new power plant, which ensures minimum cost of operation for 
coal power plant and with the least amount of pollutant exposure to the general 
population. 

Inputs 
1) Location coordinates of residential and commercial consumers. Location of 

coalmines and any existing coal power plants. 
2) Power plant’s power output (that will determine coal usage) in units of MW.  
3) Weather condition (wind speed, direction, solar elevation cloud cover, and 

temperature).  
4) Height of stacks.  
5) Transmission line physical properties. Unit cost of kWh charged by plant. 
Outputs 
1) Spatial x and y coordinates for coal power plant. 
2) Net distance between coal power plant and consumers. 
3) Net distance between coal power plant and coal mines. 
4) Total cost for coal shipment.  
5) Total cost of electric power transmission. 
6) Visual display of emission concentration contours from coal power plant. 
Objective Functions 
Min: Exposure of power plant emissions to populations at various locations 

on a grid map. 

1 1
Min :  Cost of electric transmission losses Coal transportation cost

n m

+∑ ∑ . 

where n is number of customers and m is number of coal mines. 
Constraints    
0 km, 0 km < Grid x, y < 100 km, 100 km. 

... ...,i n i nx y′ ′  Concentration of SO2, NOx, PM2.5 & PM10 < EPA Threshold. 
Gaussian dispersion model 
The Gaussian dispersion model is based upon the Gaussian distribution prin-

ciple, where the width of the plume is determined by the standard deviation of 
longitudinal and vertical axes which in turn are dependent on environmental 
stability, class and travel time. The concentration of particle matter in micro-
gram/cubic meter, at any location x, y from the source can be calculated using 
the following Equation (4) [31]:  

( )
( ) ( )2 2

2

2 2 2, , exp exp exp
2 2 2 2

p p

p y z y z z

z H z HQ yC x y z
Uπ σ σ σ σ σ

    − +      = − − + −              

(4) 
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where Q is emission rate of gas, Up is mean wind speed at the stack height, Hp is 
sum of the actual stack height “Hs” plus any plume rise ∆H due to initial 
buoyancy or momentum of release; z is the vertical distance from ground level, y 
is the cross-wind distance from stack, yσ , zσ  is the standard deviation of 
concentration distributions in the crosswind and vertical directions. 

Euclidian distance 
Distance between two grid points on a two dimensional grid can be calculated 

using Equation (5):  

( ) ( )2 2
2 1 2 1Distance x x y y= − + −                    (5) 

Coal shipment cost to power plant is calculated using Equation (6): 

( ) ( )
Delivery ChargeCost Distance Miles charged by shipment company

Mile Ton of coal
= ×

−
(6) 

Electric Transmission Cost to Consumers is calculated using Equation (7): 

( ) ( )1

kWLosses $ Technical losses Electric load Distance km
km

n
i== ⋅ ⋅∑    (7) 

where n is total number of customers; Technical losses equal resistive losses plus 
corona losses. 

AC power losses 
The main costs associated with AC Power Transmission are Resistive and 

Corona Losses. On average, 6.8% of total power generated gets wasted in these 
losses [32].  

Resistive losses 
( ) ( )

( )
( )

RLOSS

0
% 1

0
lzR LcP P z

P e
P

−−
= = −                (8) 

where RLOSS%P  is percentage power loss; difference between initial amount of 
power minus amount of power delivered at any point on the transmission line, z 
is distance in meters, Rl is resistance per unit length, L is inductance/unit length, 
c is speed of light. 

1

o

δ
π µ σ

=
∫

                          (9) 

where δ  wire skin depth, oµ  is Permeability of free space, σ  is conductivity 
of metal. 

2
B

l
IR
aπ σδ

=                          (10) 

where BI  is Bessel correction factor and a  is wire radius 

ln dL
a

µ
π

 =  
 

                         (11) 

where d is line separation. 
Corona losses  

( )
2

525 ln 10 kW kmo
o o i d

d

k a dP f V g k ak
k d a

−  = + − ⋅    
      (12) 
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where P is Corona loss kW/km/line, ok  is fixed constant, dk  is Norm Air 
Density Factor, f is frequency, oV  is line voltage to neutral, og  is disruptive 
gradient of air, ik  is wire irregularity factor, dk  is normalized air density fac-
tor [32]. 

3.2. Simulation Design 

The simulation uses a dynamic programming principle to choose an appropriate 
location for a power plant to minimize the electric distribution losses and coal 
transportation cost while ensuring the general public’s exposure to a given pol-
lutant stays below the National Ambient Air Quality Standards (NIOSH) thre-
shold. The simulation is developed using Processing Language as the primary 
platform. The simulation is primarily composed of the following parts: 

1) 2-Dimensional grid space (100 km × 100 km) with grid resolution of 1 km. 
2) 20 customers spread randomly with integer-based x, y spatial values. 
3) Three coalmines clustered together within a 30 km vicinity of each other. 
4) One existing and one new coal power plant with individual electric genera-

tion capacity, coal consumption, stack diameter, and stack height. 
5) 2-Dimensional Gaussian plume chemical dispersion contours for a down-

wind range of 20 km, with a 90-degree East wind and a receptor resolution of 
500 m. The horizontal and vertical dispersion coefficient for atmospheric stabil-
ity classes A, B, C, D, E, and F is used with the Gaussian plume dispersion equa-
tion to calculate the dispersion concentration of pollutants in the downwind 
range at an elevation of “0” m.  

6) In the search process for a viable location for a new power plant, if the 
chemical dispersion contours overlap with a customer location and the chemical 
concentration is greater than the EPA threshold, it is acknowledged for further 
processing. The simulation can also successfully detect interaction between two 
power plant emissions and adjust the overlapping contours of chemical concen-
tration accordingly. 

7) Electric demand from each customer is represented in megawatts. Demand 
is chosen as a random integer value ranging from one megawatt to 100 mega-
watts. 

8) Prim’s algorithm is applied to find a minimum spanning tree between cities 
and a new power plant. A minimum spanning tree ensures that the total distance 
of all edges, connecting the cities and power plant, is minimized. The reason to 
use Prim’s algorithm is due to its simplistic nature, availability of code for 
processing language software, running time complexity of O(n2), ability to start a 
minimum spanning tree from a given vertex and suitability to calculate the net 
electrical losses by back tracking on the resultant minimum spanning tree. The 
Kruskal algorithm does not guarantee a start from a given vertex, and the coding 
complexity of Sollin’s algorithm made it non-preferential for usage [33] [34] 
[35].  

9) Prim’s algorithm is also applied to find a minimum spanning tree between 
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the power plant and the coalmines. 
10) Backtracking load transfer. A non-linear arrangement is used to calculate 

the cost of electric distribution losses from power plant to various customers lo-
cated on the minimum spanning tree. The net electric load from the source 
(Power Plant) reduces in a step-wise function as each customer’s demand on the 
network is satisfied; this results in non-linear cost reduction proportion to scale 
of deliveries. The net cost of electrical losses is calculated by back tracking on the 
minimum spanning tree produced using Prim’s algorithm; start with the ter-
minal nodes (Customers) and keep making head-ways to the root node (Power 
Plant).  

The concept of “Backtracking load transfer” to calculate the cost of electrical 
losses is more “optimal” than concepts we found using the “average” approach. 
The average cost can be calculated simply by multiplying given line losses value 
for corresponding net electric load, by the total network distance. However, the 
“average” approach does not represent realistic application since the line losses 
cost calculated are significantly higher, as compared to “Backtracking load 
transfer” strategy. 

11) The simulation tests all 10,000-location points for a candidate solution. 
This marks the conclusion of the methodology section of the research project. 

The next section deals with data analysis and results. Section 4 focuses on valida-
tion of Prim’s algorithm used to create minimum spanning tree, validation of 
Gaussian plume dispersion models under atmospheric condition A - F, coal lo-
gistics and transmission line resistive and corona losses.  

4. Data Analysis and Results 

The proposed methodology’s main components are minimum spanning trees, 
respective costs for minimum spanning tree network, Gaussian plume disper-
sion modeling and emissions interaction. The primary algorithm used for min-
imum spanning tree is the Prim’s algorithm. A Prim’s algorithm example pro-
vided in Network Flows Theory, Algorithms, and Application [36] is first vali-
dated using R-software. Upon a successful match between the reference example 
and the R-output, a complete graph of six vertices is created in the simulation as 
shown in Figure 3(A). Application of Prim’s algorithm produced a minimum 
spanning tree with a total distance of 80.64 km, as shown in Figure 3(B). This total 
distance of 80.64 is then successfully validated by running Prim’s algorithm on the 
Figure 3(A) (complete graph) using R-software-Optrees package [37].  

The respective cost of electric delivery on minimum spanning tree is calcu-
lated by iteratively back-tracking from the terminal node to parent node. At each 
iteration, distance between various terminal nodes and corresponding parent 
nodes is calculated and depending on the magnitude of electric load between any 
two given points, the corresponding cost of corona and ohmic losses is calcu-
lated. Upon conclusion of an iteration, the terminal nodes are pruned, giving 
way to respective parent node transformation to terminal node. This process is  
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Figure 3. (A-Left) A complete graph representing all possible direct paths between cities 
and a power plant. (B-Right) Visual output of Prim’s minimum spanning tree with total 
path distance of 80.64 km. 
 
repeated until the only node left is the root node (coal power plant). In the vali-
dation process of back-tracking strategy, the Prim’s minimum spanning tree 
from Figure 3(B) is used; it has total electric demand from five customers set 
equal to 213 MW. Electric power is generated at the power plant and channeled 
to cities using a single 765 kV transmission line. Total power demand by five ci-
ties equals 213,000 kWh, which equates to hourly value of $29,820 (at a rate of 
14 cents/kWh). Net resistive and Corona Losses equate to a cost of $329.41 to 
transmit 213 MW power over a total transmission distance of 80.64 KM. In 
terms of dollar value, the transmission losses are only 1.105% of the total value 
of electric power generated. Figure 4 illustrates the process of cost calculation 
using back-tracking strategy. 

The validation process for plume dispersion starts by calculating the effective 
height of buoyancy and momentum dominated plume using Briggs plume rise 
equation [38]. Simulation output indicates that for a stack height of 30.48 m with 
emission rate of 28.85 g/s, exit velocity of 18.31 m/s, exhaust exit temperature of 
the plume of 372.04 K, wind speed at stack height of 3 m/s and ambient temper-
ature of 285 K at stack height, the effective height of the buoyancy-dominated 
plume is 419.26 m at a down-wind range of 1213.78 m from the stack structure. 
In the case of a momentum-dominated plume with all physical conditions being 
equal besides an exhaust exit temperature of 285 K, the effective height of the 
momentum-dominated plume is 123.62 m at a down-wind range of 308.73 m 
from the stack structure, as shown in Figure 5. 

The Gaussian plume dispersion model is simulated for atmospheric condi-
tions A, B, C, D, E & F for a 400 MW coal power plant, emitting 28.85 grams of 
sulfur dioxide per second from a physical stack height of 30.48 meters with ex-
haust and atmospheric conditions described above. The simulated results from 
Gaussian plume modeling application are validated against EPA Screen3 model 
and Japanese METI-LIS model. 

Screen3 is the Environmental Protection Agency (EPA) single source Gaus-
sian plume model that provides maximum ground level pollutant concentrations  
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Figure 4. Visual conceptualization of back-tracking strategy.  

 

 
Figure 5. Graphical output representing (Buoyancy Dominated) and (Momentum Dom-
inated) plume height evolution. The effective plume height value for both buoyancy and 
momentum dominated plume were successfully validated using EPA Screen3 model. 
 
for flare, point, and volume sources. The model can provide pollutant concen-
tration in the cavity zone as well as the concentration of pollutant due to inver-
sion break up [8]. METI-LIS is a Gaussian dispersion model developed by the 
Japanese Ministry of Economy, Trade, and Industry (METI) and Japanese Re-
search Center for Chemical Risk Management (CRM) based upon EPA ISC 
model. METI-LIS provides a simple solution to plume and puff models, and it 
incorporates the effect of downdraft around buildings. METI-LIS does not use 
Briggs equations for effective plume height but instead uses the CONCAWE eq-
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uation. The model can also calculate deposition concentration of particle matter 
[39]. 

The Gaussian plume dispersion application in simulation for atmospheric 
condition “A”, provided maximum chemical concentration of 21.53 ug/m3 at a 
range of one kilometer from the stack, in the downwind direction. Compara-
tively, Screen3, under the very same conditions, provided a maximum emission 
concentration of 19.26 ug/m3 at a range of 0.874 km. Meanwhile, METI-LIS pro-
vided a maximum concentration of 16.46 ug/m3 SO2 at a range of 0.606 km. See 
Figure 6. Regarding atmospheric condition “B”, maximum chemical concentra-
tion of 9.80 ug/m3 is calculated at a range of 3 km from stack in the downwind 
direction. Whereas, Screen3 provides a maximum concentration of 10.24 ug/m3 
at a range of 2.424 km and METI-LIS provides maximum concentration of 13.49 
ug/m3 SO2 at a range of 1.818 km from stack.  

Simulation modeling for atmospheric condition “C”, provides maximum 
chemical concentration of 8.30 ug/m3 at a range of 6 km from the stack in a 
downwind direction. Relatively, Screen3 model provides maximum concentra-
tion of 7.714 ug/m3 at a range of 4.879 km while METI-LIS respectively provides 
maximum concentration of 11.18 ug/m3 SO2 at a range of 3.030 km. Atmos-
pheric condition “D” provides a maximum chemical concentration of 1.99 
ug/m3 at a range of 20 km from the stack in a downwind direction. Relatively, 
Screen3 provides maximum concentration of 2.593 ug/m3 at a range of 20.250 
km and METI-LIS provides respective maximum concentration of 4.718 ug/m3 
SO2 at a range of 11.11 km.  

Atmospheric condition “E” provides a maximum chemical concentration of 
10.22 ug/m3 at a range of 13 km from the stack in a downwind direction. Rela-
tively, Screen3 provides a maximum concentration of 12.03 ug/m3 at a range of 
10 km and METI-LIS provides a maximum concentration of 2.76 ug/m3 SO2 at a 
range of 20 km. Lastly, atmospheric condition “F” provides a maximum chemi-
cal concentration of 6.26 ug/m3 at a range of 20 km from the stack in a down-
wind direction. Relatively, Screen3 provides a maximum concentration of 8.468 
ug/m3 at a range of 15 km and METI-LIS provides a maximum concentration of 
0.5459 ug/m3 SO2 at a range of 20 km.  

It can be observed that as we step from atmospheric condition A to F, mod-
erate deviations start developing between the simulation results and Screen3 in 
terms of maximum concentration and distance to maximum concentration. 
These deviations however are pronounced between the simulation results and 
METI-LIS results. The conclusion section includes further details on this subject.  

Plume interaction is simply pollutants exhausted by multiple sources sharing 
the same spatial volume. Plume interaction is important. An individual source of 
interest may be spreading pollutants below the EPA threshold; however, the 
presence of multiple sources and their resultant interaction can end up driving 
local concentrations higher than the EPA threshold. Per problem 20 on page 52 
of the EPA—Workbook of Atmospheric Dispersion Estimates, the final concen-
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tration of SO2 on a given receptor point is obtained by summation of individual 
pollutant concentrate emitted from a power plant and refinery at that given re-
ceptor point [40]. The same strategy is being applied in our simulation, where 
two coal power plants placed 5 KM apart in the north-south direction are emit-
ting the same amount of SO2 in the immediate east direction under atmospheric 
condition “A” as shown in Figure 7. The simulation provides a maximum chemical 
concentration of 21.510 ug/m3 at a range of one kilometer from the stack in a 
downwind direction for each power plant. However, at a range of 20 km the 
pollutant concentration on the Power plant (2) emission trail (centerline) is 
19.60% higher than an individual power plant emission concentration. 

Coal transportation cost validation is done using a simplified model contain-
ing only one coal power plant and three coalmines as depicted in Figure 8(A). 
The simplified model is based on the concept of Fermat point; a point in the tri-
angle where sum of distances from vertices to the point is minimal [41]. This 
approach is akin to a 3-Point Steiner tree, where the coal mines represent three 
stationary points on a grid and the coal power plant is the extra intermediate 
vertex serving as a shared junction [35]. For each megawatt/hour generation, the 
coal power plant consumes 0.733 tons of coal per hour (operating efficiency of a 
power plant affects this relationship). Figure 8(A) represents the initial state of 
simulation with a 884 MW power plant, located at location of (x0, y0). Yellow 
lines represent the minimum spanning tree between the coal power plant and 
coalmines by the application of Prim’s algorithm.  

Each coal mine on the map contributes 33.33% or 216 tons to the total coal 
demand. The transportation cost is set at $0.042 per ton-km. The coal move-
ment and related costs are as follows:  

1) 216 tons of coal get transferred from (Coalx-80, Coaly-45) location to 
(Coalx-75, Coaly-75) at a cost of $275.87. 
 

 
Figure 6. (Left) Visual representation of atmospheric pollutant dispersion under Pas-
quill-Gifford-Turner’s atmospheric condition (A) up to downwind range of 20 km. 
Maximum concentration of 21.53 ug/m3 predicted at range of 1 km downwind from 
emission source. (Right) METI-LIS Visual output of pollutant dispersion under same 
conditions with maximum concentration of 16.46 ug/m3 predicted at range of 0.606 km 
downwind from emission source. 
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Figure 7. Plume interaction for Power plant (1) and Power plant (2) under atmospheric 
condition A up to downwind range of 20 km. Distance between the Power plant (1) and 
(2) is 5 km. *Red color refers to areas of highest chemical concentration whereas the blue 
color represents areas of lowest Chemical concentration. 
 

2) 432 tons of coal gets transferred from (Coalx-75, Coaly-75) location to 
(Coalx-55, Coaly-65) at a cost of $405.69. 

3) 648 tons of coal gets transferred from (Coalx-55, Coaly-65) location to (Pow-
er Plant x-0, Power Plant y-0) at a cost of $2317.44. 

4) Total cost to transfer all coal from three mines to the power plant is $2999. 
Upon conclusion of the simulation, the compromized location for the power 

plant is finalized at (x69, y65) as shown in Figure 8(B). The total transportation 
cost for coal delivery to the power plant is $439.49 with a total delivery distance 
of 48.49 km, as compared to initial state in Figure 8(A), which has a delivery 
distance of 137.92 km and delivery cost of $2999. 

The electric transmission losses are composed of resistive and corona losses. 
The resistive losses are a function of resistance/meter, inductance/meter, and 
frequency of the transmission line [32]. Loss ratio is calculated on a 1000 m 
aluminum transmission line with a conductivity value of 38.2 × 106 (S/m). Re-
sistance per meter is inversely proportional to the radius and operating frequen-
cy of the wire, due to the phenomena of skin depth. A wire with a radius of 0.005 
m, operating at a frequency of 60 Hz, has resistance of 8.72 × 10−5 ohms/m while 
a wire of 0.035 m radius has a resistance of 1.25 × 10−5 ohms/m. See Figure 9. 
This is a substantial 85.66% decrease in resistance.  

In terms of power loss, a wire with a radius of 0.005 m operating at a frequen-
cy of 60 Hz has loss ratio of 9.56 × 10−5 as compared to a wire of 0.035 m radius, 
which has a loss ratio of 1.84 × 10−5 at the same frequency. See Figure 10. This is 
a substantial 80.75% decrease in power loss. Corona Losses (kW/km/line) are 
represented as a function of conductor radius (cm) and disruptive critical vol-
tage (V) for a transmission line operating at a frequency of 60 Hz [32]. A dispar-
ity between conductor radius and disruptive critical voltage can result is higher 
than normal Corona Losses.  
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Figure 8. Coal transportation cost validation (Initial and Final State). 

 
Simulation Graphics Output 
The simulation is written in a Processing® software. Upon initialization, a dis-

play window appears, as shown in Figure 11. The new Power Plant (2), is placed 
on the grid (x0, y0). The resolution factor selected for the Gaussian plume disper-
sion model is two receptor points per kilometer. Circles represent the cities 
(customers); a green line represents the minimum spanning tree to connect all 
customers with the Power Plant (2). Yellow squares represent coalmines. 

The program after evaluation of all 10,000 grid points provides a compro-
mised solution. The best location to place Power plant (2) is (x59, y64) as shown in 
Figure 12, denoted by “blue” square. The “green” square is an exclusive location 
for minimum electric transmission, while “yellow” square is exclusive for mini-
mum coal delivery cost. The total electric losses and transportation cost asso-
ciated with (x59, y64) is $1859.68, compared to $3050.64 observed at the start of 
simulation (Figure 11).  

5. Conclusion and Recommendations 
5.1. Conclusion 

Coal-based electric power currently holds the largest share in electricity gener-
ated from non-renewable resources. The major concern regarding the wide-
spread use of coal power is the cofounded risk of its emissions being a detri-
mental health risk to the public. The biggest operational cost for a coal power 
plant is the coal and the cost of coal delivery to the power plant. Another addi-
tion to this complex problem is factoring the transmission losses a power plant 
faces due to the sum of distance between the power plant and the respective 
customers. In terms of location analysis, we face the following problem:  

Given a grid of dimension X(n), Y(n), what location (x, y) can provide us 
with minimum cost of electric transmission losses and coal delivery, while 
ensuring that public exposure to coal-based emissions stay below EPA 
thresholds. 
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Figure 9. Graphical relationship between conductor radius and resistance/meter. 
 

 
Figure 10. Graphical relationship between conductor radius and loss ratio at various fre-
quencies. 
 
 

In this study, we have successfully built a dynamic program, which simulates: 
1) Coal power plant emission’s dispersion, using a Gaussian Dispersion Mod-

el. The program has the capability to detect emission interaction between emis-
sions of two coal power plants. The program can automatically block placement 
of a coal power plant near a city (customer), if the emission exposure to that 
customer is greater than a given EPA threshold. 

2) A minimum spanning tree for electric transmission from a coal power 
plant to a given set of customers using Prim’s algorithm. The distance between 
two points, as well as the electric load on that transmission line, influences 
transmission losses. To deal with non-linear electric load between a power plant 
and various customers, a backtracking load transfer strategy is implemented. 
Use of Prim’s algorithm with backtracking load transfer strategy ensures a better 
location selection as compared to other location analysis methodologies such as 
center of gravity, load factor rating, and load distance technique.  

3) A minimum spanning tree for coal deliveries between a given set of coal-
mines and a power plant.  

The program uses an exhaustive search strategy to find the best possible location 
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Initial State 

 
Figure 11. Display window of simulation upon initialization.  
 
Final State 

 
Figure 12. Display window of simulation upon finalization.  
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for a new power plant. At each point on a 2D grid, the program first checks for 
emission interaction with another coal power plant and any respective customer. 
If the interaction exists with another coal power plant emission’s, the program 
combines the value of both emissions for that grid point. If the interaction exists 
with a client, the program compares the respective emission concentration (both 
from individual or combined emission) against National Ambient Air Quality 
Standards (NIOSH) threshold value and the emission exposure’ Boolean condi-
tion is declared. 

The program then runs, Prim’s algorithm between the coal power plant and 
the customers to find the shortest tree to connect all customers to the power 
plant with transmission lines. A backtracking load transfer strategy is used with 
Resistive and Corona Losses formulation to calculate the transmission losses. 
The transmission losses’ value is transformed into dollar value and stored using 
a float variable. Prim’s algorithm is then applied to calculate a minimum span-
ning tree to connect coalmines to the power plant. The coal delivery cost is cal-
culated by multiplying the coal load in tonnage with delivery charge of moving 
one ton of coal, one kilometer. The combined cost of electric transmission losses 
and coal delivery are compared to the current stored minimum cost value. If the 
new value of cost is less than the current stored value, and the emission exposure 
Boolean state is “False”, then the current cost value gets replaced by the new value, 
as well as the candidate location coordinates. The program has the capability to 
deal with up to 30 cities with exclusive coordinates as well as 10 coalmines for lo-
cation analysis. The embedded Gaussian Dispersion Model can successfully simu-
late the plume dispersion model up to a range of 25 km from the point source, 
with a resolution factor of five receptor points per kilometer—the processing time 
required to complete testing of all 10,000 potential locations is in days. 

Answering the research questions posed in the beginning of this paper, we 
determined that the following plume dispersion models can be successfully 
combined with the location optimization algorithm: 

Environmental Protection Agency proposed screening model > Screen3 
Environmental Protection Agency comprehensive model > ISC3 
Japanese Ministry of Economy, Trade, and Industry > METI-LIS 
However, during the validation process the residual between the programmed 

predicted results and METI-LIS were bit higher in terms of [distance to maxi-
mum pollutant concentration] or [concentration along the wind direction]. The 
validation discussion on the next pages includes an explanation.  

The developed dynamic program uses Prim’s algorithm to produce transmis-
sion and coal transportation network. The Prim’s algorithm network with ap-
plication of backtracking load transfer strategy provides less cost on both net-
works compared to other traditional location analysis strategies like center of 
gravity and load distance technique, etc. Since the program uses an exhaustive 
search strategy, it looks at all possible locations on a grid map. It is quite cer-
tain to find a better location compared to a random, greedy or meta-heuristic 
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search strategy.  
The program is built to sense plume concentration at ground level for a given 

customer during the search process. The user can select the threshold limit for a 
certain pollutant, and, if the ground level concentration in the search area is 
greater than the threshold for the respective coal power plant location on map, 
that position is eliminated for candidacy. However, an uncertainty factor rises 
when the Gaussian Model is used to predict plume concentration plume beyond 
30 - 50 km downwind range. The model cannot guarantee that beyond 25 km 
any customer present in the plume line will be exposed to pollutant concentra-
tion less than the National Ambient Air Quality Standards (NAAQS) threshold. 

For validation, the Gaussian plume dispersion results for atmospheric condi-
tions A-F were tested against the EPA Screen3 model, as well as Japanese 
METI-LIS model. Deviation in simulation plume dispersion results was within 
25% of the EPA Screen3 model, but, for the METI-LIS model, these deviations 
were much greater depending upon atmospheric conditions. The significant dif-
ferences from the METI-LIS model, however, do not compromise the validity of 
our simulation since, in simulation, the effective plume height is calculated using 
the “Briggs” Equations while the METI-LIS model uses “Concawe” equations 
[39]. The Briggs equation does not take into consideration isobaric specific heat 
and density of gas.  

Simulation’s Prim’s algorithm results are verified by using R-Statistics “Op-
trees” package. The results were an exact match, concluding that the coding of 
Prim’s algorithm in the simulation program is correct.   

5.2. Recommendations 

The developed methodology offers a room for future improvements. Currently, 
the equations used for plume modeling are from the EPA ISC3 Model. However, 
it would be more appropriate to use EPA “AEROMOD” or “CALPUFF” models. 
AEROMOD and CALPUFF provide more robust ways of calculating the plane-
tary boundary layer. The models also contain pre-processing capability for ter-
rain and meteorological data with the ability to simulate dispersion over vast 
distances as well as chemical transformation of emission compounds. The cur-
rent methodology operational environment is just two-dimensional. To better 
accommodate various geographical features such as “valleys” and “peaks”, a 
three-dimensional operational environment is recommended. 

In terms of financial feasibility, the grid search can be related to a “Net 
Present Value” (NPV) equation. Each location on the map can have an asso-
ciated NPV value. In the current methodology, the customer locations are con-
sidered “static” with still demand throughout the simulation run. However, to 
better account for changes like rapid “urbanization” or “loss in population”, de-
mand structure can be made “dynamic”. 

The developed methodology uses Prim’s algorithm for producing minimum 
spanning tree (MST), however distance related costs can be further minimized 
by application of “Steiner Tree”. 
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