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ABSTRACT 

Drought is one of the most damaging abiotic stress. 
Different plants response differently to drought stress. 
Abiotic stresses such as drought induced diverse phy- 
sicological and molecular responses in plants. These 
responses include changes in gene expression. One of 
drought tolerance gene is a gene encoding dehydrin 
which is belongs to the group II or D-11 LEA protein 
family. LEA-D11 gene produce dehydrin protein 
which has a role in stabilization of membrane struc- 
tures and protection of macromolecules in the pres- 
ence of drought. The aims of the study was to identify 
and to characterize the LEA-D11 gene in various soy- 
bean varieties. This research used seven varieties of 
soybean: Tanggamus, Nanti, Seulawah, Tidar (drought 
tolerant), Wilis and Burangrang (drought moderate) 
and Detam-1 (drought susceptible). DNA genome of 
those varieties was isolated using the methods from 
Doyle & Doyle [1]. DNA amplification was conducted 
using Polymerase Chain Reaction (PCR) with specific 
primers designed based on GmLEA-D11 gene sequence 
database from the NCBI. The DNA targets were se- 
quenced using automatic sequencing machine, ABI 
3130xl Genetic Analyzer, in Eijkman Institution. The 
result of this study showed that the sequences of Gm- 
LEA-D11 gene possessed by drought tolerance varie- 
ties (Tanggamus, Nanti, Seulawah and Tidar) and 
moderately tolerance (Wilis and Burangrang) were 
similar. However, the sequence of GmLEA-D11 gene 
detected in the drought susceptible variety Detam-1 
was different from the two groups. Similarity be- 
tween drought tolerance and moderately tolerance 
indicate that there is not only LEA-D11 gene respon- 
sible to drought tolerance but also others. The primer 
and sequences GmLEA-D11 gene can be used as mol- 
ecular marker and capable of differentiating between 
drought susceptible and drought moderate to drought 

tolerant. 
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1. INTRODUCTION 

Abiotic stress such as drought, salinity, and frozen cause 
greatly damage and decrease yield. Under severe condi- 
tion, these adverse environmental stresses can result in 
death of plant. Plants must respond and adapt to these 
adverse environmental condition to avoid or decrease 
cell injury caused by water deficit. Among the diversity 
of reponses, plants can adapt to water deficit by the in- 
duction of specific gene [2,3], including the changing of 
gene expression related drought tolerance. One of the 
gene related drought tolerance is LEA-D11 gene encod- 
ing family dehydrin protein [4,5]. 

Dehydrin are part of these LEA proteins (group II) and 
are built up by many charged and polar amino acids 
without cystein and tryptophan ever occurring [6]. De- 
hydrin are expressed during the late stages of embryo- 
genesis [7,8] and also accumulated in vegetative tissues 
in response to water deficit [9]. Dehydrin have been 
found to accumulate in the cytoplasm, nucleus, plasma 
membrane and mitochondria [8,10-12]. 

Protein produced by drought-inducible genes which 
are identified through the recent microarray analysis can 
be classified into two groups [13]. The first group in- 
clude proteins that most probably function in abiotic 
stress tolerance, the second group is comprised of regu- 
latory protein. One of the gene products may play a role 
in drought tolerance is late embryogenesis abundant 
(LEA) protein. LEA is a functional protein which plays a 
role in stabilization of membrane structures and pro- 
tected macromolecules [8]. Transgenic plant carrying 
genes for drought tolerance has been developed by the 
introduction of LEA gene, prolin synthesis and betaine 
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[14-16]. Dehydrin like protein may also have role similar 
to compatible solute (such as proline, sucrose and gly- 
cine be taine) in osmotic adjustment. Another possible 
role of stress proteins is to bind with the ion accumulated 
(ion sequestering) under drought stress and to control 
solute concentration in the cytoplasma [17]. 

In addition, recently, it has been suggested that some 
dehydrin probably play role in antioxidative defence re- 
sponse directly by their radical scavenging activity [18] 
or indirectly by their capability of binding toxic metals 
and preventing production of ROS [19]. Dehydrin scav- 
enged the hydroxyl radical and peroxyl radical, but did 
not superoxide anion and hydrogen peroxide [20]. Sev- 
eral residue such as Lys, His, Glyn d Ser, maybe related 
to the radical scavenging because the residue were modi- 
fied when the dehydrin scavenging the hydroxyl radical. 
Dehydrin may protect cellular components from oxida- 
tive stress [21]. 

Identification and characterization of drought toler- 
ance gene for developing molecular marker and selecting 
genetic variation in plants are very useful. The aims of 
this study is to identify and to characterize drought tol- 
erance LEA-D11 gene in soybean varieties which tolerant, 
moderate and susceptible of drought. 

2. MATERIAL AND METHOD 

Growth Condition and Plant Material. Seven soybean 
varieties were utilized: Tanggamus, Nanti, Seulawah, 
Tidar (tolerant drought), Wilis, Burangrang (moderate 
drought), Detam-1 (susceptible drought). The experiment 
consisted of two treatments. Plants were grown in pots in 
a greenhouse. Control plants were well-watered through- 
out the experiment at about 100% field capacity; the 
drought stress treatment was conducted by maintaining 
soil water at about 25% field capacity throughout early 
vegetative growth until seed fulfill. After the last water- 
ing, soil water content was measured daily by weighing. 
The volume of water added afterward was calculated 
based on the weight difference between the soil before 
and after plant transpired in one day. 

DNA Isolation. Total DNA was extracted from young 
soybean leaf, using the method of Doyle dan Doyle [1]. 
Fresh leaf with the weight of 0.1 - 0.2 g was grinded with 
addition of liquid nitrogen, and then 700 μL CTAB buf- 
fer was added and incubated for 30 minute in waterbath 
65˚C. The DNA then was extracted using the mixture of 
chloroform: isoamyl alcohol (24:1). DNA was precipi- 
tated using 0.1 volume ammonium acetat and 2.5 volume 
ethanol absolute. The concentration and purity of ex- 
tracted DNA was determined used spectrofotometric at 
the wavelength of 260 and 280 nm. 

Primer Design. Primers were designed based on the 
sequence of complete CDS (coding DNA sequence) of 
GmLEA-D11 (ID: AM421515) from NCBI (The National 

Center for Biotechnology Information) database using 
the Oligo Analyzer 1.0.2., Oligo 1.1. software. The se- 
quences of the primer were: forward  
5’-ATGATCAGGGTCGCAAGGTC-3’, and reverse 5’ 
CTTGTCACTGTGTCCTCCAG-3’ with the amplifica- 
tion product of 700 bp. 

Polymerase Chain Reaction. The total volume of 
PCR mixture was 20 μL per-tube, which were consist of 
11.9 μL dH2O, 2 μL buffer Taq PCR; 1.6 μL MgCl2 ; 1.6 
μL dNTPs 2.5 mM, (Qiagen-Taq PCR Master Mix), 0.3 
μL primer forward-reverse (10 - 100 ng/µL), 0.3 μL 
Taq-Polymerase (5 U/μL) and 2 μL (1 μg/μL) DNA. The 
PCR program was set on 93˚C for 1 minute preheating, 
continued with 30 cycles consisting of 1 minute denatu- 
ration at a temperature of 93˚C, 1 minute annealing at a 
temperature of 57˚C, and 1 minute extension at a tem- 
perature of 72˚C. A final extension was conducted for 1 
minute at a temperature of 72˚C. The PCR product was 
visualized on 1% agarose gel. 

Sequences Analysis. Sequencing of the PCR products 
were performed with ABI automatic sequencer (ABI 
3130xl Genetic Analyzer) using fluorescence-labelled 
nucleotides. The sequences were analyzed using multiple 
sequence alignment by Sequence Scanner v1.0, ClustalW, 
Bioedit and BLAST (Basic Local Alignment Search Tool) 
programme from NCBI. 

3. RESULT AND DISCUSSION 

3.1. Identification of GmLEA D-11 Gene on 
Various Soybean 

Using the primer derived from the sequence of GmLEA- 
D11 gene, PCR products with the size of about 701 bp 
were produced. The results showed that both of the DNA 
genome of soybean varieties treated with drought stress 
treatment and the control can be amplified by the primer 
(Figure 1). These indicates that the tolerant, moderate  
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Figure 1. The PCR product in some varieties of soybean plants 
using primers LEA-D11 Lanes 1-7 (control); 1: Tanggamus; 2: 
Nanti; 3: Seulawah; 4: Tidar; 5: Wilis; 6: Burangrang l; 7: De-
tam; 8: Marker. Lane 9-15 (drought); 9: Tanggamus 10: Nanti; 
11: Seulawah; 12 : Tidar; 13: Wilis; 14: Burangrang; 15: Detam 
1. 
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and susceptible drought varieties both in control and 
drought stress treatment posses LEA-D11 gene. 

Drought did not alter LEA-D11 gene, this is indicated 
by the appearance of bands at 700 bp in control and 
drought condition. Basically, a gene provides the instruc- 
tions for making a protein and proteins influence the 
characteristics of plants. Gene is genetic material which 
more stable than protein. Environmental stresses do not 
change the gene but may change the expression of the 
gene such as protein alteration. However gene variation 
can be induced by mutagenic agents such as radiation 
and certain chemicals [22]. 

Comparing the sequence of Tanggamus varieties (drought 
tolerant) to the sequence of LEA-D11 of soybean in the 
NCBI datase resulting in the high homology of those se- 
quences (Table 1). 

The gene sequences of Tanggamus varieties had 100% 
similarity with Glycine max LEA-D11 gene for dehydrin. 
This means that the gene is amplified genes LEA-D11. 

3.2. Comparison of LEA-D11 Sequence of  
Several Varieties of Soybeans 

Sequence alignment between GmLEA-D11 Tanggamus 
varieties (drought tolerant) with other varieties used in 
this experiment (Nanti, Seulawah, Tidar, Wilis, Buran- 
grang and Detam 1) treated with drought stress and the 
control without drought stress (Figure 2). The results 
showed that both in control and drought stress condition 
the sequence of LEA-D11 possessed by drought tolerant 
soybean varieties Tanggamus, Nanti, Seulawah and Tidar 
are not different from the sequence of GmLEA-D11 pos- 
sessed by moderately tolerant varieties Burangrang and 
Wilis, however some sequence differences were detected 
in the drought-susceptible varieties, Detam-1. 

Comparing the sequence of GmLEA-D11 gene pos- 
sessed by Tanggamus with other soybean varieties, Nanti, 
Seulawah, Tidar, Wilis, Burangrang and Detam-1 under 
conditions without stress (control = K) with a variety 
Tanggamus, Nanti, Seulawah, Tidar, Wilis, Burangrang 
and Detam 1 in stress conditions (treatment = C) shows 6 
mutation site. These mutation site were only found in 
Detam 1 but were not detected in other varieties. The 

changes of DNA sequence occur in Detam alter the ami- 
no acid in mutation site number 2 and 4. There is no 
changing the amino acids in mutation site number 1, 3, 5 
and 6. 

Mutation site 2 and 4 shows the nitrogen base changes. 
Mutation site number 2 shows the changing of amino 
acid from proline to serine, and mutation site 4 shows the 
changing of amino acid valine to Ileusine. This suggests 
that the difference in some nitrogen bases in DNA se- 
quences have changed expression in response to drought 
stress become drought susceptible. However the se- 
quences of GmLEA-D11 identified in this experiment 
were similar to the gene sequences possessed by drought 
tolerant varieties Tanggamus, Nanti, Seulawah, Tidar and 
moderately drought varieties Wilis and Burangrang. That 
similarity indicate that there is not only LEA-D11 gene 
which is responsible to drought tolerance but also other 
gene. There are hundreds of genes induced by drought 
stress has been identified [13]. 

Examined the drought resistance genes in soybean, 
and found that the sequence of GmDREB2 gene on dif- 
ferent varieties of soybean are different, but the differ- 
ence did not affect expression of the nature of drought 
tolerance [23]. It was suggested that not only GmDREB2 
genes responsible for drought tolerant. There could be 
many genes that influence resistance to drought stress. 
[24] examined drought resistant gene DREB1 in several 
genotype of soybean, and discovered that the tolerance 
level of several soybean genotypes was not affected by 
variations in the sequences of DREB1 gene. 

LEA-D11 gene is a gene that produces a functional 
protein dehydrin which is regulated by several genes. 
LEA genes work is influenced by other member of drought 
resistance gene family that can be expressed in certain 
circumstances, either simultaneously or alternately ex- 
pressed depending on environmental conditions [6,25].  

Some stress-responsive genes regulated by ABA [26- 
29] shows two regulatory pathway of dehydrin accumu- 
lation in sunflower, which is ABA-dependent and ABA- 
independent. Transcription factors for LEA are DREB2 
and DREB 1 which act to initiate the transcription of the 
gene [30]. 

 
Table 1. Homology sequence Tanggamus varieties comparison with soybean NCBI database. 

Gene database soybean from NCBI Accession number Length of sequence (bp) Similarity (%) 

Glycine max LEA-D11 gene for dehydrin AM421515.1 751 100 

Glycine max LEA2-D11 for dehydrin AM420412.1 729 99 

Glycine max LEA-D11 gene for dehydrin Cultivar M103 AJ583802.1 729 99 

Glycine max LEA-D11 gene for dehydrin Cultivar V74 AJ583800.1 729 98 

Glycine max LEA-D11 gene for dehydrin Cultivar Cuc Vang AJ583799.1 681 88 

Glycine max LEA-D11 gene for dehydrin Cultivar MV1C AJ583801.1 681 87 
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Figure 2. The results of amino acids alignments GmLEA-D11 Tanggamus varieties with some varieties of soybean under conditions 
without stress and drought stress conditions. TK = Tanggamus control, NK = Nanti control, SK = Seulawah control, TC = Tidar con-
trol, WK = Wilis control, BK = Burangrang control, DK = Detam control, TC = Tanggamus drought, NC = Nanti drought, SC = Seu-
lawah drought, TIC = Tidar drought, WC = Wilis drought, BC = Burangrang drought, DC = Detam drought. 
 

The expression of certain gene is influenced by a 
number genes that can be active (on) or inactive (off) as 
depend on time and environment. DREB transcription 
factors and DRE element serves as a signal transduction 
under conditions of drought, salinity and cold stress. 
DREB transcription factors can control the expression of 
several target functional genes involved in plant toler-
ance to drought conditions, salinity and cold tempera-
tures [31]. 

Evaluate the role of genes coding for dehydrin pro- 
teins (LEA-D11) during drought stress in arbuscular my- 
corrhizal Glycine max and Lactuca sativa [32]. The re-
sults show that GmLEA gene generally expressed only in 
drought stress treatment. This supports that the dehydrin 
is essential for plants to adapt in drought stress [25,29, 
33,34]. Significantly, the introduction of many stress- 
inducible genes transfer resulted in improved plant stress 
tolerance [35,36]. LEA-D11 gene specific primers de-
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signed can be used as molecular marker and capable of 
differentiating between drought susceptible and drought 
moderate or drought tolerant. 
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