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Abstract 
In this paper, we originate results with finite difference schemes to approx-
imate the solution of the classical Fisher Kolmogorov Petrovsky Piscounov 
(KPP) equation from population dynamics. Fisher’s equation describes a bal-
ance between linear diffusion and nonlinear reaction. Numerical example il-
lustrates the efficiency of the proposed schemes, also the Neumann stability 
analysis reveals that our schemes are indeed stable under certain choices of 
the model and numerical parameters. Numerical comparisons with analytical 
solution are also discussed. Numerical results show that Crank Nicolson and 
Richardson extrapolation are very efficient and reliably numerical schemes for 
solving one dimension fisher’s KPP equation. 
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1. Introduction 

Fisher gives introduction to nonlinear evolution equation to inquisitive, the pro- 
liferation of an beneficial gene in a population dynamics [1]. Fisher’s equation 
also specify the logistic diffusion process [1]. It has the form  

( )1t xxu u u uβ α= + −                       (1) 

where 0β >  is a diffusion constant with 0α >  is the linear growth rate [1]. 
The reaction diffusion Equation (1) also express a model equation for the evo- 
lution of a neutron population in a nuclear reactor [2] and also appears in 
chemical engineering applications [2]. This equation accommodates the effects 
of linear diffusion along xxu  and nonlinear local multiplication or reaction 
along ( )1u u−  [3] [4]. It has become one of the most important nonlinear 
equations and occurs in many biological and chemical processes [4] [5]. Recently, 
many researcher are working on this type of model to understand growth rate 
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and diffusion aspect, for example, Abdullaev has studied the stability of 
symmetric travelling waves in the Cauchy problem for a more general case than 
Equation (1) [6]. Also Logan has studied this problem using a perturbation 
method and settled up with an approximate solution by expanding the solution in 
terms of a power series and in terms of some small parameter [7]. The finite 
difference schemes and auxiliary conditions of the numerical model must be 
consistent with the partial differential equations and initial and boundary 
conditions of the mathematical model [8] [9]. The numerical model is consistent if 
the truncation error, that is the discrepancy between the finite difference 
approximation and the continuous derivatives, tends to zero as the grid spacing 
get smaller and smaller. Secondly the solution to finite difference schemes must 
converge to the solution of the partial differential equations as the grid spacing 
gets smaller and smaller [9]. Thus we can say that, difference between the exact 
solution and approximated solution must vanish as the grid spacing tends to zero. 

In this paper, we started the solution of Fishers equation with various finite 
difference schemes. We discussed Forward in time and Central in space (FTCS) 
and Lax-Wendroff schemes, which are explicit and conditionally stable. Also FTCS 
is first order accurate in time and second order accurate in space and 
Lax-Wendroff is second order accurate in both space and time, which shows 
improvement in accuracy in later method. Crank-Nicolson scheme is uncon- 
ditionally stable and implicit with second order accuracy in both space and time 
[9]. This applies computational stability for any size of the time increment [9]. 
However, the size of t∆  is still limited by accuracy required in the solution. 
Usage of very large values of time step results in poor approximation to solution 
because of unacceptably large truncation errors produced [10]. We applied 
Richardson extrapolation method to improve accuracy with no issue of stability. 
We came to know this method is highly accurate and easy to implement with no 
mess of computations [10] [11] and we can see from our results that this method is 
excellent agreement to the exact solution. 

2. Exact Solution 
Let us consider Equation (1), within domain ( ),x∈ −∞ ∞ = Ω  with 0t ≥ . To 
derive the exact solution of the given Equation (1), we have the following exact 
solution [10] [11] to above equation,  

( )
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3. Numerical Methods 

We consider the numerical solution of the non-linear Equation (2) in a finite 
domain Ω . The first step is to choose integers n to define step sizes  

( )h b a n= − . Partition the interval [ ],a b  into n equal parts of width h. Place a 
grid on the rectangle R by drawing vertical and horizontal lines through the 
points with coordinates ( )ix , where ix a ih= +  for each 0,1, 2,i n=   also 
the lines ix x=  represent grid lines, also we assume , 0,1,nt nt n= =   where t 
is the time grid step size. We denote the exact and numerical solutions at the 
grid point ( ),m nx t  by n

mu  and n
mU  respectively. We consider four finite 

different schemes as we mentioned in keywords in abstract. 

3.1. FTCS Scheme 

We consider forward in time and center in space (FTCS) explicit scheme by 
substituting the forward difference approximation for the time derivative and 
the central difference approximation for the space derivative in Equation (1), 

n
iu u=  

1n n
i i

t
u uu

k

+ −
=  

1 1
2

2n n n
i i i

xx
u u uu

h
+ −− +

=  

which leads to the following,  

( ) ( )1
1 1 12 1n n n n n n n

i i i i i i iu u u u u ku u+
+ −= + − + + −R  

where 1 2
k
h

=R , final form of above equation is,  

( ) ( )1
1 1 1 11 2 .n n n n n

i i i i iu u k ku u u+
+ −= + − − + +R R              (3) 

Since the one dimensional diffusion reaction equation is nonlinear and well- 
posed [10] [11], Lax’s equivalence theorem indicates that consistency and 
stability of the FTCS finite difference approximation is necessary and sufficient 
for FD solution to converge to diffusion reaction equation [12]. Once convergence 
has been proved, the solution to the given partial differential equation can be 
obtained to any desired degree of accuracy [12]. Make sure the spacing h  for 
spatial and k  for time of the finite difference grid are made sufficiently small. 
The FTCS scheme, from Equation (3), is classified as explicit because the value 
of 1n

iu +  at the ( )1n th+  time level may be calculated directly from known 
value of n

iu  at previous time levels. It is a two level method because values of u  
at only two levels of time are involved in the approximating finite difference 
equation [12]. 

Accuracy and Stability to FTCS Scheme: 
Accuracy: 
To find accuracy of the FTCS scheme for Fisher-KPP equation, we apply 

Taylor’s series on each term of the equation. Let us consider the Taylor’s series 
in the following way,  
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( ) ( )
1

2 3

, ,
Apply Taylor s series
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t t tt ttt

u u u
u u x t k u x t

k ku ku u u
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= + −

′
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( ) ( ) ( )
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Take Equation (1) into account, and apply this scheme with Taylor’s series on 
each term, updated equation is as follows.  

( ) ( ) ( ) ( )(
( )) ( ) ( )( )

1. , , , 2 ,
         , , 1 ,
Eq u x t k u x t u x h t u x t

u x h t ku x t u x t
= + − − + −

+ − − −

R
 

( )( ) 2 2 3
1

4
1

1 1. 1
2 6

1          
12

t xx tt xx ttt

xxxx

Eq u u u u k u k u h u k

u h

= − − − + − +

− +

R

R 

 

Now principle part of the truncation error is along with Equation (1). So first 
part of the above equation goes to zero if we consider Equation (1). 

2 2 4
1 1

1 1 1PPTE of .
2 6 12tt xx ttt xxxxu u u h u k u h= − + − +R R   

Which shows that this scheme is first order accurate in time and 2nd order 
accurate in space, such as ( )2,O k h . 

Stability: 
We want to study under what condition the error can be magnified. Many 

methods can be used to study this issue. We consider only Von-Neumann 
stability analysis to explain this method on FTCS scheme. Consider the scheme 
in the following way,  

( )1 2
1 1 .n n n n n

m m x m m mu u u ku uδ+ = + + −R  

Linear form of the above equation is,  

( )1 2
1 1 Constant .n n n n

m m x m mu u u kuδ+ = + + −R                (4) 

According to Von-Neumann stability analysis, let us consider the solution as: 

.n nk i mh
mU e eα β=                          (5) 

The Von-neumann stability condition is  

1.keα ≤                             (6) 

Note that,  
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Also  

( )

2 2

12 1 2

4sin
2

4sin .
2

n nk i mh
x m

n kn i mh
x m

hU e e

hU e e

α β

α β

βδ

βδ ++

   = −     
   = −     

 

Apply above terms to Equation (1), we get the following  

( )2
11 4 sin 1 Constant .

2
k he kα β = − + − 

 
R              (7) 

According to Equation (6),  

1 1.keα− ≤ ≤  

Take left hand side of above equation along Equation (7),  
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Take right hand side of above equation along Equation (7),  

( )

( )

2
1

1

1

1 1 4 sin 1 Constant
2
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4

If we choose Constant 0
2 .

4

h k
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k
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+ −
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=
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≤

R
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Since 2
1 k h=R , according to Von-Neumann stability analysis on both sides 

as left and right, which shows that FTCS scheme is conditionally stable for 
Fisher-KPP equation. 

3.2. Lax Wendroff Scheme 

A numerical technique proposed in 1960 by P.D. Lax and B. Wendroff [13] [14] 
[15] for solving partial differential equations and system numerically. In spite of 
the impressive developments on numerical methods for partial differential 
equations from 1970s onwards, in which the Lax Wendroff method has played a 
historic role, there are presently (1998) substantial research activities aimed at 
further improvements of methods [15]. Lax Wendroff’s method is also explicit 
method but needs improvement in accuracy in time. This method is an example 
of explicit time integration where the function that defines governing equation is 
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evaluated at the current time [15]. Purpose of this method to achieve good enough 
accuracy in time. This method can be explained in two steps which is as follows,  

( ) ( ) ( )1 1 1 1 10.5 0.5 2 0.5 1n n n n n n n
i i i i i i i iu u u u u u ku uα+ − + −= + − − + + −R  

2nd step is  

( ) ( )1
1 1 12 0.5 1n

i i i i i i iu u u u u ku uα+
+ −= + − + + −R       

Accuracy and Stability to Lax-Wendroff Scheme: 
Accuracy: 
To find accuracy of the Lax-Wendroff scheme for Fisher-KPP equation, we 

apply Taylor’s series on each term of the discritized scheme. Let us consider the 
following,  

( ) ( )
1

2 3

, ,
Apply Taylor s series

2 6

n n
t i i

t

t t tt ttt

u u u
u u x t k u x t

k ku ku u u

+= −
= + −

′

= + + +

 

above mentioned scheme with Taylor’s series, we have  

( )( ) 2 21. 0.5 0.5 1 0.5 0.5
8t xx tt xxEq u u u u k u k u h= − − − + − +  

Now principle part of the truncation error along with Equation (1). So first 
part of the above equation goes to zero if we consider Equation (1). 

2 21PPTE of 0.5
8 tt xxu u k u h= − +  

Which show that this scheme is second order accurate in time and space, such 
as ( )2 2,O k h . 

Stability: 
We consider Von-Neumann stability analysis to explain on Lax-Wendroff 

scheme. Consider the scheme in the following way,  

( ) ( )2
1 1 10.5 0.5 0.5 1n n n n n

m i i x m m mu u u u ku uδ α+ −= + + + −R  

Linear form of the above equation is,  
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According to Von-Neumann stability analysis as (5), (6) Note that,  
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Apply above terms to Equation (1), we get the following  

( )

( ) ( )( )

2 2 2
1

2 2 2 2

1 4 sin 1 Constant
2

1 1 1 sin 2

k k k

k

he e k e

e h

α α α

α

β α

α α β

 = − + − 
 

⇒ = − − −

R
        (8) 

According to above result, the Von-Neumann stability criterion 1keα ≤  is 
satisfied as long as 1α ≤ , or equivalently, as long as the CFL condition is 
satisfied. In this respect, the dissipative properties of the Lax-Friedrichs scheme 
are not completely lost in the Lax-Wendroff scheme but are much less severe 
[15]. The Lax-Wendroff scheme is a two-level scheme, but can be recast in a 
one-level form by means of algebraic manipulations [15]. This is clear from 
expressions where quantities at time-levels n and n + 1 only appear [15]. 

3.3. Crank Nicolson Scheme 

Let us apply an implicit method to improve the accuracy. The implicit method 
we consider, is Crank Nicolson. By substituting the value of n

mu  by average 
value of mesh points, the Crank Nicolson method is a finite difference method 
used for numerically solving linear and nonlinear partial differential equations 
[16] [17] [18]. It is implicit in time and can be written in form of an implicit 
Runge Kutta method, and it is numerically stable [16] [17] [18]. The method was 
developed by John Crank and Phyllis Nicolson in the mid 20th century [18]. For 
diffusion equations (and many other equations), it can be shown that, the Crank 
Nicolson method is unconditionally stable [19]. However, the approximate 
solutions can still contain (decaying) spurious oscillations if the ratio of time 
step k  times to the square of space step 2h , is large (typically larger than 1/2 
per Von-Neumann stability analysis). For this reason, whenever large time steps 
or high spatial resolution is necessary, the less accurate backward Euler method 
is often used, which is both stable and immune to oscillations [20]. In this 
method, consider the followings,  
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discretization to one dimensional Fisher KPP equation,  

( )
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1 1 1 1
1 1 1 1 1

1 1

0.5 2 2

1          2 .
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Accuracy to Crank Nicolson Scheme: 
To find accuracy of the CN scheme for Fisher-KPP equation,we apply Taylor’s 

series on each term of the discritized scheme. Let us consider the following,  
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which implies  

( )( ) ( ) ( ) 2
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 − + + + 
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 

 

Now principle part of the truncation error along with Equation (1). So first 
and second part of the above equation goes to zero if we consider Equation (1). 

2 21 1PPTE of 
6 12ttt xxxxu u k h u = + − + 

 
   

Which show that this scheme is second order accurate in time and space, such 
as ( )2 2,O k h . 

Stability: 
According to Von-Neumann stability analysis, we have linear form of the 

Equation (1) is,  

( ) ( ) ( )1 2 1 2 11 1 Constant
2 2

n n n n n n
m m x m x m m m

ku u u u u uαδ δ+ + +− = + + + −
R

 

According to Von-Neumann stability analysis as (5), (6), after some simplifi- 
cations, we reached at,  

( )
( )

2

2
1

1 sin 2
.

1 2 sin 2
k h

e
h

α β
β

−
⇒ =

+ R
                   (9) 

Hence the Von-Neumann stability condition is satisfied for all positive values 
of 1R . This shows that CN scheme is unconditionally stable. 

3.4. Richardson Extrapolation Technique 

Techniques for obtaining more accurate solutions by using finite difference 
methods which have already been discussed, including reducing the truncation 
error by using central differences, using methods which minimize numerical 
damping and dispersion as well as using more accurate approximation to 
derivative boundary conditions [21] [22]. Other methods include, 

1) reducing the size of grid spacing,  
2) using higher order difference approximation, and  
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3) reducing the discretisation error by extrapolation (Richardson). 
Richardson extrapolation method, which was introduced by Richardson 

(1910) and later on called “deferred approach to the limit”, may lead to 
considerable improvement of numerical results which solving the partial 
differential equation system by finite difference method. Applications of this 
method to equations solved on rectangular regions in space are described in 
Richardson and Gaunt (1927) and Salvadori (1951) [22]. The reduction of the 
error depends upon there being a reliable estimate of the discretisation error as a 
function of the grid spacing h . Let φ  be the exact solution of the partial 
differential equation and 1,φ  2φ  the finite difference solutions at a particular 
point in the solution domain computed using grid spacing 1 2,h h  respectively 
[22] [23]. Richardsons extrapolation formula is as follows,  

( ) ( )

( ) ( )

( )

1 1

1 1
2

2 4 1

j j

j j j

hN N h
hN h N

− −

− −

  −    = + 
− 

 

where ( )jN h  is the approximations which is even more accurate then the 
previous 1jN −  and 2,3,j = . In our case we use 2j =  to get the approxi- 
mation formula ( )2N h  with truncation error ( )4O h . This gives more accurate 
and precise result which lead to convergence [23]. This method improvement 
the results upto fourth order accuracy in space. Keep in mind, accuracy in time 
still upto second order. Also this method hold the stable results. Clearly, this is a 
useful way of increasing the accuracy of the result at a given grid point without 
having to excessively increase the number of calculations required. This method 
may be of uncertain value near the boundaries which are not straight, such type 
of problems can be discussed with mixed boundaries with interpolation 
technique [23]. 

4. Results 

Numerical computations have been performed by using the uniform grid [23]. For 
the test problem, the approximated and exact values of ( ),u x t  and ( ),U x t  
have been given in Figure 1 with some fixed parameters such as  

1,  and 0.0001kα = =  using FTCS. Figure 2 shows the results taken at different 
time to maintain stability. Figure 3 shows results by using Crank Nicolson 
scheme; comparison has been done with existence of exact solution. Figure 4 
represents results from Richardson Extrapolation. These values has been taken at 
some typical grid point (TGP) as we presents in Table 1 and Table 2. Some critical 
values can be seen from the following data Table 1 and Table 2 at different 
location along x-axis. In Table 1, we compare our results, calculated from 
Crank-Nicolson scheme with exact solution. Error can be seen from last column. 

5. Discussion 

In this paper, the solution of the Fishers equation is successfully approximated by a 
various numerical finite difference schemes. Two of them are explicit in nature 
such as FTCS and Lax-Wendroff. We have to pay attention to parameter 1R ,  
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Figure 1. Figure shows results with FTCS, by fixing some parameters to be in range of stability. Due to 
explicit nature of the scheme, we choose h  and k  in such a way that 1r ≤ . 

 

 
Figure 2. Figure shows results with Lax-Wendroff, by fixing some parameters to stabilize. Due to 
explicit nature of the scheme, we choose h  and k  in such a way that 1r ≤  with acceleration in 
computations. Results at different time levels, also compared with exact solution. 

 
which can stabilize the results as we can see from Figure 1 and Figure 2. Such 
schemes on nonlinear one dimensional PDE, consistency, stability and con- 
vergence are more difficult to prove [24] [25] [26]. For instant, Von-Neumann’s  
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Figure 3. Shows results with implicit Crank Nicolson, different α  and time level along comparison with exact 
solution. 

 

 
Figure 4. Shows results with Richardson Extrapolation, different time levels along comparison with 
exact solution. 

 
Table 1. Estimates the results at different locations with Crank Nicolson scheme. 

0.0001∆ =  

α  Locations approximatedu  ExactU  Erroru U−  

1 −4.6 0.987634663 0.98623750641 0.001397157 

 −3.9 0.973936808 0.97102606750 0.002910740499733 

 −2.2 0.852003299 0.83722482644 0.014778472550733 

 −1.3 0.671411264 0.64455730767 0.026853956325752 

 1.6 0.027295815 0.02274615418 0.004549660819317 

 6.9 0.007537831 0.00722501612 3.1281487779103e−04 
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Table 2. Estimates results from Richardson-Extrapolation with exact solution. Error can 
be seen from last column. 

   0.0001∆ =  

α  Locations approximatedu  ExactU  Erroru U−  

1.3 −4.6 0.98623750641 0.986599027119808 3.6152070844e−04 

 −3.9 0.97102606750 0.971912570950872 8.8650345060e−04 

 −2.2 0.83722482644 0.839497058680878 0.0022722322 

 −1.3 0.64455730767 0.649302537205783 0.0047452295 

 1.6 0.02274615418 0.022746146441480 7.7392030006e−09 

 6.9 0.00722501612 0.007225016102431 1.9777999550e−11 

 
method of stability analysis can not be used other than locally, since it is only 
applied to linear finite difference schemes. In many cases, numerical experimen- 
tation, such as solving the finite difference schemes by using progressively 
smaller grid spacing and examining the behaviour of the sequence of the values 
of ( ),u x t  obtained at given points, is the suitable method available with which 
to assess the numerical model [26]. The various methods of obtaining a finite 
difference numerical model corresponding to a particular mathematical model 
may result in either explicit or implicit finite difference schemes. Explicit 
schemes are conditionally stable and implicit schemes are unconditionally stable 
[26]. Two implicit schemes are also applied to improve accuracy, stability 
restrictions and consistency in solution. It can be observed that the computed 
results show excellent agreement with the exact solution. Our main purpose of 
this research to improve accuracy in result of Fisher KPP equation. At the end, 
we introduce Richardson extrapolation method; we observe improvement in 
accuracy and this method also stable and show excellent agreement with the 
exact solution. Accuracy in results are glanced from figures and tables. 

Acknowledgements 

The authors are gratefully acknowledge for support by Dr Muhammad Faheem 
Afzaal, Department of Chemical Engineering, Imperial College London and 
Vineet K. Srivastava, Scientist, ISTRAC/ISRO, Bangalore, India in understanding 
mathematical terms and algorithms. 

Conflict of Interest 

The authors do not have any conflict of interest in this research paper. 

References 
[1] Fisher, R.A. (1936) The Wave of Advance of Advantageous Genes. Annals of Eu-

genics, 7, 355-369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x  

[2] Canosa, J.C. (1973) On a Nonlinear Diffusion Equation Describing Population 
Growth. IBM Journal of Research Development, 17, 307-313.  
https://doi.org/10.1147/rd.174.0307 

[3] Arnold, R.A., Showalter, K. and Tyson, J.J. (1987) Propagation of Chemical Reac-

https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1147/rd.174.0307


S. Hasnain et al. 
 

82 

tions in Space. Journal of Chemical Education, 64, 740-744.  
https://doi.org/10.1021/ed064p740 

[4] Tuckwell, H.C. (1988) Introduction to Theoretical Neurobiology. Cambridge, UK: 
Cambridge University Press, Cambridge. 

[5] Gazdag, J.G. and Canosa, J.C. (1974) Numerical Solutions of Fisher’s Equation. 
Journal of Applied Probability, 11, 445-457.  
https://doi.org/10.1017/S0021900200096236 

[6] Abdullaev, U.G. (1994) Stability of Symmetric Travelling Waves in the Cauchy 
Problem for the KPP Equation. Differential Equations, 30, 377-386.  

[7] Logan, D.J. (1994) An Introduction to Nonlinear Partial Differential Equations.   
Wiley, New York.  

[8] Evans, D.J. and Sahimi, M.S. (1989) The Alternating Group Explicit (AGE) Iterative 
Method to Solve Parabolic and Hyperbolic Partial Differential Equations. Annals of 
Numerical Fluid Mechanics and Heat Transfer, 2, 283-389.  
https://doi.org/10.1615/AnnualRevHeatTransfer.v2.100 

[9] Tang, S.T. and Weber, R.O. (1991) Numerical Study of Fisher’s Equations by a Pe-
trov-Galerkin Finite Element Method. Journal of the Australian Mathematical So-
ciety Series B, 33, 27-38. https://doi.org/10.1017/S0334270000008602  

[10] Khaled, K.A. (2001) Numerical Study of Fisher’s Diffusion Reaction Equation by the 
Sinc Collocation Method. Journal of Computational and Applied Mathematics, 137, 
245-255.  

[11] Ames, W.F. (1965) Nonlinear Partial Differential Equations in Engineering. Aca-
demic Press, New York.  

[12] Ames, W.F. (1969) Finite Difference Methods for Partial Differential Equations. 
Academic Press, New York.  

[13] Noye, J.N. (1981) Nonlinear Partial Differential Equations in Engineering. Confe-
rence in Queen’s College, University of Melbourne, North-Holland Publishing 
Company, Australia.  

[14] Mittal, R.C. and Kumar, S.K. (2009) Numerical Study of Fisher's Equation by 
Wavelet Galerkin Method. International Journal of Computer Mathematics, 3, 287- 
298. https://doi.org/10.1080/00207160600717758 

[15] Mehdi, M.B. and Khojasteh, D.S. (2013) A Highly Accurate Method to Solve Fish-
er’s Equation. Pramana Indian Academy of Sciences Journal of physics, 78, 335-346.  

[16] Ablowitz, M.J. and Zeppetella, A.Z. (1979) Explicit Solutions of Fisher’s Equation 
for a Special Wave Speed. Bulletin of Mathematical Biology, 41, 835-840.  
https://doi.org/10.1007/BF02462380 

[17] Wasow, W.W. (1955) Discrete Approximation to Elliptic Differential Equations. 
Eitschrift Angew, Mathematical physics, 6, 81-97.  
https://doi.org/10.1007/BF01607295 

[18] Schiesser, W.E. and Griffiths, G.W. (2009) A Compendium of Partial Differential 
Equation Models. Cambridge University Press, Cambridge. 
https://doi.org/10.1017/CBO9780511576270 

[19] Whitham, G.B. (1974) Linear and Nonlinear Waves. John Wiley & Sons, Hoboken.  

[20] Babuska, I.B. (1968) Numerical Stability in Mathematical Analysis. IFIP Consress, 
Amsterdam, 11-23.  

[21] Deghan, M.D., Asgar, H.A. and Mohammad, S.M. (2007) The Solution of Coupled 
Burgers Equations Using Adomian-Pade Technique. Applied Mathematics Com-
putation, 189, 1034-1048.  

https://doi.org/10.1021/ed064p740
https://doi.org/10.1017/S0021900200096236
https://doi.org/10.1615/AnnualRevHeatTransfer.v2.100
https://doi.org/10.1017/S0334270000008602
https://doi.org/10.1080/00207160600717758
https://doi.org/10.1007/BF02462380
https://doi.org/10.1007/BF01607295
https://doi.org/10.1017/CBO9780511576270


S. Hasnain et al. 
 

83 

[22] Lax, P.D. and Wendroff, B.W. (1960) Systems of Conservation Laws. Communica-
tions on Pure and Applied Mathematics, 13, 217-237.  
https://doi.org/10.1002/cpa.3160130205 

[23] Kanti, P.K. and Lajja, V.L. (2011) A Note on Crank-Nicolson Scheme for Burgers 
Equation. Applied Mathematics, 2, 888-899.  

[24] Roache, P.J. (1972) Computational Fluid Dynamics. Hermosa, Albuquerque, 51- 
179.  

[25] Mazumder, S.M. (2015) Numerical Methods for Partial Differential Equations: Fi-
nite Difference and Finite Volume Methods. Academic Press, New York. 

[26] Srivastava, V.K. and Tamsir, M.T. (2012) Crank Nicolson Semi Implicit Approach 
for Numerical Solution of Two Dimensional Coupled Nonlinear Burgers Equations. 
Journal of Applied Mechanics and Engineering, 17, 571-581. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ajcm@scirp.org 

https://doi.org/10.1002/cpa.3160130205
http://papersubmission.scirp.org/
mailto:ajcm@scirp.org

	Numerical Study of One Dimensional Fishers KPP Equation with Finite Difference Schemes
	Abstract
	Keywords
	1. Introduction
	2. Exact Solution
	3. Numerical Methods
	3.1. FTCS Scheme
	3.2. Lax Wendroff Scheme
	3.3. Crank Nicolson Scheme
	3.4. Richardson Extrapolation Technique

	4. Results
	5. Discussion
	Acknowledgements
	Conflict of Interest
	References

