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Abstract 
 
This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method 
is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational 
complexity of the method is analyzed and a numerical example is included. A variant of the algorithm with 
lower computational complexity is also proposed. Both algorithms are tested on randomly generated matri-
ces. Numerical performance confirms our theoretic results. 
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1. Introduction 
 
The computation of the generalized inverse of a matrix 
has been discussed by numerous papers, from Newton 
types of iterative schemes to finite algorithms. In par-
ticular, the finite recursive algorithms have been investi-
gated by several authors [1-4]. Many of these finite algo-
rithms are based on the computation of the generalized 
inverse of the rank-one modified matrix. 

Our aim is to give a new finite recursive algorithm for 
computing the Moore-Penrose inverse. The approach is 
based on the symmetric rank-one updates. The work can 
be viewed as the generalization of an earlier result on the 
Moore-Penrose inverse of rank-one modified matrix A + 
cd* [5, Theorem 3.1.3]. Numerical tests show that our 
approach is very effective to the computation of 
Moore-Penrose inverses for rectangular matrices. 

Throughout this paper we shall use the standard nota-
tions in [5,6].  and   stand for the n-dimensional 
complex vector space and the set of m  matrices over 
complex field C respectively. For a matrix 

nC m nC 

n
m nA C   we 

denote R(A), N(A), A*, and A† the range, null space, con-
jugate transpose and Moore-Penrose generalized inverse 
of A, respectively. 

It is well-known that the Moore-Penrose inverse A† of 
A can be expressed as A† = (A* A)† A*. Thus, we can write 

†
† *

1

m

i i
i

where  is the i-th row of A. Define *
ir

*
0

1

0, , 1, 2, , ,
l

l i i
i

A A r r l


    m

.

      (2) 

and 
† * , 1, 2, ,l lX A A l m                (3) 

Note that 1l l l l
*A A r r   is the rank-one modifica-

tion of 1.lA   In the next section we will propose a finite 
recursive algorithm which effectively computes Xl in 
terms of Xl-1 starting from X0 with the help of the existing 
rank-one update formulas for the Moore-Penrose inverse. 
After m iterations, m

† *
mX A A  will be finally reached, 

resulting in the Moore-Penrose inverse A† of A due to the 
fact that 

†
† * * *

1

m

m m i i
i

X A A r r A


    
 
  

 †* *A A A = †A  

Our algorithm will never form Al
† explicitly and per-

form any matrix multiplications as stated in (3) at each 
iteration. Thus it has a low computational complexity. 
The details of its computational complexity will be in-
cluded in the paper. To improve its computational com-
plexity, a variant is also proposed. A numerical example 
is presented in Section 4. We also test and compare the 
efficiencies of Algorithms 1 and 2 by comparing the 
CPU times on randomly generated matrices of different 
sizes. 

*A r r A
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2. The Finite Recursive Algorithm for 
Moore-Penrose Inverse 

 
First, let us establish a relation between  †*

1l i iA r r   
and †

1lA  . For each  define 1, 2, , ,l   m
†

1 ,l l lk A r                        

*
l lh r †

1,lA                        

 †
1 1 ,l l lu I A A r    l


            (4) 

*
l lv r  †

1 1 ,l lI A A                 

*1l lr   †
1 .l lA r                    

Theorem 1. Let Al ( ) and βl be defined as 
in (2) and (4) respectively. Then βl ≥ 1 for each l. 

1, 2, ,l   m

Proof. Obviously, . We now only 
need to prove the result for 

*
1 11 r  

2

†
0 1 1A r 

.l m   Observe that Al = 
 is positive semi-definite for 1  Let γ be 

the rank of 1l

*
1

l

i ii
r r

 .l m 
A  . Then 1lA   is unitarily similar to a diago-

nal matrix, i.e., 
*

1lA UDU   

where U is a unitary matrix and D = diag  1 2, , ,    
 with 1 20, ,0 0.       We can write Al-1

† = 
UD†U* which is also positive semi-definite due to the 
fact that D† = diag  1 21 ,1 , ,1 

*

,0,  
†

1 1.l lA r 
,0 .  Therefore, 

we have βl = 1+rl
*  □ 

The general result for the Moore-Penrose inverse of a 
rank-one modified matrix can be found in [5]. For a ma-
trix ,  , the Moore-Penrose 
inverse of A + cd* can be expressed in terms of A†, c, and 
d with six distinguished cases. Our approach is to apply 
the result to the sequence (3) where each Al is positive 
semi-definite, βl is real and nonzero in view of Theorem 
1 which simplifies the theorem by eliminating three 
cases. Due to the fact that (Al-1

†)* = (Al-1
*)† = Al-1

† we also 
have hl = kl

* and vl =ul
* from which two of three other 

cases can be combined into one. Thus, the six cases of [1] 
are reduced to only two cases. Moreover, the update 
formulas can be significantly simplified. 

m nA C  ,mc C nd C

Theorem 2. The Moore-Penrose inverse of Al = Al-1 + 
rl rl

* defined in (2) is as follows. 
1) If ul ≠ 0, then 
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and 

 †*
1l l lA r r  † † * * *

1l l l l l l l lA k u u k u u   † † †    (6) 

2) If ul = 0, then 

  
  

†* *
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1 1
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1 1
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          (7) 

and 

 †*
1l l lA r r   †

1 1l l l
*
lA k k         (8) 

Proof. The result follows directly from [5, Theorem 
3.1.3] and its proof. Details are omitted. □ 

Finally, let us turn our attention to establishing the it-
erative scheme from Xl−1 to Xl. To this end, we define 
two auxiliary sequences of vectors ys,t = As

†rt and zs,t = 
Asys,t = As As

†rt. It is easily seen from 

     * **
s s s s s s s sA A A A A A A A  

†
† † † *  s sA A†  

that ys,t and zs,t are the minimum-norm least-squares solu-
tions of the following two auxiliary linear systems re-
spectively 

,    .s t s s tA y r A z A r   

In what follows we will frequently employ the fact 
that a† = a*/||a||2 for any non-zero column vector a. We 
will distinguish two cases in our analysis in view of 
Theorem 2. 

Case 1 (ul ≠ 0). It is easily seen from Theorem 2 that 

 * *
1
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l l l l

l l l l l l l l
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Note that 
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Similarly, we have 
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and 
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Combining (10) through (13), we have 
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It is seen from Theorem 2 that 
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Thus, we have an iterative scheme for yl,t: 
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For the auxiliary sequence zl,t = Al yl,t, we could multi-
ply Al on both sides of (15) and then simplify the resulted 
expression. However, in our derivation we employ (5) 
instead: 

 
   

 

, 1 1 1,
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Therefore, we have 
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Case 2. (ul = 0). Observe that 

* *
11 1l l l l l lr A r r y    †                 (17) 

* *
1, 1,l l l l l lk k A y Ay



                      (18) 

It is seen from Theorem 2 that 

  * * *
1 1 1l l l l l l l l

* *
1   1 ,l l l lX k k A   

which, together with (17) and (18), implies 

 *1 1,*
-1,

1
.

1l l l l l l
l l l

X X y Ay
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By following the same token, we can develop an itera-
tive scheme for yl,t: 

*
1,

, 1, 1*
-1,

.
1

l l t
l t l t l l

l l l

r y
y y y

r y


 
 ,

,

                (20) 

For zl,t, in view of (7), we have 

, 1 .l t l tz z                   (21) 

Finally, since A0 = 0 we have X0 = 0, y0,t = z0,t = 0 (t = 
1, 2, ···, m) from which we can compute the Moore-Pen-
rose inverse Xm = A† by applying (14) or (19) repeatedly 
with the help of auxiliary sequences yl,t and zl,t (t = l + 1, 
l + 2, ···, m and l < m). We summarize this procedure in 
the following algorithm. 

Algorithm 1. MPinverse1[A] 
● Step 0 Input: A. Let  be the i-th row of A (i = 1, 2, 

···, m); 

*
ir

● Step 1 Initialization: Set X0 = 0   Cn × m , y0,t = z0,t = 
0        Cn for all t = 1, 2, ···, m; 
● Step 2 For l = 1, 2, ···, m, 
  1) if rl – zl – 1,l ≠ 0, then 

compute Xl using (14); 
compute yl,t and zl,t using (15) and (16) 
respectively for all t = l + 1, l + 2, ···, m 
and l < m; 

  2) if rl – zl – 1,l = 0, then 
compute Xl using (19); 
compute yl,t and zl,t using (20) and (21) 
respectively for all t = l + 1, l + 2, ···, m 
and l < m; 

● Step 3 Output: Xm, the Moore-Penrose inverse of A. 
Let us analyze the two cases in our algorithm further. 

If ul = 0 for some l, which is the case Step 2(b) in our 
algorithm, then we have 

 
1 1

* *
1 1 1 1

1 1

.
l l

l l l l i i l l i l l i
i i

r A A r r r A r r A r r
 

   
 

    
 
 † † †  

This means that if ul = 0 for some l, rl is a linear com-
bination of {ri: I = 1, 2, ···, l – 1}. The following inter-
esting result shows that the opposite is also true. 

Theorem 3. Let ui and ri (i = 1, 2, ···, m) be defined as 
before. Then, ul = 0 if and only if rl is a linear combina-
tion of {r1, r2, ···, rl – 1}. 

Proof. The definition of ul = (I – Al–1Al–1
†)rl indicates 

that ul = 0 is equivalent to rlN(I – Al–1Al–1
†). Let Âl–1 = 

[r1 |r2| ··· | rl–1]. Obviously, we have Al–1 = Âl–1Âl–1
*. It is 

easily seen that  *X A r r A A k k A    
†

†          
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11 l

†

.

     1 1 1 1
ˆ ˆ ˆ

l l l lR A R A A R A
      

         11            .
ll lR A A N I A A
   †

Therefore, ul = 0 is equivalent to rlR(Âl–1), i.e., rl is a 
linear combination of {r1, r2, ··, rl–1}. □ 
 
3. A Variant of the Finite Recursive  

Algorithm with an Improved  
Computational Complexity 

 
We now compute the computational complexity of Algo-
rithm 1, and then discuss a revised algorithm to improve 
the efficiencies. Let us focus on the multiplications and 
divisions ignoring the additions and subtractions. We 
also count the dominant terms only and ignore the lower 
terms. Assume that the same quantity is computed only 
once when the algorithm is implemented. For example, 
rl

*(rl – zl–1,l) in (14) is computed only once and will not 
be re-computed in (15)-(16). After optimizing the code, 
it is not difficult to see that 4mn operations are need in 
(14) and 6n in (15)-(16). In Case 2, 2mn operations are 
needed in (19) and 2n in (20)-(21). Therefore, the total 
number of operations T is about 

     
0 1 0 1

0 0

4 6 2 2
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l l
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m m
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Let γ be the rank of A. In view of Theorem 3, there are 
exactly γ elements in the set {l: 1 ≤ l ≤ m, ul ≠ 0} and (m – 
γ) elements in its complement set {l: 1 ≤ l ≤ m, ul = 0}. 
Therefore, we have 
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Note that 

       

  
0

  4 4 2

4 1 2

lu

n m l n m l m m

n m



  


         

  

 
 

Therefore, after ignoring lower terms, we obtain 
2 23 2 3 6 2m n mn T m n mn n2 ,          (22) 

which leads to the following theorem. 
Theorem 4. When applied to the matrix A   Cm × n, 

with roughly T multiplications and divisions where T 
satisfies (22). 

In view of T

Algorithm 1 computes the Moore-Penrose inverse of A 

heorem 4, the computational complexity 
of

then apply Algorithm 1 to A, i.e., X 
= 

, then apply Algorithm 1 to A . Let Y 
= 

Penrose inverse A  of 
A. 

Step 2 is called, then the computational complexity 
of

. Preliminary Numerical Results 

e show some numerical results obtained by both algo-

s on a small problem 
w

 Algorithm 1 grows linearly as a function of n. How-
ever, it grows quadratically as a function of m. Thus this 
algorithm is very fast for small m and much slower for 
large m. Our preliminary numerical tests confirm the 
theoretical discovery. Due to the fact that (A*)† = (A†)*, 
let us apply Algorithm 1 to A* when m is bigger than n. If 
the output of Algorithm 1 on A* is Y, i.e., Y = MPin-
verse1[A*], then we have Y = (A*)† so A† = Y *. We end 
up this section with the following algorithm for A†. 

Algorithm 2. MPinversel[A] 
● Step 0 Input: A; 
● Step 1 If m ≤ n, 
MPinverse1[A]; 
● Step 2 If m ≥ n *

MPinverse1[A*] and set X = Y*; 
● Step 3 Output: X, the Moore- †

If 
 Algorithm 2 is bounded by 3mn2 + 6γmn – 2γ2m in 

view of Theorem 4 since the roles of m and n are 
switched. Therefore, the complexity of Algorithm 2 is 
bounded by K where K = 3m2n + 6γmn – 2γ2n if m ≤ n 
and K = 3mn2 + 6γmn – 2γ2m if m > n. 
 
4
 
W
rithms proposed in the previous sections. One major ad-
vantage of our algorithms is that they will be guaranteed 
to carry out a result successfully. 

We first illustrate our algorithm
ith accurate calculation at each step. 
Example 1. Let 

1 2 3

4 5 6

A

 
   
  

                    (23) 

By using either one of our algorithms, we generate a 
sequence of matrices 

0 1

2

00 1 14 8 49

00 , 1 7 16 49 ,

00 3 14 24 49

17 18 4 9

1 9 1 9

13 18 2 9

X X

X

   
    
   
     
 
   
  

       (24) 

where X2 = A† which is the Moore-Penrose inverse of A. 

at
Now, we perform our algorithms on randomly gener-

ed matrices using a MATLAB implementation of Al-
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times (in seconds) taken by our 
al

. Conclusions 

wo finite recursive algorithms are proposed in this pa-

gorithms 1 and 2. The MATLAB Profiler is used in the 
computation of CPU times for the solution of each prob-
lem by each algorithm. 

Table 1 records the 

or much less columns than rows, the second algorithm is 
extremely effective according to its computational com-
plexity, which is also confirmed by our preliminary nu-
merical tests on randomly generated matrices of different 
sizes. gorithm on each randomly generated matrix of various 

sizes. The recorded results coincide with the computa-
tional complexity analysis perfectly. Observe that the 
performances of both algorithms are exactly the same in 
Test 1 which is expected due to the fact that Algorithm 2 
indeed calls Algorithm 1 in this case. However, in the 
case where m n  as in Tests 2, 3 and, 4, Algorithm 1 
is extremely slow as expected from the computational 
complexity analysis while Algorithm 2 dramatically re-
duces the number of operations, thus less time needed for 
solutions. 
 

The idea in this paper may be adopted to calculate the 
minimum-norm least-squares solution to the system of 
linear equations A x = b. 
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