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Abstract 
In 1742, Euler presented an essay on the “Principles for determining the mo-
tion of the blood through arteries”. This is the first known work on the me-
chanics of flows in elastic tubes, in which Euler applied his equations to ana-
lyze the flow of blood through arteries, driven by a piston pump simulating 
the heart. However, Euler did not recognize the wave nature of his equations, 
which led him to a dead end on trying to find a closed form solution. None-
theless, it will be shown that the hemodynamic equations developed by Euler 
about 275 years ago, still undergird the most advanced numerical methods in 
use today for blood flow analysis in arterial networks. Therefore, Euler’s pio-
neering and seminal work in the area of blood flow justifies he be called the 
father of hemodynamics.  
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1. Introduction 

In 1742, the Dijon Academy launched its first contest on a subject with the title 
“To determine the difference in velocities between a liquid that flows through 
elastic and rigid tubes” (Déterminer la différence des vitesses d’un liquide qui 
passe par des tuyaux inflexibles et de celui qui passe par des tuyaux élastiques), 
in which Leonhard Euler (1707-1783) submitted a manuscript (presumably) 
with the title Principia pro motu sanguinis per arterias determinando. Truesdell 
(1955) traces the mishaps of this publication, indicating that: “[∙∙∙] While it was 
the academy’s principle to retain all manuscripts, the box on whose label 1742 
appears contains no memoir earlier than 1765”. Principia pro motu sanguinis 
per arterias determinando appeared in print much later, in 1862, and in fact 
dated 1775. 
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As originally published in Euler’s Opera Postuma (Euler, 1862), E 855 Princi-
pia pro motu sanguinis per arterias determinando of 1775 is an incomplete ma-
nuscript, lacking paragraphs 1 to 14, whereas the complete version appeared in 
Euler’s Opera Omnia (Euler, 1979) (its Preface contains details about the miss-
ing parts). In fact, although in the introduction to the problem (paragraphs 1-8), 
Euler focuses on the discussion on blood flow through arteries, to such a degree 
to even proposing adhoc models for the behavior of their elastic cross-sections, 
surprisingly, and also somehow disappointing, is that the main body of the ma-
nuscript (paragraphs 9-34) is devoted to the modeling of flows through rigid 
tubes, driven by a piston pump. It is only in the remaining sections of the ma-
nuscript (paragraphs 35-43) that Euler investigates the formulas for the motion 
of fluids in elastic tubes, ending the work with a very pessimistic statement that 
“[∙∙∙] since there appears to be no way in which this can be completely resolved 
and the investigation can be considered to transcend human powers, the work 
will end here”. 

As Truesdell (1955) pointed out “[∙∙∙] It is interesting that Euler’s first paper 
on hydraulics should concern this extremely difficult subject [∙∙∙] since (E 855) 
employs concepts Euler was not to develop until 1755”. In fact, what is consi-
dered to be Euler’s first hydraulic paper appeared in printing only in 1754 (Eu-
ler, 1754), where Euler dealt with the problem of raising water to an elevated re-
servoir with a piston pump. As Cerny & Walawender (1974) noted “[...] This 
work (on blood flow) may be the first mathematical treatment of circulatory 
physiology and hemodynamics”. Euler perhaps could very well be called the 
“Father of Haemodynamics”. In this publication, these authors essentially trans-
lated the incomplete form of E 855, not on equal footing with the original ma-
terial, to omit most of the verbose parts, and by adding comments and interpre-
tations from a more modern point of view. Nonetheless, all the mathematical 
developments, assumptions and justifications were included. In this manner, the 
authors succeeded in providing a very objective translation, covering the essen-
tial parts of Euler’s manuscript on blood flow. A complete English translation of 
E 855 by the author1 differs from the one above, not only because it is based on 
the complete form of manuscript, but also because, it had been accomplished by 
a pari passu type of translation, which reflects with more fidelity the original 
Latin form of the manuscript in English. 

It is well known that the modern understanding of the cardiovascular system 
undoubtedly starts with the work of William Harvey (1578-1657) who published 
his discovery of the circulation of blood in 1628. A historical review on the sub-
ject (Parker, 2009) indicates that before Euler, other investigators had already 
been concerned with blood circulation. Giovanni Borelli (1608-1679), which is 
seen by many as the father of bioengineering, studied the contraction of the 
heart and its interaction with the arteries, where he understood the capacitive 
effect of the elastic arteries on smoothing the flow of blood (now known as the 

 

 

1Available in the Euler Archive http://eulerarchive.maa.org/. 
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Windkessel effect to be later discussed). His works were posthumously published 
in 1680 in De Motu Animalium. Stephan Hales (1677-1746) published in 1733 a 
series of papers that he had presented before the Royal Society as Statical Essays: 
Containing Haemastaticks. It is full of original observations about the mechanics 
of the cardiovascular system including the first measurements of in vivo blood 
pressure. 

As we shall see, the one-dimensional modeling of the human arterial system 
introduced by Euler in 1775, results in a system of hyperbolic partial differential 
equations expressing the conservation of mass and momentum for inviscid flow. 
In order to close the problem, he also suggested two possible, but unrealistic, 
constitutive equations describing the behavior of the elastic wall with changes in 
the internal pressure. Apparently, Euler did not recognize the wave-like nature 
of the flow and was not able to find a solution for his equations, citing “insur-
mountable difficulties”. In fact, as we shall see, solutions to Euler’s hemodynam-
ic equations in the arterial system were only possible rather recently, with the 
advances of digital computer simulations in the late 20th century. Although Eu-
ler’s equations had remained essentially the same, model refinements recently 
introduced, such as the inclusion of wall friction, more realistic non one-dimensional 
velocity profiles and pressure-area relationships, together with newer numerical 
schemes, have improved the ability to capture the main features of pressure, flow 
and area waveforms in arteries. 

Being a rather multidisciplinary and specialized field of study, and because of 
the vast amount of work that has been done in the area of blood flow analysis 
with all its involvements and complexity, the present work does not intend to 
trace the evolution of the human arterial system analysis, but to show the perva-
siveness of Euler’s model and his hemodynamic equations as a basis for the most 
advanced numerical models in use today. As noted by Alastruey, Parker, & 
Sherwin (2012), despite the complexity of the vascular system, the one-dimensional 
(1-D) “reduced” Euler’s model is commonly applied to simulate the changes in 
blood flow and cross-sectionally averaged blood pressure and velocity in time 
and only along the axial direction of larger arteries, with reasonable accuracy 
and computational cost. Interesting to note is that Euler’s hemodynamic equa-
tions describing flow in elastic arteries have the same mathematical structure as 
the compressible gas dynamics and shallow water equations; the elasticity of the 
artery vessel wall taking the place of the compressibility of the gas in the former, 
and the channel geometry in the latter equations.  

2. Euler’s Hemodynamic Equations 

In E 855, Euler applied the principles of mass conservation and momentum 
conservation to the one dimensional flow of an incompressible fluid through an 
elastic tube driven by a piston pump to obtain, in Euler’s notation, the equation  

( ) 0
vss

t z
∂∂  + = ∂ ∂ 

                         (1) 
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from the mass conservation principle, and 

2 0p v vg v
z z t
∂ ∂ ∂     + + =     ∂ ∂ ∂     

                   (2) 

from the momentum conservation principle, which it is recognized as the 
one-dimensional form of what is now known as the Euler equations of fluid dy-
namics, which are used for inviscid flows calculations. 

In these equations ( ),s s z t=  is the cross-sectional area of the artery, 
( ),v v z t=  is the velocity, and ( ),p p z t=  is the pressure (in fact, the pressure 

head), t is time, and z is the coordinate along the tube. Equation (2) has units of 
acceleration (force per unit of mass), hence p has units of length, and 2 g is ac-
tually the gravity, due to Euler’s peculiar form of writing equations involving 
forces. 

To solve for s, v and p, Euler had to add an algebraic pressure-area relation-
ship, for which he proposes two expressions 

ps
c p
Σ

=
+

, or 1 e
p
cs

− 
= Σ −  

 
              (3a, b) 

where Σ  is the cross-sectional area of the tube at infinite pressure, and c is a 
constant quantity that depends on the degree of elasticity of the tube. By adopt-
ing Equation (3b), it would result in a simpler expression for the pressure gra-
dient term in Equation (2). Nonetheless, he makes no further use of either in the 
analysis.  

Since Euler had succeeded in finding a solution for p and v for the rigid tube 
case, he then tried to do the same for the elastic tube case, but, with no avail. 
Nonetheless, as far as the solution for rigid tubes is concerned, his approach is 
impeccable. By invoking the continuity equation and the momentum equation, 
and with great analytical skills, he was able to reduce the problem to the integra-
tion of a single differential equation, for the flow of liquids through rigid tubes 
with variable cross sections. From this, he gave closed form expressions for the 
velocity and pressure for tubes of uniform cross sections. Euler will then return 
to this matter again in the memoir of 1754 (Euler, 1754), where he considers the 
problem of raising water to an elevated reservoir with a piston pump, where he 
derives an expression for the pressure in any location along the pipe, which, with 
the exception of the gravity terms and different notation, is exactly in the same 
form of his general equation developed in E 855. 

The Wave Nature Solution of Euler’s Hemodynamic  
Equations—The Linear Solution 

An approximate solution to Euler’s hemodynamic equations can be obtained 
from the linear theory, which is valid for small amplitude disturbances. Let 

0s s a= + , such that 0a s , 1v  , and ( )0ep p p P s≡ − = , the transmural  

pressure. Then, ( ) ( )2
0

p aP s O a
t t

∂ ∂′= +
∂ ∂

. 
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Under the assumption that the artery vessel has uniform cross-section (s is a 
constant along z), and the blood has density ρ, then Equations (1) and (2) give 

( )0 0

1 0p v
s P s t z

∂ ∂
+ =

′ ∂ ∂
                         (4) 

1 0v p
t tρ
∂ ∂

+ =
∂ ∂

                           (5) 

on neglecting small quantities. Here p is actually the pressure in pascal. 
Eliminating v gives 

2 2
2
02 2

p pc
t z

∂ ∂
=

∂ ∂
                            (6) 

where ( ) 12
0 0c Dρ −= , in which 0D  is the distensibility of the artery vessel, de-

fined as 1
0

0

d
d

a D
p s

− 
= 

 
, or equivalently 

( )0
0 0

1D
s P s

=
′

. 

Equation (6) is recognized as the wave equation, which admits the so-called 
D’Alembert solution2 in the forms 

( )
( ) ( )

( ) ( )

0

1
0 0

12
0 0

,

,

,

p f z c t

v c f z c t

a c f z c t

ρ

ρ

−

−

= ±

= ±

= ±

                      (7) 

where ( )0f z c t±  is the wave form, which propagates with speed 0c ; the − sign 
indicates waves travelling in the positive z-direction, and the + sign indicates 
waves travelling in the negative z-direction. This linearization is valid provided 

0v c , with 0c  given by the Moens-Korteweg formula, to be presented next. 
After Euler’s first attempt to apply the principles of hydraulics to the flow of 

blood through arteries, Thomas Young (1808) derived the wave speed using an 
analogy between waves in a compressible fluid in a rigid tube and waves in a in-
compressible fluid in an elastic tube, where the speed of propagation follows 
from Newton’s theory of speed of sound in air. For 70 years, Young’s rather 
confusing derivation of the wave speed remained forgotten, until Moens in 
1877/1878 and Korteweg in 1878 found independently the correct formula for 
the speed of propagation of waves given by  

0
0

0

hEc
Dρ

=
 

where E is the modulus of elasticity of the material, 0h  and 0D  are, respec-
tively, the wall thickness and the inside diameter of the artery vessel, and ρ is the 
density of the blood. This formula for the wave speed became known as the 
Moens-Korteweg formula. Tijsseling & Anderson (2012) gives a detailed histor-

 

 

2In 1747, D’Alembert (1747) derived the equation for the shape of an stretched string subject to vi-
brations in the form ( ) ( )y t s t sψ= + + Γ − , without explicitly deriving the wave equation. In 1759, 
Euler (1759) instead, not only derived the wave equation, but also gave its solution in the form 

( ) ( )y x ct x ctφ ψ= + + − , in an essay on the propagation of sound. Nonetheless, the general solution 
of the wave equation became associated with D’Alembert. 
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ical account on the development of this formula by both authors. 

3. Refinements to Euler’s Hemodynamic Model  

As we saw earlier, Euler’s pressure-area relationship is considered a vulnerable 
point of Euler’s hemodynamic model, and, therefore, more realistic constitutive 
wall-laws have been introduced. Also viscous flow effects have been added to his 
equations, as well as non one-dimensional velocity profiles have been consi-
dered.  

3.1. Pressure-Area Relationship 

The adhoc pressure-area relationships given by Euler (Equations (3a) and (3b)), 
were not derived from any theory of elasticity. In fact, arterial walls exhibit elas-
tic and viscous behavior (viscoelastic behavior), and as the pressure wave prop-
agates inside the tube, it distends (elastic effect of the walls), with the wave being 
progressively attenuated (dissipation effect due to the viscosity of the walls), with 
its amplitude decreasing exponentially during propagation. The attenuation is 
primarily caused by the viscosity of the walls. Furthermore, the stress-strain re-
lation for flexible tubes such as arteries is nonlinear (Saito et al., 2011). However, 
as a first approximation, we can assume that the artery is a linearly elastic ma-
terial that obeys Hooke’s law, where the stress is related to the strain in both the 
longitudinal and circumferential direction through the Young’s modulus E. 

The artery viscoelastic behavior can be modeled with different mathematical 
forms. One of such formulations leading to a pressure-area relationship consid-
ers a single linear term and an attenuation term according to the Kelvin-Voigt 
model. This model, also called the Voigt model, can be represented by a purely 
viscous damper and a purely elastic spring connected in parallel. Since the two 
components of the model are arranged in parallel, the strains in each component 
are identical, and then s d=  , where the subscript s indicates stress-strain in 
the spring, and the subscript d indicates the stress-strain in the damper. The to-
tal stress in the system will be the sum of the stress in each component 

total s dσ σ σ= + .  
From these we get that in a Kelvin-Voigt material, stress σ, strain ε, and their 

rates of change with respect to time t are governed by an equation of the form 

( ) ( )d
( )

d
t

t E t
t

ε
σ ε η= +                       (8) 

where E is the modulus of elasticity and η is the viscosity of the artery vessel. 
If we consider the artery vessel as a cylindrical tube, the resultant circumfe-

rential strain θ  takes the form ( )1
zEθ θσ νσ= + , where ν is Poisson’s ratio.  

Similarly, the resultant longitudinal strain z  is given by ( )1
z zE θσ νσ= + . If  

we stipulate that the artery vessel is tethered in the longitudinal direction, then 
0z = , and the circumferential strain becomes ( )21 1

Eθ θσ ν = −  . Since the 
circumferential strain is defined as  
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00

0 0

A AR R
R Aθ

−−
= =  

where R is the tube radius and A its corresponding area (the subscript 0 indicat-
ing conditions where no stresses are imposed), then 

( ) 02

0

1 1
A A

E Aθσ ν
− − =                      (9) 

But, the circumferential stress acting in the tube wall of length l and thickness 
h, is due to the difference between the internal pressure iP  and external pres-
sure eP , and under the assumption that the arterial vessel wall is thin, that is, 

e iR R≈ , then  

( )i e iP P R
hθσ

−
≈                         (10) 

Substituting Equation (10) into Equation (9), and recognizing that 2
0 π iA R= , 

yields 

( )0
0

i eP P A A
A
β

= + −                     (11) 

where ( )
0

2

π
1

h E
β

ν
=

−
. 

Equation (11) represents the elastic behavior of the artery vessel, and corres-
ponds to the spring in the Kelvin-Voigt model. Then, ( )E tε  in Equation (8) is 
given by 

( ) ( )0
0

eE t P A A
A
β

ε = + −                    (12) 

and 

( )
0

d
d

t A
t tA A

ε
η

Γ ∂
=

∂
                      (13) 

where 
( )

0
2

π
2 1

h
η

ν
Γ =

−
. 

Finally, substituting Equations (12) and (13) into Equation (8) gives the resul-
tant viscoelastic tube law as 

( )0
0 0

i e
AP P A A

A tA A
β Γ ∂

= + − +
∂

               (14) 

3.2. Velocity Profile and Wall Friction 

In 1-D modelling the velocity profile is commonly assumed to be constant in 
shape and axisymmetric. A typical profile satisfying the no-slip condition at the 
artery vessel wall ( ) 0v r R= =    is (Hughes & Lubliner, 1973) 

( ) 2, , 1 rv z r t U
R

ζζ
ζ

 +  = −  
   

                 (15) 
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where r is the radial coordinate, ( ),R z t  is the radius of the artery vessel, ζ is a 
velocity profile parameter, and U is the average velocity. 

Integration of the incompressible Navier-Stokes equation for axisymmetric 
vessels yields  

( ), 2 π
r R

vf z t R
r

µ
=

∂ =  ∂ 
 

where f is the frictional force per unit of length, and μ is the viscosity of the blood. 
For the velocity profile given by Equation (15), we have ( )2 2 πf Uζ µ= − + . 
Following Smith, Pullan, & Hunter (2002), 9ζ =  provides a good compromise 
to experimental data obtained at different points in the cardiac cycle, which then 
gives 

22 πf Uµ= −                          (16) 

Then, Euler’s momentum equation (Equation (2)), corrected for velocity pro-
file, with average velocity U, and wall friction f would read as 

1U U p fU
t z z Aρ ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
                   (17) 

which should be solved together with the continuity equation (Equation (1)), 
rewritten here as 

( ) 0
UAA

t z
∂∂  + = ∂ ∂ 

                      (18) 

4. Numerical Solutions of Euler’s Hemodynamic Equations 

For a long time, Euler’s hemodynamic model was mainly considered an histori-
cal curiosity, because practical applications of his equations require rather ad-
vanced numerical computing. It was only in the last decades of the last century 
that we see a rapid growth in the blood flow analysis, mainly due to the devel-
opments in digital computer simulations. In fact, the major advances have been 
occurring since the beginning of the current century, and it is possible to say that 
this is an area of considerable research interest, with several publications each 
year. 

It is possible to solve Euler’s hemodynamic equations using different numeri-
cal schemes. These include the method of characteristics, finite volumes, finite 
differences, and finite elements. A comparison of these methods has shown a 
good agreement in their ability to capture the main features of pressure, velocity 
and area waveforms in large arteries (Boileau et al., 2015). In the next section, we 
analyze their solution using the method of characteristics. 

4.1. Method of Characteristics Analysis 

Under physiological conditions, the elastic term in the tube law (Equation (14)) 
is dominant over the viscous term. Then, neglecting the viscous term, the pres-
sure gradient term in the momentum equation (Equation (17)) takes the form 
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0

0

1 1 Ap p A p p
z A z z A z

β
ρ ρ β

 ∂∂ ∂ ∂ ∂ ∂ ∂
= + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 
               (19) 

Following Alastruey, Parker, & Sherwin (2012), Equations (17) and (18) form 
a system of hyperbolic partial differential equations that can be written in 
non-conservative form with constant A as  

t z
∂ ∂

+ =
∂ ∂
U UH S                         (20) 

where  

A
U
 

=  
 

U , 1
U A

p U
Aρ

 
 = ∂ 

∂  

H , 0

0

0

d1 d
d d

Af p p
A z A z

β
ρ β

 
 =  ∂ ∂ − −  ∂ ∂  

S  

This system can be analyzed using Riemann’s method of characteristics3. Since 

0A > , and in normal physiological conditions 1 0p
Aρ
∂

>
∂

, then, H has two real  

and distinct eigenvalues, ,f b U cλ = ± , where the subscript f applies to the for-
ward travelling wave, and the subscript b applies to the backward travelling  

wave, and A pc
Aρ
∂

=
∂

. 

Additionally, the matrix H is diagonalizable, since there exists an invertible 
matrix L such that 

1−=H L ΛL                           (21) 

where 
1

1

c
A
c
A

δ

 
 

=  
 −  

L , 
0

0
f

b

λ
λ

 
=  
 

Λ , and δ is a scaling factor. 

Substitution of Equation (21) into Equation (20), and premultiplication of 
Equation (20) by L yields 

t z
∂ ∂

+ =
∂ ∂
U UL LSΛL                      (22) 

Taking 
U

∂
=

∂
W L , where 

T
,f bW W =  W  is the vector of characteristic va-

riables, Equation (22) reduces to  

t z
∂ ∂

+ =
∂ ∂
W W LSΛ                      (23) 

For any path ( )ˆx x t=  in the ( ),x t  space, the variation of W along ( )x̂ t  
can be written as 

( )( )ˆd , ˆd
ˆd d

x t t x
t t t x

∂ ∂
= +

∂ ∂

W W WI                  (24) 

 

 

3The method of Riemann characteristics has been used for more than a century to describe linear and 
nonlinear waves propagating in solids, liquids, and gases. The method can be also applied to 
one-dimensional wave propagation in uniform and nonuniform rigid and elastic ducts. 
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Comparison of Equation (23) and Equation (24) shows that if the path ( )x̂ t  

is chosen such that 
ˆd

d
x
t

=I Λ , then  

0

0

0

0

d1 d
d dd

d d1 d
d d

Af p p
A z A z

t Af p p
A z A z

β
ρ β

β
ρ β

  ∂ ∂
− −  ∂ ∂  = =   ∂ ∂ − −  ∂ ∂  

W LS                (25) 

Thus, for any point ( ),X T  in the ( ),x t  space there are two characteristic 
paths, fC  and bC , along which fW  and bW  propagate at speeds fλ  and 

bλ , respectively, changing their values due to fluid viscous dissipation and spa-
tial variations of wall distensibility and reference luminal area. 

The characteristic variables fW  and bW  are then determined by integration 

of ∂
=

∂
W L
U

. However, before doing that, it should be noted that to satisfy the 

Cauchy-Riemann condition 
2 2

, ,f b f bW W
A U U A

∂ ∂
=

∂ ∂ ∂ ∂
, the value of δ in L must be  

constant, which, without loss of generality, can be assumed to be equal to one. Then 

0 0
, d d

U A
f b U A

cW U A
A

= ±∫ ∫                     (26) 

where 0U  and 0A  are reference values. 
For the pressure-area relationship given by Equation (14), we can write an ex-

plicit form for ,f bW . Recalling that A pc
Aρ
∂

=
∂

, and by neglecting the viscous 

dissipation term in Equation (14), we have that 1 4

02
c A

A
β
ρ

= ; then, the inte-

gration of Equation (26) results in  

( ), 0 04f bW U U c c= − ± −                   (27) 

where 
( )

1 4 0 0
0 0 2

00

4
2 31

Eh Ehc A
DD

β
ρ ρρ ν

−= = =
−

, for 0.5ν = . As we saw earli-

er, Moens and Korteweg independently derived the equation 0
0

0

Ehc
Dρ

=  for  

the pulse wave speed, which is similar to the equation for 0c  obtained from 
Equation (14). 

This shows that fW  propagates changes in area (and, hence, pressure and 
velocity) in the positive x-direction in an arterial segment; that is, forwards. On 
the other hand, bW  propagates changes in the negative x-direction; that is, 
backwards. Therefore, blood pressure and flow rate at any point in an artery 
vessel may be described as the combination of forward- and backward-travelling 
waves. 

4.2. Boundary Conditions 

It is now necessary to prescribe boundary conditions at both the inlet and outlet 
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of each arterial segment. These are often classified as inflow, junction and ter-
minal boundary conditions.  

Inflow boundary condition 
This boundary condition, is usually accomplished by prescribing the volume 

flow rate measured in vivo, ( )inQ t . In a healthy adult at rest, the heart rate is 
about 70 beats/min (bpm), giving a cardiac period of just less than 1 s. Each 
ventricle ejects about 70 - 100 mL of blood per stroke; the so-called stroke vo-
lume. The net volume of blood ejected from the left ventricle to the ascending 
aorta per unit of time, the cardiac output, is around 6 l/min (Alastruey, Parker, 
& Sherwin, 2012).  

Junction matching conditions 
Junction matching conditions allow the connection of individual arteries to 

form an arterial network. There are two types of junctions: splitting flow and 
merging flow. Splitting flow junctions are the most common arrangement in 
large human systemic arteries, whereas merging flow junctions are the most 
common arrangement in the venous system. Energy losses in junctions are 
usually neglected (Alastruey, Parker, & Sherwin, 2012).  

Terminal boundary conditions 
Any arterial 1-D model has to be truncated after a relatively small number of 

generations of bifurcations. According to Alastruey, Parker, & Sherwin (2012), 
in the most peripheral vessels (small arteries, arterioles and capillaries), fluid re-
sistance dominates over wall compliance and fluid inertia, which are both do-
minant in large arteries. The effect of peripheral resistance, compliance and fluid 
inertia on pulse wave propagation in large 1-D model arteries is commonly si-
mulated using linear lumped parameter models (or zero-dimensional (0-D) 
models) coupled to the 1-D model terminal branches. 

Windkessel theory was developed to explain how the pulsatile motion of 
blood from the heart is transformed to a continuous steady flow at the peripher-
al blood vessels. The 3-Element Windkessel Model simulates the characteristic 
impedance of the proximal aorta. The aorta is the largest artery in humans, ori-
ginating from the heart’s left ventricle and extending down to the abdomen, 
where it branches into smaller arteries.  

In the tree-element lumped parameter Windkessel model, the chamber with 
compliance C is considered to be filled at the inlet by a pulsatile flow of blood 

( )inQ t , and with an outflow ( )outQ t , and resistance to flow at the inlet and out-
let, 1R  and 2R , respectively. The compliance C of the elastic Windkessel 
chamber with blood volume ( )V t , and blood pressure ( )p t , is defined as  

d
d
VC
p

= , and represents the change in vessel volume for a given pressure 
change. 

This model relates pressure and the flow at the end point of a 1-D domain 
through 

1
1

2 2

d d1
d d

vp pR Q pQ CR C
R t R t

  −
+ + = + 

 
                 (28) 

where 1R  is given by the characteristic impedance 0Z  as seen by the wave tra-
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velling down the aorta, given by 0
0

0

cZ
A
ρ

= , vp  and 2R  are the pressure and 

resistance of the peripheral vasculature. 

4.3. Wave Reflections 

According to Alastruey, Parker, & Sherwin (2012), in normal conditions, the 
junctions in the aorta and first generation of bifurcations are close to 
well-matched for the propagation of waves travelling from the heart to the peri-
phery. This means that the same junctions are necessarily poorly-matched for 
waves travelling from the periphery to the heart. Thus, as waves travel progres-
sively further down the generations of bifurcations of the arterial tree, their ref-
lections effectively become “trapped”, with an ever diminishing proportion of 
their amplitude making the way back to proximal arteries. This wave trapping 
mechanism prevents distal changes in pressure and velocity from being seen in 
the proximal aorta. 

The reflection coefficient at the outlet of a terminal branch fR  coupled to a 
single resistance 1R  is  

1 0

1 0
f

R ZR
R Z
−

=
+

.                          (29) 

By assuming 1 0R Z=  yields 0fR = , which is a condition often used in the 
terminal branches of the artery system. This also means that since the transmis-
sion coefficient T is given by 1 fT R= + , the amplitude of the incident wave is 
fully transmitted to the peripheral vasculature. Finally, it should be noted that 

1 0R Z=  means that any incoming wave is completely absorbed by the 0-D mod-
el described in the last section. 

4.4. Simulation Tests and Results  

Equations (14), (17), and (18) (the refined forms of Euler’s hemodynamic equa-
tions) were tested by Alastruey, Parker, & Sherwin (2012), using a discontinuous 
Galerkin scheme, by comparison against in vitro data in a 1:1 replica of the 37 
largest conduit arteries made of distensible silicone tubes (Figure 1 (center)). 
The simulated aorta was connected to a pump, which simulates the left ventricle, 
and the terminal branches are connected through resistance elements to a re-
turning circuit, which simulates the venous return. The comparisons shown in 
Figure 1 demonstrate the ability of the 1-D formulation to simulate pulse wave 
propagation in large arterial networks with reasonable accuracy. 

The 1-D equations were also solved by Alastruey, Parker, & Sherwin (2012) in 
the 55 larger arteries in the human (Figure 2). The periodic flow rate shown in 
Figure 2 (bottom left) was prescribed as the boundary condition at the inlet of 
the ascending aorta (Segment 1) and couple RCR models to each terminal 
branch. They exhibit the characteristics features observed in vivo under normal 
conditions (for a discussion about the behavior of these curves see Alastruey, 
Parker, & Sherwin, 2012). 

Figure 3 compares visco-elastic ad purely-elastic results of simulated area-pressure  
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Figure 1. Experimental (exp) and simulated (num) pressure and flow waveforms in the 
right carotid artery (left), thoracic aorta (right) and right femoral artery (bottom) of a 1:1 
replica of the 37 largest systemic arteries (top middle). 1: Pump (left heart); 2: catheter 
access; 3: aortic valve; 4: peripheral resistance tube; 5: stiff plastic tubing (veins); 6: venous 
over flow; 7: venous return conduit; 8: buffering reservoir; 9: pulmonary veins (Alastruey, 
Parker, & Sherwin, 2012). 
 

 
Figure 2. Pressure (top) and flow rate (bottom) with time at the (left) aortic root (Root, 
segment 1) and midpoint of the aortic arch B (Arch, segment 14), thoracic aorta B (Tho, 
segment 27), and abdominal aorta D (Abd, segment 39), and (right) midpoint of the left 
common carotid (CCA, segment 15), left brachial (Bra, segment 21), right renal (Ren, 
segment 38) and left femoral (Fem, segment 46) arteries. They were simulated using a 
nonlinear visco-elastic 1-D model of pulse wave propagation in the larger 55 systemic ar-
teries in the human (centre). The flow rate at the root (d) was measured in vivo and pre-
scribed as the inflow boundary condition. In red, it is shown the uniform Windkessel 
pressure pw, and Windkessel flow rate qw, out of the arterial system into the microcircula-
tion (Alastruey, Parker, & Sherwin, 2012). 
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Figure 3. Simulated area-pressure curve (a); pressure with time (b) and flow rate with time (c) in the midpoint of the right radial 
artery of the 55-artery “normal young” model (Segment 12) (Alastruey, Parker, & Sherwin, 2012). 

 
curve, pressure with time, and flow rate with time in the midpoint of the right 
radial artery of the 55-artery normal young model (Segment 12), where it is seen 
that the area-pressure curve exhibits hysteresis (Figure 3(a)) due to wall vis-
co-elasticity.  

5. Conclusion 

It has been demonstrated the pervasiveness of Euler’s hemodynamic model, and 
that the hemodynamic equations developed by him in 1742, about 275 years ago, 
still undergird the most advanced numerical methods in use today for blood 
flow analysis in arterial networks. At the time Euler wrote his essay, the know-
ledge on flow in elastic tubes had not been yet subjected to mathematical analy-
sis, being Euler the first to propose a plausible model to the problem. Nonethe-
less, by not recognizing the wave nature of the hemodynamic equations, led Eu-
ler to a dead end on trying to find a closed form solution to his equations. It was 
only in 1759 that Euler himself obtained the wave equation and its associated 
general solution in an essay on the propagation of sound. The propagation of 
waves in an elastic tube requires an adequate constitutive relation for the viscoe-
lastic behavior of its walls, which Euler was unable to establish at that time. 
Then, for more 200 years, Euler’s hemodynamic equations remain practically 
dormant, and it was only in the last decades of the 20th century that blood flow 
analysis became possible due to the advances in numerical computing. Today, 
because of the importance on better understanding cardiovascular diseases, 
blood flow in human arteries is a thriving area of research, and it is possible to 
say that all the particular features of arterial network can be now rather ade-
quately modeled, which allow the simulation of pulse wave propagation in all the 
cardiac cycle phases in large arterial networks with very good accuracy. As noted 
earlier, Euler’s pioneering and seminal work in the area of blood flow justifies he 
be called the father of hemodynamics. 
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